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State-of-the-art techniques for analysing X-ray absorption spectra
are reviewed, with an eye to biological applications. Recent attempts
to perform full spectral fitting of the XANES energy region and
beyond for the purpose of structural analysis have met with
encouraging success. The present paper analyses the theoretical
motivations behind this success and indicates routes for future
improvements. The theoretical background is not entirely new,
although the point of view is, and some sections and appendices
present material that the authors believe has never been published
before. The aim of this paper is to provide a theoretical analysis that
is as self-contained as possible.
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1. Introduction

In the past 20 years, X-ray absorption spectroscopy (XAS) from
inner-shell electrons has proved to be an invaluable tool in the study
of the electronic and structural properties of condensed matter
systems and, in particular, of the active sites of metalloproteins. In
spectroscopic analyses, it has been common practice to treat sepa-
rately the near-edge region (conventionally from below the edge up
to ~30-50 eV above it) and the high-energy part of the spectrum
(above ~30-50 eV), the so-called EXAFS (extended X-ray absorp-
tion fine structure) region. The motivation behind this separation is
entirely empirical, in that the extraction of a structural ‘signal’ from
the absorption spectrum via subtraction of an approximate atomic
background can be performed with a certain confidence and relia-
bility only in the EXAFS region, whereas the low-energy part cannot
be adequately background subtracted.

There exist several analysis packages based on spherical-wave
multiple-scattering theory (MST) and the complex optical potential
of the Hedin-Lundqvist type (Hedin & Lundqvist, 1969, 1971). These
packages are able to reproduce satisfactorily the EXAFS signal [for a
review see Rehr & Albers (2000)]. The same codes even offer the
possibility of fitting the entire spectrum; however, it does not seem
that this potential has been seriously exploited as yet. Some of the
factors that have probably deterred the various practitioners of MST
from extending the fitting procedure used in the EXAFS region to
the edge region, via the calculation of the total cross section, are well
known: the inadequacy of the muffin-tin approximation to the
potential at low photoelectron energies, the lack of a satisfactory
description of the screening and relaxation processes following the
sudden creation of the core hole, and the need to include electronic
correlations and, in particular, two-electron excitations (since they
change the slope of the background absorption). Therefore, the
analysis of the near-edge region has remained at a semi-quantitative
level.

Nevertheless, quantitative analysis of the X-ray near-edge struc-
ture (XANES) in order to obtain structural and electronic informa-
tion can be very relevant in many fields of scientific application, like
extra-dilute systems, surface spectra, real-time measurements of
dynamic systems, trace-element analysis, the local investigation of
materials under extreme conditions and especially biological systems
(enzymes), where the low S/N ratio and the weak scattering power of
the light elements constituting the organic material limit the k-range
of the available experimental data. In all these instances, the EXAFS
region of the spectrum cannot be adequately exploited, since the
usable data are very often below 200 eV from the absorption edge.

Very recently, a method for performing full spectral fitting of the
XANES energy region and beyond (up to ~200 eV above the edge)
for the purpose of structural analysis has been proposed and applied
to the K-edge spectra of a number of transition metal compounds,
both organic and inorganic (Benfatto & Della Longa, 2001; Della
Longa et al., 2001). The encouraging success of this attempt requires a
reconsideration of the theory with a view to understanding why the
method works and highlighting areas of possible improvement.

The present formulation reflects our long experience of the
performance of multiple-scattering theory with a complex optical
potential and might not duly acknowledge other groups’ contribu-
tions to the subject. We apologize if this is the case.

2. Theoretical background

In this section we shall present the derivation of the photoemission
cross section for the ejection of a photoelectron of final momentum k
and kinetic energy k* along the direction k and illustrate the reduc-
tion of this many-body problem to an effective one-particle problem
with complex energy-dependent optical potential. This process of
reduction will help us to understand the validity of the necessary
approximations to the optical potential and will give us guidance in
choosing among various approximation schemes. The photoabsorp-
tion cross section is nothing more than the integration of the
photoemission cross section over all the emission angles and all the
final channels (elastic plus inelastic) with the same final energy. The
reason we treat both cases together is duplex. Firstly, the mathema-
tical formalism is the same, as is the reduction process to a one-
particle problem; secondly, and more importantly, on purely physical
grounds we can think of photoabsorption as a kind of photoemission
that has the same electron source (the photoabsorber), in which the
detector, instead of being outside the measured system, coincides
with the source. The validity of this assumption will be apparent from
the mathematical formalism in the following. By treating photo-
absorption and photoemission together, we can judge the sensitivity
to structural details of a particular potential in absorption by looking
at its performance in photoelectron diffraction. In photoabsorption,
because of the obvious impossibility of controlling the measured
variables (except total energy), we are obliged to sum over all final
states at a given energy.

2.1. Reduction of the many-body problem to an effective
one-particle problem: the photoemission case

The photoemission cross section in the many-body case for the
ejection of a photoelectron of final momentum k and kinetic energy
K along the direction k can be written in the dipole approximation as

~ N 2
do(w)/dk = 4’0, ho|(OW & - > r|WY)| | 1)

i=

26 © 2003 International Union of Crystallography

Printed in Great Britain — all rights reserved

J. Synchrotron Rad. (2003). 10, 26—-42



research papers

where WY is the many-body final scattering state, normalized to one
state per energy interval unit, for the N-electron system with one
electron of momentum k travelling to infinity and \Ilg is its ground
state; these states have respective energies Ey and E:,V ; ho is the
incoming photon energy and & is its polarization. Energy conserva-
tion imposes that hw = E} — E} . According to Breit & Bethe (1954),
in order to satisfy the correct boundary conditions for the ejected
photoelectron (no electron in a continuum state in the remote past),
we must take the time-reversed scattering state by application of the
time-reversal operator ®. Throughout this paper we shall use atomic
units of length and Rydberg units of energy. The quantity «, is the
fine-structure constant, equal to e*/hc = 1/137.

The photoabsorption cross section is obtained from the photo-
emission cross section by integrating over all the emission angles and
all the final channels (elastic plus inelastic) with the same final energy
EY = K* + EN-!, where EN~! is the energy of the remaining N — 1
electrons of the system. By definition, the elastic channel is the
channel for which EJ~' = E}~', the ground state of the
(N—1)-electron system. The states with energy E¥~! can have one or
more electrons in the continuum, as in the case of double photo-
ionization (shake-off channels), or one excited electron in a valence
excited state that remains in the system (shake-up channels).

Since we sum over all final states (f) we can eliminate the time-
reversal operator and write the photoabsorption cross section in the
usual way as

N 2
One(@) = 401, hw; (w)le - ;ri |W¥)| 8(hew — EY + EY). (2)

In the case of photoemission from a deep core state ¢} ~of angular
momentum L, = (/,, m,), we assume that, to a good approximation,

WYy, .y ) = (N!)I/ZAwCL[)(r)chCD,’,V_l(rl, ces Ty y)
=(N)"?Ag )WYy, ...y ), 3)

where A is the wusual anti-symmetrization operator [A =

A(/N) Y, (=1)°P, with A2 =A], and ® ¥'(r,,...,ry_,) are

Slater determinants describing the configurations present in the
ground state of the system. Normalization imposes 3, |c,|* =1 if
(¢°|¢°) =1, and for simplicity we shall omit spin variables, since we
are going to deal with non-magnetic systems.

In a similar way, we can write without loss of generality

Wy, .ty ) = (V)P AY ol W,y ), (@)

where the functions ¢/, ignoring exchange effects, can be thought of
as describing the excited photoelectron while the @2’ ~! states are
eigenstates of the Hamiltonian H™~! describing the remaining
(N—1)-electron system with eigenvalues EN !

HYD BN = BN 5)

The tilde stands as a reminder that in the expansion (4) the relaxed
states around the core hole are dominant. If needed, they can in turn
be expanded in terms of Slater determinants that describe the
intervening configurations in the final state. Borrowing the term from
many-particle scattering theory, we can call the states W2 ~! final-state
channels. Here and henceforth, the lower index fin the final state \IJ}"
can be replaced by k whenever we deal specifically with the scattering
state WYY,

The wave function \IJ}" is an eigenstate of the total Hamiltonian A"
with eigenvalue EY = EY + ho, i.e.

HNGY = By (6)
Moreover,

HY = -V} 4+ > V(r,r) + H', 7)

where V(r, r;) is the interaction potential of the excited photoelectron
with the rest of the system.

By inserting (4) into (6), projecting onto the states lilg’ ~! and using
(5), we obtain for the amplitude functions ¢/, the set of coupled
equations

(V2 +R) 90 = 2 Voplt, D) g3(e) &7 ®

where
ki, =hw—(E}"' —E))—(Ey"' —E}™")=hw—1,— AE,, (9)

1. being the ionization potential for the core state and AE, the
excitation energy left behind in the (N — 1)-particle system. The non-
local interchannel potentials V,,(r,r') are the matrix elements
between states W) ~! and W' of the interaction potential V(r,r,)
and include local terms coming from the Coulomb interaction as well
as non-local exchange terms originating from the exchange interac-
tion. The set of equations (8) is supplemented with the boundary
conditions that are related to the behaviour of the photoelectron at
infinity and to the state of the (N — 1)-electron system according to
the partition of the total energy E} = E} + hw between the photo-
electron and the system. Each different partition has a different set of
boundary conditions, which lead to a different solution of (8). For
example, if we are interested in a particular photoemission channel
with kinetic energy k% leaving behind the energy AEj in the system,
in the limit » — oo we should impose the scattering conditions

0u(r; k) = (ky/7)" " exp(iky - 1) 8,5 + £, (71 Kp) exp(ik,r)/r,  (10)

where we have made explicit the dependence of ¢, on kg as an
argument rather than an upper index. Hence, as usual, 8,4 is the
Kronecker symbol, and f, is the scattering amplitude. The factor
(kﬁ/n)l/ ? normalizes the photoelectronic plane wave at the detector
to one state per Rydberg. In the case of double electron transitions
with two electrons in the continuum, (10) can easily be changed
accordingly. For more details we refer the reader to Natoli et al.
(1990), where a formal solution of (8) is given in the framework of the
multichannel multiple-scattering theory. For the sake of the argument
developed here, we need only the expression for the photoemission
cross section, which is obtained from (1), (3) and (4) as
2
do(w)/dk = 87°aho Y ,

my

5102 Kl - el )

a

(1)

which is valid if we orthogonalize the excited channels ¢, to all the
one-particle states belonging to the configurations @, that are
present in the ground state \Ilg,V . Here we have introduced the overlap
integrals S, = (W) ~'|WY~") of the ‘passive’ electron and indicated by
¢, the time reversal of ¢, (in practice, the complex conjugate, if spin
is neglected). Spin degeneracy has been taken into account by
including an extra factor of 2.

The set of equations in (8) contains the complete description of all
the outcomes of the photoemission process, be they of intrinsic (i.e.
consequent to the relaxation of the system around the core hole) or
extrinsic (excitations created by the photoelectron on its way out of
the system) origin. The complete solution of (8) is out of the question;
however, one can analyse the consequences of some solutions in
particular cases. Since we are mainly interested in structural analysis,
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both in photoemission and in photoabsorption, we need only consider
the completely relaxed or elastic channel (i.e. that for which
AE, = 0), since this is the only channel capable of carrying structural
information. For simplicity we shall attribute to this channel here and
in the following the index o = 0. This channel carries most of the
weight since, as a typical value, |S,|* = |(\I—’ON’1|\IJQ”1)|2 ~ 0.8-0.9
(Mustre de Leon et al., 1991).

We can then think of solving the set of coupled Schrodinger
equations (8) by eliminating all unwanted channels in favour of the
elastic one. The result is a single equation for the channel function
@,(r) with an effective complex energy-dependent non-local optical
potential of the kind

[V? + k5 = Vi@ gy(r) = [ ZP(r, v ho) gy (1) &, (12)
where we have isolated the local Coulomb part of the potential (V)
and indicated the energy dependence coming from the eliminated
channels by the argument Zw in £°'. Once this equation is solved, we
can write each ¢, (r) in terms of ¢,(r) through a relation of the type
(1) = [A,x, ¥'; hew) gy (¥) d*#7, which involves complicated inver-
sions of the operators [V? + k2 — V,(r, )] in (8). Again, a formal
scheme of solution is given by Natoli er al. (1990). We can therefore
write (11) as

do(w)/dk, = 87°chw Y | Y (S; [AZ(x,¥; ho) g5 (v ko) &°F

my a

(13)

2
X ’8 : l“ (pz,mo(r)> )

so that everything is expressed in terms of ¢ (r). Notice that in the
summation over o« the most important term is Sjgy (r), since by
definition A (r,v'; hw) = 8(r — 1').

Our task is then to solve (12) with the asymptotic boundary
conditions given by (10). This can be achieved in the framework of
MST by transforming the integro-differential equation (12) into a
Lippman-Schwinger equation with non-local potential, following the
method illustrated by Natoli et al. (1986, 1990). In these papers the
derivation of the MS equations is given for local potentials, but it is
clear that the same derivation is valid for non-local potentials as well.
The essence of the method rests on the partition of the space into
Voronoi polyhedra (equivalent to Wigner—Seitz cells for periodic
systems) such that the diameters of the polyhedra are always smaller
than the nearest distance between their centres. In each such poly-
hedra, a local solution @, (r) of (12) is obtained, which behaves like
J, () = j,(kyr) Y, (7) near the origin, where j,(kr) is the usual spherical
Bessel function of order / and Y/, (7) are the spherical harmonics of
type L = (I, m) (we shall use a real basis throughout). These func-
tions are used to expand locally in the ith cell the overall solution of
class C' (continuous together with first derivatives) in the whole
space, satisfying the boundary condition (10). Thus we can write
locally,

D'(r;: ko) = 30 A) (k) P(x,), (14)
2
provided the amplitudes A’ (k,) satisfy the compatibility equations

Z CLL/AL’(kO) - AZ(ko) - Z (1

JL'L

LL/ L/L’ A}L”(kO) (15)

where A9 (k,) = —4mi YL(IAco) exp(ik, - R, )(ko/m)"/* is the exciting
amplitude originating from the plane wave in (10). A derivation is
provided in Appendix A. Here, C?;, and S, are surface integrals
over the surface S; of the ith cell,

Ciy = [[Hf@VP,(x) — @), ()VH/ ()] -m;do;,  (16)

i

Siu = [ .0V m -

S,

i

oy (l')VJL(r)] -, do;, 17

and Gi ., are the KKR structure factors, which have the well known
form

GLL =Ax Y i+l Hzr (R;), (18)
T

where Hjf (r) = —ik hf (kyr) Y, (?), h} is the Hankel function with
outgoing spherical-wave behaviour, R; =R, —R; is the vector
connecting the origins of the two cells centred at R; and R;, and
R,, = R, — R, connects site i with the origin of the coordinates o,
which is assumed to coincide with the photoabsorber. The quantities
Ct, = [Y,(?) Y, (F) Y,,(7) dF are known as Gaunt coefficients.

In order to be able to use the physical language of MST, we
introduce the quantities B} (ky) = >, St A} /(ky), and we define the
suitably normalized local basis solutions @) =Y, @i (S ), Lo
so that ®i(r; ky) = Y, @ (r,) By (k). The coefficients B (k,) are
easily seen to satisfy the MS equations

Y (T)r Byl = Af (ko) = 2 (1= 8) Gy By.(ky). (19)

j

where we have introduced the quantity 7%, = 3, 8} ,,(C');/,. In
the case of cells of spherical shape it can be shown (Natoli et al., 1990)
that T%,, is the scattering matrix of the non-spherical potential
located inside the ith cell and B (k,) is a total scattering amplitude
impinging on that cell in response to a plane-wave excitation of
momentum k,. Indeed, (19) are the self-consistent equations for
these amplitudes. We shall assume in the following that we are
dealing with spherical cells, in order to make the discussion more
physical. In the general case, (15) should be used.

For convenience, we define the cell T-matrix 7, = T} 18 and the
matrix G = (1 — )G” 1., of the free-spherical-wave propagator Then
(19) are easily solved for the amplitudes B (k,) to give

B (k) = _477(1(0/77)1/2 > 'CZL’ I Yy (ko) exp(ik, - R,), (20
jL’

where we have introduced the inverse 7 of the MS matrix;
o, =[(T;'+ G)'),,, which is known as the full-scattering path
operator and gives the total amplitude of propagation from site i to
site j, starting with angular momentum L and arriving with angular
momentum L.

We now have all the ingredients that are needed to calculate the
photoemission cross section. Introducing the energy-dependent
matrix element for the creation of the photoelectron,

M heo) = Y(53 [ A (. he) L) e g, (), @)
we easily find that our quantity of interest takes the simple form

2

da(a))/dko = 87ahw Y

o

22)

Z M, L(hw)B([}, (ku)

Remembering (20), we then see that the photoemission current along
direction IAco is the modulus squared of the sum of all of the possible
composite amplitudes that are obtained as products of an amplitude
Mj , for exciting a core electron at site o (the origin), times the
amphtude of propagation t;’;, from this site to any other site (cell) j
with final angular momentum L', times the amplitude Yu(ko) for
emission along lAc(,, times the phase factor exp(ik - R;,) that takes into
account the phase relation of the electronic wave between sites o and
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j. The photoemission current is therefore the result of a complicated
interference process that requires the reliability of the optical
potential.

Expression (22) has constituted the basis for the interpretation of
photoelectron diffraction data at low photoelectron kinetic energies
with some success (Gunnella et al., 1998). Computer programs in the
MT approximation are also available (Gunnella et al, 2000). The
emitted current depends on three variables: the photon energy and
the two polar angles of the direction lAcU. Therefore, as anticipated at
the beginning of this section, by fixing the energy we can test the
performance of a particular model optical potential in reproducing
polar and azimuthal diffraction scans.

2.2. The photoabsorption cross section

Turning now to absorption, we need to integrate (11) over k and
sum over all the final channels that have the same total energy
E = hw+ E,. To this purpose it is expedient to make explicit the
energy-conservation condition and to label the final state with f. By
defining the Green’s function matrix with outgoing wave boundary
conditions,

G0, E) = Y@L 00, OV (E — AE; — kj + i),
7
the photoabsorption cross section is easily seen to be

O s (@) = — 8m@hw Im) [ff d’ro§ (e -r

oy

X Z 858y Gl (0, Vs heo — I )& - ¥ ¢ (r') d3r’], (23)

o

which is the same as the expression that we would have obtained if we
had started from (1), (3) and (4). In Appendix C-4 of Natoli et al.
(1990) it is shown that this matrix satisfies the set of coupled equa-
tions,

(V*+ k) Goy(e.Xs E) =Y [V, (r. 1) G, ¥, E) &
v
=8, 8(r — 1),

where we have written E for iw — I,. Following the same steps as in
the photoemission case, the elimination of all channels in favour of
the relaxed one (o = 0) leads to the following expression

> 88y Gh(x, ¥ E) =
ao’

o

3 SES, [[ AL x; E) Gy(x, X E) A, (X, v E)dx &X', (24)

where the non-local operator A, (r, r'; E) is the same as before and
G, obeys an equation corresponding to (12) with the same optical
potential:

V> + kg — V.(0] G(x, ¥'; E) — [Z'(r, x; E) Gy(x, x¥'; E) d’x
=8r—r). (25

The solution to this equation within MST, for r in cell i and ' in cell j,
can be written as (Faulkner & Stocks, 1980)

Gl Y  E) =Y @, (1)(7), —8;T,)®, ()
LL

+ aij > &>L(r<)T2L’ qu'(r>)’ (26)
L

remembering that the functions ®, (r) do not carry the normalization
to one state per Rydberg. The second term on the right-hand side is
the singular part of Green’s function, r_ (r. ) is the lesser (greater) of
r,r and @Z(r) is the solution of (25) inside cell i that is irregular at the

origin and matches smoothly to I:Izr (r) at the boundary. Making the
reasonable assumption that the range of the functions A,(r,r’; E) is
of the order of the atomic dimensions (this assumption is obviously
true for A,) and using (24) and (26) in (23), we finally obtain for the
photoabsorption cross section

Ops(@) = — 8 how
xIm > My (@) (777 — T My, (@) + oy (@), (27)

myLL'
This expression arises because of the localization of the core initial
state. Mj , is given by equation (21) and we define an ‘atomic’

absorption given by

o, (w) = — 8o hw
xImY [[dref (1) e -rM(r, v 0)e - ve§ ()d’r,  (28)

mgy

where
M xs0) = Y88y 2 [ Asr, x; 0)®, (x.)
o’ LL'
X T9, U, (x_)A, (X, '; w)dPxdy. (29)

Equation (27) is the expression that we wanted to arrive at. It is valid
under quite general conditions, as is apparent from our derivation,
and shows the natural partition into an ‘atomic’ contribution and an
MS contribution. By removing all cells of the cluster except that
containing the photoabsorber, 777, reduces to 77,, so that the MS
contribution is zero. Even though in a multiatom system we cannot
define precisely an atomic entity, we shall continue to use the term
‘atom’ for the central cell, because it is after all a reasonable
approximation to the isolated atom. The fact that the second site
index is equal to the first means that the electron source and the
detector coincide, as already anticipated. Since the escape direction
of the photoelectron has been integrated out, the only variable left is
the energy and we can only test energy-dependent diffraction
patterns. Therefore, these patterns might be distorted (compared
with photoelectron diffraction patterns) by the energy dependence of
the matrix elements that are necessary to create and detect the
photoelectron at the absorption site.

However, we can hope to recover the structural information that
we are interested in if we can neglect electronic correlations in the
final state and if only one configuration (Slater determinant) is
predominant in (3). Both of these conditions seem to be true, to a
good approximation, for the K-edge spectra of metal ions in materials
of biological interest. Indeed, the final photoelectronic states reached
in these instances possess p symmetry around the photoabsorber and
therefore are sufficiently delocalized not to suffer correlation effects
with the electrons of the system. Moreover, very often the spin-
restricted (unrestricted) Hartree—Fock approximation for the initial
state provides a reasonably good description of the ground state for
closed (open) shell configurations. Only in special cases do we have
examples of configuration mixing in the ground state, as in the case of
the Cu®* ion in La,CuO, (Wu et al, 1996) or valence fluctuating
compounds. In such instances, a better strategy would be to solve the
multichannel equations for the configurations that enter in the
ground state and to eliminate all the other channels by expressing
them as a function of the configurations of interest.

The predominance of one particular configuration implies that the
spectral shape of the excited channels is rather featureless and similar
to the ground state, since most of them consist of particle-hole or
plasmon-like excitations, which do not drastically change the ground-
state potential. Therefore, to a reasonable approximation, we can put
A, (r — x; w) = A, (w) 8(r — x). We can also write |Y, S, A, (0)]* =
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ISy(w)]?, because |S,|* is the preponderant term of the series [by
definition A;(w) = 1]. Thus, we obtain from (24)

¥ 88y Gl (0,1 E) = [Sy(@) "G x, ¥'; E). (30)

This equation, together with (23), tells us that the effect of the
eliminated channels results in a shape function |S,(w)|* that modu-
lates the absorption coefficient originating from the primary channel

s (@) = [ Sy(@)[* (@) 31)

The expression for o9 () is easily obtained by observing that, in the
same approximation, (29) gives

M(r v 0) = [Sy@) " LT W) = [Sy)| Mer v )
(32)
whereas (21) becomes, dropping #,
M; 1 (@) = (Dr®le - righ, () S, Aul@) = Mj1 (@) T S, Aul@)
(33)
so that insertion of (33) into (27) and (28) provides the desired result,
simply by replacing the transition matrix elements M with M,

(@) = —8mahwIm Y M, (w)(155, — Tgp )M, (@) + 0()
myLL'

= 0(®) + 03 (@). (4)

Even with these approximations, the first-principle calculation of
|S,(w)]? is not an easy task. The most noticeable effect is provided by
double electron transitions (that are included in our scheme), since
they show up as a change of slope in the ‘atomic’ background
component of the cross section (Filipponi, 1995b), which occurs at
definite energies that depend on the photoabsorber. An analytical or
numerical modelling of these effects would be highly desirable,
although for our purposes it is sufficient to know that such ‘kinks’ can
be factorized into this shape function.

We are left with the problem of determining the nature of the
optical potential X°'(r,¥'; E) in (25). This potential contains the
effect of both the intrinsic channels (excitations induced in the system
by the sudden creation of the core hole) and the extrinsic channels
(excitations created by the photoelectron on its way out of the
system). Model systems to describe both types of processes, and their
interference patterns have been studied by some authors (Fujikawa,
1999; Campbell et al, 2002, and references therein). However, a
practical scheme for realistic calculations has not yet been devised.
The only optical potentials currently in use are those based on the
Dyson self-energy of the photoelectron propagation in the system.
This type of self-energy clearly accounts only for the extrinsic losses.
Depending on the systems, various reasonable approximations have
been devised.

It is well known, for example, that for metals we can obtain very
good agreement with the observed absorption spectra by using a one-
particle approach with an X-«a potential and convoluting the calcu-
lated spectrum with a Lorentzian broadening function, which has an
energy-dependent width that is related to the mean-free path of the
photoelectron in the system by the relation (Miiller & Wilkins, 1982;
Miiller et al., 1984)

I(E) = [n/ME)E/m)'"?,

where I'(E) is the full width at half-maximum.
In the framework of the above multichannel approach, this finding
can be rationalized by observing that in a metal the completely

relaxed channel together with the plasmon excitation channels
(whether intrinsic or extrinsic) almost completely exhaust the sum
rule

IS = S = 1 =

which holds because of the completeness of the intermediate relaxed
states \i‘g’ ~1. Indeed, the intensity of the double-electron excitation
channels is of the order of 107>~107 times that of the main relaxed
channel (Filipponi, 1995b). Therefore, an optical potential given by
Vy_, +iT(E) is able to give a satisfactory picture of the absorption
process for metals. The only discrepancy with experiment is that the
calculated absorption maxima fall short of the observed maxima
because of the energy independence of the X-o exchange.

A better approximation is provided by the Hedin-Lundqvist
(H-L) potential (Hedin & Lundqvist, 1969, 1971), owing to its
energy-dependent exchange and its imaginary part that is able to
reproduce rather accurately the observed mean free path in metals
(Penn, 1987). The H-L potential is the self-energy (based on the GW
approximation and calculated at the local density of the system under
study) of an electron that is propagating in a homogeneous inter-
acting electron gas. Although initially devised to describe exchange
and correlation corrections to the Coulomb potential due to the
valence charge, Lee & Beni (1977) have extended its validity in the
atomic-core region as well.

By neglecting the effect of the intrinsic processes, we can
approximate X°P'(r,r’; E) as the Dyson self-energy of the photo-
electron in the final state. This approximation is consistent with the
physical picture of the photoabsorption process, in which we add an
electron to the ground state of the (Z + 1)-equivalent atom. From this
point of view, G (r, t’; E) describes the propagation amplitude of the
excited photoelectron from point r to point r'. Gy (r,r’; E) is the
probability amplitude that the added electron remains in the state in
which it was added to the system. The imaginary part gives the total
probability amplitude for scattering out of this initial state. In this
scheme the Dyson self-energy X, (r, r'; E) acts as a complex optical
potential that describes the reduction of the wave-function amplitude
of the elastic channel due to the transitions to all the other channels.
The localization of the initial core state has the consequence that the
optical paths of the photoelectron in the final state begin and end at
the photoabsorbing site. We expect that neglecting the effects of the
intrinsic processes on Z°P'(r, r’; E) is a reasonably good approxima-
tion, since their main effect is already incorporated in the shape
function |Sy(w)[>.

We can therefore interpret the H-L potential as an effective
optical potential that controls the propagation and damping of the
excited photoelectron everywhere in the system. In this approach,
this potential can be viewed as a local-density approximation to the
self-energy of the photoelectron in real systems. Nowadays it is the
potential that is most widely used in the calculation of the absorption
and photoelectron diffraction cross sections of many systems, ranging
from metals and semiconductors to ionic and covalent systems with
varied success. In Appendix B we derive in some detail analytical
expressions for the H-L potential, both for the sake of completeness
and in order to make contact with other kinds of potentials, like the
X-o and the Dirac-Hara potentials.

Finally, Fujikawa et al. (2000) have improved on the H-L potential
by restricting its validity to the valence charge, as originally devised.
They relied on the GW approximation for the photoelectron self-
energy, Xgw = GW in the solid, where W = eV, V is the bare
Coulomb interaction and ¢ =1— VP is the dielectric response
function of the system, and they split both the polarization propa-

30 C. R. Natoli et al. + X-ray absorption spectroscopy

J. Synchrotron Rad. (2003). 10, 26—42



research papers

gator P =P% + P° and the one-electron Green’s function
G = G+ G° into core and valence parts. Since the core polariza-
tion was assumed to be much smaller than the valence polarization,
Fujikawa er al. (2000) obtain an expansion in powers of P¢ for
Yow=G'WY+ VS +G"WYP*WY 4 .... Here GYW" is the self-
energy for the valence electrons, which, when calculated via the
plasmon-pole approximation for the dielectric function, is equivalent
to the H-L potential; V i, = GV is the bare Hartree—Fock exchange
potential and GYW YP°W" is the screened polarization potential for
the ion cores. Details of this latter potential are given in Appendix C.
Preliminary calculations for photoelectrons with kinetic energy
greater than about 100 eV show that this non-local potential gives the
same scattering amplitude as the total H-L potential at large scat-
tering angles and provides a better description of small-angle scat-
tering (Fujikawa et al., 2000). However, more work is needed to
establish its performance at low photoelectron energies.

Once the optical potential has been specified, we can proceed to
the calculation of the key ingredients in (34), namely the cell func-
tions ® . (r) and \iljf(r) in the absorbing sphere, which are needed to
calculate the atomic absorption ¢%(w) and the transition-matrix
elements M that create the photoelectron, and the scattering-path
operator t/,, = [(T;' + G)™'1¥,,. The inversion of the MS matrix
(T7! + G) becomes time consuming at energies greater than about
50-150 eV, depending on the number of cells in the cluster. Fortu-
nately, in most cases, above ~50 eV we can invert the MS matrix by
series expansion, i.e.

t=(T.'+ G =(I+T.G)'T,
=2 (-D)"(T.G)'T, = 3 (-1)'T(GT.)", (35)

so that the total absorption is seen to be made up of an atomic smooth
contribution plus an infinite series of oscillatory signals (Benfatto et
al., 1986; Tyson et al., 1992). This observation has been the basis for
the development of the packages mentioned in §1, based on the
empirical extraction of a structural EXAFS signal from the experi-
mental data and the comparison with a theoretical signal.

A major ingredient in the extraction procedure is the definition of
a background atomic absorption coefficient pu,(w) such that the
structural signal is defined as

x(@) = [(@) = o (@)]/ [ (@)]-

By identifying ., (w) with o, () (ignoring the usual proportionality
factor Np/A, where N is the Avogadro number) we are led by (34) to
the identification

x(@) = og(@)/ o). (36)

In this formula, the shape function |S,(w)|* seems to have dropped
out from the ratio. However, the function’s disappearance is a
consequence of the identification of u, (w) with o, (), which is only
approximate because the empirical definition of p, (w) does not take
into account the exact form of |S,(w)|*. The nearer 1, (w) is to o, (),
the less dependent x(w) becomes on the shape function. This is the
reason why in many instances of EXAFS analysis |S,(w)|* seems to be
constant and very near to 1. Also note that the atomic absorption
0% (w) does not factorize from the structural signal o9 (w). Indeed,
only if the optical potential is real can we show that

oh(w) = —8mahw Im > M () (T3,) M5, (o),
mgy !

so that the structural signal is proportional to the atomic absorption.
However, because of the presence of inelastic processes, the potential

is complex, and the different behaviour of 6% (w) and 0%, (w) should be
taken into account in a refined treatment of the experimental data.

Therefore, in order to extract structural and electronic information
on the system under study, we should not rely on an empirical defi-
nition of u, (), which becomes increasingly difficult to define in the
XANES part of the absorption spectrum. Rather, we should try to fit
the entire experimental spectrum, especially since the relevant
information is confined to the first 100-150 eV from the edge and is
consequently well within the energy range where a complete inver-
sion of the MS matrix is possible for a wide variety of systems,
including biological material. Indeed from photoelectron diffraction
studies we already know that the coherent diffraction process
carrying the structural information is well described by an optical
potential of the H-L type (Chen et al., 1998; Gunnella et al., 1998).
Regarding the matrix elements for the creation of the photoelectron
and its energy dependence, past and present experiences indicate that
the smoothing action of the complex part of the potential helps us in
reproducing the correct behaviour. Remaining discrepancies can be
easily absorbed into a redefinition of this complex part. Even the
effect of the shape function |S,(w)|” on the absorption spectrum,
under the assumptions described above, can be mimicked via an
additional damping. These statements will be substantiated by the
applications of the method to particular systems in a following paper
(Benfatto et al., 2003).

2.3. The mean free path

Expression (19) tells us that the structural part of the photo-
absorption cross section o, (w) is proportional to the imaginary part
of the product of the amplitude M for emitting the photoelectron,
times the full scattering amplitude of propagation t from the
photoemitter site and back, excluding the contribution of the
photoemitter itself, times another amplitude M for detecting the
photoelectron. Since the optical potential is complex, we expect that
the coherent part of the propagation (the part that only carries the
structural information) will be attenuated by a damping factor related
to the mean free path of the photoelectron in the system, whereas
incoherent terms will appear that describe the effects of scattering
out of the coherent channel due to the presence of inelastic processes.
These incoherent terms are described by the complex part of the
potential.

In this section we shall show explicitly that the mathematical
structure of the theory contains the intuitive picture of the photo-
electron damping in the expected way, by making contact with
existing expressions for the mean free path A. At the same time, we
shall find out how the incoherent terms due to the presence of
inelastic processes find their place in the theory and, as a by-product,
how we can mimic their effects when we ignore the details of their
manifestation.

For the sake of illustration, we shall assume that the MS series for ©
in (35) converges and that the optical potential is local and of the
muffin-tin form. The general nth term of the series, dropping one
factor T¢ that factorizes into the amplitude for emitting and detecting
the photoelectron, has the form

(6], =X X 171Gt Gl th,--- Gy (37,

ik LyLyL,

where ¢} = k™! exp(i8}) sin 8/ is the atomic scattering matrix for the
atom at site i and angular momentum / in terms of the corresponding
phase shift §i; G’ZL/ are the spherical wave propagators that are
introduced in Appendix A. Without loss of generality, for simplicity
we shall consider in (37) the case n = 3 with three sites o, i and j, so
thatj=4k, L, = L,.
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Since the potential is complex, the generic atomic phase shift § is
also complex, so we can write § = 8§, + i8,. Therefore,

kt = exp(i8) sin 8
= exp(—26,) exp(i8;) sin &; + i[1 — exp(—26,)]/2, (38)

which reduces to the known expression with real ¢ in the limit §, — 0.
In an electron-atom scattering process with complex potential
(Landau & Lifshitz, 1966), it is known that, within a factor k2, Im k¢
represents the total scattering cross section (elastic plus inelastic),
whereas |kt|* gives the elastic cross section (without energy loss for
the impinging electron). Based on the definition (25), the relation

Im kt = |kt|>+[1 — exp(—45,)]/4

holds, so that [1 — exp(—44,)]/4 is the inelastic cross section. For
convenience, we shall work henceforth in terms of the dimensionless
quantity kt, since the propagator G in (37) is proportional to k, the
photoelectron momentum.

From (38), it is clear that the coherent signal is obtained by
choosing, for all the kr factors appearing in (37), the term
exp(—26,) exp(id;) sin §;. All the other terms containing at least one
factor i[1 — exp(—24,)]/2 describe inelastic processes with loss of
coherence for the photoelectronic wave. Indeed, we have
[1 —exp(—26,)1/2 >~ [1 — exp(—44,)]/4 =~ §, for sufficiently small §,,
which is usually the case.

Concerning the coherent signal of interest, we see that it has the
same form and value as the structural signal obtained for a real
potential, except for a damping factor coming from each kt and each
propagator G. To proceed further, we need to find an expression for
this latter factor. Again, for illustrative purposes, we shall work in the
so-called plane-wave approximation (PWA), but it can be shown that
all the following considerations are valid even when spherical-wave
corrections for the photoelectron propagating wave are taken into
account. In the PWA we can write (Natoli ef al., 1986)

G, ~exp(i «'Ry) YL(i?ij) YL'(kij)/(KIR"f)’

where R; is the distance between sites i and j and
k' =[E—V,]"? = k! + ik} is the photoelectron momentum in the
interstitial region, in which the potential V; is constant and can be
complex.

Calling R; the sphere radius of the potential at site 7, it is easily seen
that in the case of the three sites o, i and j the damping is represented
by an exponential factor with exponent

—285 — k3R, — 285 — K3 R; — 28, — k3R, (39)

We now need an expression for the phase shift §, which in the WKB
approximation is given by (Hara, 1967)

R,

§' = [[E—V,(n]"*dr — k'R, (40)

0
where the potential V,(r) inside the sphere R; is assumed to be
complex. Notice that in keeping with the plane-wave approximation
for the propagator G we have dropped the centrifugal term in the
WKB expression, so that in this case the phase shifts are independent
of the angular momentum /. However, as already emphasized, the
argument remains valid even when spherical-wave corrections are
taken into account.

In the path going from site o, the photoabsorbing site, to site i and j
and back to o, each atom is traversed for a length 2R, if R is the radius
of the corresponding sphere. Writing R, = R,; + R; + R;, for the
total length of the path, we see that the damping factor is given by
exp(—«,R,), where

K = R4 Im [ [E— V()] dr, (41)

path
path
since in the interstitial region V(r) = V; and, for example, inside
sphere j, V(r) = V,(r). Equation (41) is exactly the same as the
expression that we would have obtained had we studied the propa-
gation of an electronic wave in the potential V(r) by solving the
problem in the WKB approximation. The mean free path is accord-
ingly given by

A= (2x)7" (42)

which is consistent with the fact that exp(—«,R,,, ) is an attenuation
factor for an amplitude of propagation. A further simplification is
achieved if we take into account that everywhere in the system
E — V,(r) > V,(r), V,(r) and V,(r) being the real and imaginary parts
of the potential. Then, expanding the square root in (41) as

[E— VO] = [E—= V()] + (/2Vo() [E = V(0] 72,
we obtain

_ -1
K = 2Rpath

J VaOIE = Vi) dr < 2kRy) ™ [ Va(r)dr,
path path
remembering that k = E'/2. Therefore, from (42), we finally get an
expression in atomic units,

raw) = k(au. /[, (Ryd)], (43)

where &, = R Joan V2(r) dr, since V,(r) is actually a self-energy.
Equation (43) is the same as that given by Penn (1987), who has, in
conventional units,

b= (1K) /2mkE,) = E/(KZ,),

taking into account that E, = k* (Ryd). The only difference is that £,
is defined as a volume average of the imaginary part of the H-L self-
energy (see Appendix B) instead of the line average found in this
paper.

From the above discussion, we see that what in practice determines
the photoelectron damping is a line average of the various MS paths.
If the system is homogeneous enough, this average will not depend on
the path, so in practice we can ignore the position dependence of the
self-energy and replace it by a function of only the energy of the
photoelectron: E = hw — I. Since the cross section is analytical in
the energy E, neglecting the cut at the Fermi energy, we can
approximately take into account the effect of the absorptive part of
the potential on the cross section o}, (E), calculated with the real part
of the potential, by performing the following convolution

5(E) = 7 | E,(E) ol (E)[(E — B + S3(E)]dE
[E—iZ,(E)],

T
= Oabs

which holds if we are away from the edge, so that we can extend the
integral to —oo, and if X,(E) does not vary too rapidly with E.
Explicit calculations via both methods substantiate this relation.

The effect of the core-hole lifetime can be easily incorporated into
the theory by adding I', /2 to Z,(E), where I, is the full width at half-
maximum of the core hole and is related to its lifetime by v = 1/I}.
We assume here an exponential decay of the core hole, which is true
in most of the cases that we are interested in. To estimate the effect of
this added damping on the mean free path, we simply have to add
I,/2 to ,(E) in (43), so that

Mot = EJIk (2, + T4/2)] = At = ,/k 4+ Ty /(2k) = A + 47,
(44)
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where A, is the inelastic mean free path and A, is the mean free path
corresponding to the finite lifetime of the core hole.

In the H-L approximation for the self-energy at energies lower
than the plasmon energy, the mean free path would be infinite, if it
were not limited by the core-hole lifetime, because of the plasmon-
pole approximation that we have retained in the expression for the
dielectric function of ¥, in Appendix B. Damping originating from
channels other than plasmon excitations (creation of electron-hole
pairs) cannot be calculated by the H-L approximation. However,
these damping terms have been evaluated (Hedin & Lundqvist, 1969)
and found to be negligible compared with the core-hole lifetime and
the experimental resolution. The damping terms can be introduced
back into the equations using the formula given by Quinn & Ferrell
(1958), as implemented in the FEFF code (Rehr & Albers, 2000). The
photoelectron, on reaching the plasmon energy, interacts with the
electron gas by creating plasmon excitations and suffering a reduction
in the coherent wave-function amplitude. This fact would entail a
rather sharp decrease in the photoelectron mean free path, which
should show up as a localized feature in photoabsorption spectra. In
reality, the setting in of the plasmon damping is not so sharp because
of the quantum interference between intrinsic and extrinsic losses at
the plasmon edge (Fujikawa, 1999; Campbell et al., 2002, and refer-
ences therein). Therefore, we introduce into our fitting analysis an
empirical model that takes into account both the smooth opening of
the plasmon-loss channel and the effect of the electron-hole excita-
tions.

2.4. The muffin-tin approximation

As a result of the reduction operated in §2.2, Green’s function
G(r, r¥'; E) obeys an effective one-particle Schrodinger equation, (25),
which is better known as the Dyson equation. In (25) we have made
explicit the appearance of the usual Coulomb or Hartree potential
V.(r), which is given by

Vi) = - Y 2Z e =R, 2 [ Erp)r - (45)
k

Here R, and Z, indicate the position and the charge of the kth atomic
nucleus and p(r) is the charge density of the system under study,
which, in an independent-particle scheme or in a local-density
approach, is given by

) =3 [0

In general, the solution of the Schrédinger-Dyson equation in three
dimensions does not pose any particular problems in the framework
of the MST, as illustrated in Appendix A. However, the generation of
the local solutions @, (r) and the calculation of the surface integrals
Ci,. and S, for all site and angular momentum indices are rather
time consuming, especially if we have to generate many theoretical
signals to compare with experimental data in a fitting procedure. A
great simplification is achieved if we spherically average both the
Coulomb potential and the self-energy Z°P'(r, r'; E) inside the atomic
spheres. Both quantities depend on the electron density of the system
under study, so, clearly, a self-consistent charge density would be
highly desirable; however, this is often complicated to obtain in an
amount of time that is appropriate to a fitting procedure. Therefore,
usually the electron density is approximated by a superposition of
spherically symmetric self-consistent atomic charge densities that are
generated by currently available atomic programs. In order to make
this approximation, we need to know how to expand a spherically
symmetric function referred to one centre j around another centre o
and take only the L = 0 component. This expansion is easily obtained

based on the procedure proposed by Lowdin (1956) and later utilized
by Mattheiss (1964). If p(r;) is the atomic radial charge density
around centre j, normalized so that 47 ﬁ)oo p(r;) r]2 dr; = Z,, then the
component p, _,(r) of the charge density at distance r from the centre
o is given by

P = R [l p(r) r,dr, (46)

where R is the distance between the two centres. As a result, the total
overlapped spherically averaged charge density around centre o is
given by

Ri+r

P = p° () + QRN [ plr)rydr;, (47)

IRj—r]

where R; is the distance of neighbour j from centre o and p°(r) is the
charge density of the atom at this centre. Similarly, because of the
linearity of the Poisson equation, it is easy to see that the spherically
averaged potential around centre o, V?(r), generated by this over-
lapped charge density is given by

Rj+r

Ve(r) = V"(r)—f-Z(ZRjr)_l‘ [ Vi) dr, (48)

Rj—r|

where V/(r) is the atomic potential generated by the radial charge
density p(r;) of the atom at site J:

Vi(ry = (2/r) fr 47'rr]2 p(r;)dr; +2 of047'rrjp(r/.) dr;. (49)
0 r

Now, the spirit of the muffin-tin (MT) approximation consists of
partitioning the molecular space (i.e. the space occupied by the
atomic cluster under consideration) into three regions. Region (I) is
made up of atomic spheres around the physical atoms, and the radii of
these spheres are determined as described below. Region (III) lies
outside an outer sphere circumscribing the cluster, and the interstitial
region (IT) lies between the outer and the atomic spheres. Empty
spheres can be added to (II) to minimize the interstitial volume and
to better account for the local variation of the true potential. This
latter is spherically averaged into the spheres and approximated in
regions (II) and (III) to a constant, which is set equal to the volume
average of the potential in region (II). The true long-range variation
of the potential in region (IIT) (Coulomb tail, in the case of isolated
molecules) or a different constant (if the cluster is embedded in a
different medium) can be easily incorporated into the scheme
without any problems, although these corrections are usually
neglected because of the damping effects of the imaginary part of the
optical potential when the radius of the outer sphere is greater than
the photoelectron mean free path. The interstitial constant is easily
calculated by expanding the potential around the centre of the outer
sphere (and centre of the cluster). Assuming that o is such a centre
and denoting A2 as the volume of the interstitial region, we can use
(48) to obtain

V.=AQ" [ V. (r)dr

c
AQ

R, R;
=47 AQ! [ [ Ve rdr=3 [ Vi) drj:|, (50)
0 J 0

where R, is the radius of the outer sphere. Similarly for the constant
interstitial charge we find
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P = (AR [ p(r) dr
AQ
R, R;
=47AQ™! |:f P ()P dr =3 [ p(r)r7 drj:|. (51
0 i 0

Equations (47)-(51) define the Coulomb potential and the charge
density throughout the molecular system in its muffin-tin form. Via
the density, the exchange-correlation part of the electron self-energy
can be calculated at each photoelectron energy, either in its local
(H-L) or in the more elaborate non-local (GW) form.

In order to determine the MT radii of the atomic spheres, we can
follow one of two prescriptions: one given by Norman (1974) and the
other by Wille e al. (1986). In the Norman scheme, a Norman radius
RN is determined for each site i such that

Nor
Rl

f 477’1'2)0{01("1') dr=2,
0

which is roughly proportional to the ionic radius of the atom in the
periodic table.

Then, given two nearest-neighbour sites i and j, the touching-
sphere MT radii are given by the following formula,

Ry =[RS Ry1/(R¥™ + RY™),

which implies that their ratio equals the ratio of the corresponding
Norman radii. Empirically, this prescription works in the case of
covalent bonds, so that both spheres should be full. In the case of
several neighbours at slightly different distances, we can take average
interatomic distances in place of R;. The use of averages might entail
some overlap between the various MT spheres, but that overlap is not
considered to be a problem. Actually, in practical calculations, we can
allow an overlap of about 10-15% of the MT radii to empirically
simulate the covalent bond and make up for the approximation of the
potential in the interstitial region. In many cases this procedure seems
to improve the agreement between theory and experiment, even
though it is arbitrary on theoretical grounds. In the case of empty
spheres or H atoms, ad hoc prescriptions can easily be devised.

On the other hand, Wille et al. (1986) suggest choosing the MT radii
in such a way that the potential discontinuities at the boundaries of
the MT spheres are minimized. This prescription seems to work for
ionic compounds. In any case, even though the potential disconti-
nuities can be reduced to an acceptable number, discontinuities
remain between the boundaries of the atomic spheres and the
interstitial region. These latter produce unphysical scattering, espe-
cially at photoelectron energies near the threshold, and can deform
the shape of the calculated spectrum. Fortunately, by using the
freedom of slightly varying the interstitial Coulomb potential and
charge density and the overlap factor between MT spheres, we can
nearly always reach a good agreement with experiments. However,
the entire situation is highly unsatisfactory and calls for the elim-
ination of the MT approximation.

In the generation of the charge density p(r), care must be taken in
many cases to reproduce the relaxation of the atomic electrons
following the creation of the core hole and the screening action of the
valence electrons. This relaxation is a dynamical process that, for
deep core holes, is simulated in a static way by considering for the
photoabsorbing atom the SCF charge density obtained by promoting
the core electron to the first non-occupied valence orbital. This
simulation seems to work for many systems (metals, semiconductors
etc.) for which electronic correlation in the final state can be
neglected, including also the biological compounds that we are
interested in.

Given the MT potential and exploiting the ensuing simplifications,
it is then easy to generate the local regular and irregular solutions of
the Schrodinger-Dyson equation and Green’s function, as detailed in
Appendices A and C. In this way, polarized and unpolarized spectra
can be calculated to fit to the experimental data. In the above
procedure it would be a step forward to use self-consistent charge
densities (and therefore potentials) in the MT form. Indeed, starting
from Green’s function, a self-consistent loop could be initiated by
first generating a new charge density based on the formula

p'(r) = —(7)"'Im }F G*t(r,r; E)dE

=(@n)™" [ Efr G (r,r; E)dE — _foo G*(r,r; E) dE:|

=(@n) " [G(x,r; E)dE,

where L is any path in the complex energy plane containing the cut
on the negative real axis due to the valence states and the poles due
to the inner core states. By deforming the path so that it comprises
two vertical lines at & (the Fermi level) and &, (the energy value
below any core state) and two horizontal lines at E +il"y, in the
upper and lower planes with an appropriate I', the contour integral
could easily be calculated. The Fermi level ¢ is easily determined by
the condition

[ p)dr = [dr2m)”" [ G(r,x; E)dE = N,

where V is the molecular volume (outside which the charge is
negligible) and N, is the total number of electrons. The new charge
so obtained could serve to generate a new Coulomb and exchange-
correlation potential (always of the MT form) that would generate a
second Green’s function, so as to repeat the loop until self-consis-
tency was reached. This procedure would substantially improve the
reliability of the fitting procedure at the cost of increasing the fitting
time, although we could choose to repeat the loop only when really
necessary. The self-consistent procedure has been implemented in the
package FEFF8 [Ankudinov ef al. (1998), to which we refer the
reader for details] and seems to generate good final charge densities.

3. Future improvements and conclusions

The current status of techniques for calculating the inner-shell
photoabsorption cross section for clusters, based on the real-space
MS method and using the local density approximation for exchange
and correlation, has been reviewed by many authors. A theoretical
review mainly focused on EXAFS and to a lesser extent on XANES
with emphasis on the path-by-path method has been given by Rehr &
Albers (2000), whereas XANES analysis has been treated in the
reviews by Kizler (1993), Binsted & Hasnain (1996), Ankudinov
(1999) and, in the special case of narrow-band highly correlated
materials, de Groot (1996). In particular, Binsted & Hasnain (1996)
have advocated the fitting of the entire XAS spectrum rather than its
components, EXAFS and XANES, and have reached the conclusion
that this is a viable procedure. To our knowledge, they were the first
to indicate such a procedure. These authors analyse four repre-
sentative model compounds and by a comparison of matrix-inversion
and finite-path-sum methods they reach the conclusion that the latter
method is more promising for fitting the edge region. Our preference
is for the matrix-inversion method, because the MS series might not
converge near the edge, in which case the maximum order of scat-
tering becomes a further parameter without physical significance,
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which could lead to false minima in the R factor. Rather, we should
attempt to reduce the impact of the many theoretical approximations
present nowadays in the calculation of XAS spectra. We summarize
in the following the motivations behind this choice, having in mind
not only biological applications but also the many X-ray spectro-
scopies that are used to obtain information on the many aspects of
condensed matter physics.

Indeed, experience has shown that the sophistication of present-
day spectroscopies has reached a point where a simple interpretation
of the data is not sufficient to extract all the information that they
conceal. Structural EXAFS analysis of absorption spectra is one such
instance (Filipponi ef al., 1995), and in the domain of surface physics
photoelectron diffraction is another example (Chen et al., 1998). In
such cases the possibility of calculating a good theoretical signal has
been of paramount importance in establishing reliable tools for
structural analysis, and the success of these techniques is due to the
fact that the corresponding theories are asymptotic in the energy
parameter. In fact, at high photoelectron energies simple approaches,
like the description of the photoemission process in terms of one
electron moving in an optical potential of the local density type and
the muffin-tin approximation, are usually sufficient for a realistic
description of systems of general type.

Unfortunately, while structural information dominates the high-
energy spectral region, both structural and especially electronic
information are present in the low-energy region. It would be
extremely useful to have a reliable theory to help us extract the
relevant information from the data, especially since the most inter-
esting and promising spectroscopies for unraveling electronic struc-
ture (like X-ray magnetic and natural dichroism, resonant elastic and
inelastic scattering, both magnetic and non magnetic) give most of
their electronic information near the excitation edge. In this energy
region, the muffin-tin approximation is no longer adequate for
describing the geometrical details of the potential, since the excited
electron is quite sensitive to them. Moreover, complicated many-
body processes intervene to screen the core hole and to interfere with
the direct excitation channel, as described in §1. Indeed, electron-
correlation effects in the final state and the coupling of the excited
photoelectron with the core hole concur to complicate the description
of the near-edge region in many spectroscopies. Last but not least, the
effects of atomic vibrations should be included in the theoretical
simulations if we extend the fitting procedure beyond the near edge,
since the damping effect of these vibrations interferes with the
electronic damping due to the imaginary part of the optical potential.

Despite many efforts in the past to tackle these problems, they
have not yet received a satisfactory solution. This is the reason why in
many spectroscopies the near-edge region is not adequately exploited
to extract the rich information, both structural and electronic, present
in it. This latter information would be extremely valuable in the case
of biological systems, concerning, for example, the spin and charge
state of metal centres. Based on the above considerations, efforts
should be concentrated in the following areas.

3.1. Inclusion of vibrational effects in XAS spectra

In the structural analysis of XAS spectra, much attention has been
devoted to the inclusion of vibrational effects in the general terms of
the MS series, but little effort has been put in to incorporating such
effects directly into the MS matrix. The reason is both historical and
methodological. On the one hand, interest was concentrated in
analysing the spectral region where the MS series is converging and
the damping effect of the atomic vibrations is sizable. On the other,
the inclusion of these effects in the near-edge spectral region was

theoretically more difficult and estimated to be of minor importance.
From the point of view of fitting both the near-edge and the MS
region of the spectrum using full matrix inversion, this inclusion
becomes essential. Fortunately, related research areas, like low-
energy electron diffraction (LEED), had to tackle the same problem,
and various methods have been proposed to cope with it, up to the
point that computer subroutines are available to calculate effective
t-matrix elements that take into account in an approximate way the
effect of atomic vibrations [see de Andres & King (2001) for details
and references]. It would be very useful to incorporate such devel-
opments into the photoabsorption programs and continue the
research in the field. Also, the availability of an experimentally
determined vibrational spectrum would be highly desirable, since this
would reduce the number of quantities to fit. Note that the experi-
mental EXAFS data can support only a limited number of fitted
parameters (Stern, 1993; Filipponi, 1995a; Michalowicz & Vlaic,
1998). In this respect several attempts have been made to avoid the
need to consider the Debye-Waller (DW) factors as parameters in
the fitting procedure. These DW factors can be either calculated using
semi-empirical and ab initio methods that consider a small cluster
around the absorbing atom (Dimakis & Bunker, 1998; Poiarkova &
Rehr, 1999) or derived from other types of experiments as in the work
of Loeffen & Pettifer (1996). These authors performed an EXAFS
calculation for the zinc tetraimidazole molecular cluster, which
included thermal four-body correlations established from inelastic
neutron scattering. In this case full vibrational information has
permitted a quantitative comparison between theory and experiment,
without recourse to fitting. They found that differences between
theory and experiment persist, setting the limits on the systematic
errors still present in the theory. Presumably the MT approximation
(not good for short atomic bonds) and the over-damping of the
imaginary part of the H-L potential (not suitable for such low-Z
covalent systems) are the causes of the remaining discrepancy.

3.2. Elimination of the muffin-tin (MT) approximation in the solution
of the Schrédinger-Dyson equation

This stage is preliminary to all spectroscopies, since a reliable
solution of the one-electron Dyson equation moving in an effective
optical potential is necessary for obtaining the related response
functions. A method based on the finite-difference method (FDM)
(and therefore free of the MT approximation) and a program for
solving the associated equation are already available. This method
has been developed by Joly (2001), and a collaboration with the
Frascati group in the past few years has led to interesting applications,
ranging from the electron population analysis of near-edge absorp-
tion spectra (Joly et al., 1999) to the interpretation of resonant elastic
scattering in systems showing orbital ordering (Benfatto et al., 1999).
However, such applications have also shown the method’s practical
limitations, which are due to the large memory and the long CPU
time required by the computer code, especially for low-symmetry
systems. In this scheme, fitting procedures to experimental data
become prohibitive and many applications to interesting systems in
biology, earth sciences, chemistry and physics are out of reach. An
alternative method has been developed by Foulis ez al. (1990), based
on the non-MT (full potential) multiple-scattered-wave theory of
Natoli et al. (1986). This method it is not completely free from
approximations in treating the interstitial region. Nevertheless, this
method, together with self-consistent-field electron densities, has
demonstrated that quantitative accuracy for molecules and clusters of
modest size can be achieved (Foulis et al., 1995). Probably, a combi-
nation of the two methods, as illustrated in Appendix A4, is the way to
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eliminate the drawbacks of both. Moreover, in view of applications to
magnetic dichroism, spin—orbit interaction and spin-polarized
potentials can be included and indeed have been incorporated by Joly
into his code (to be published).

3.3. Implementation of the multichannel MST (MMST) in the
photoemission process

As already discussed, in the near-edge spectral region (either in
absorption or in photoemission) intrinsic inelastic phenomena
(shake-up, shake-off) very often modify the transition amplitude due
to the primary excitation channel. The same phenomena (hole—
particle excitation) also contribute to the dynamical screening of the
core hole following the photoemission process and determine the
type of effective optical potential acting in the final state. Likewise
the coupling phenomena between the core hole and the excited
electron (multiplet effects) need a multielectron description. The
presence of all these effects has hindered up to now a satisfactory
exploitation of the electronic and structural information contained in
the near-edge spectra. The scheme usually employed in the literature
to deal with the electron-correlation problems rests on the theory of
atomic multiplets in a crystal field (CF). However, this approach is
only static and relies on CF parameters. A way to deal with both the
static and the dynamic correlation problem is provided by the
multichannel multiple-scattering theory developed by Natoli et al.
(1990). This theory is, in principle, ‘ab initio’ and is able to incorpo-
rate into its description the local atomic multiplet aspect of the
problem and the extended character of the excited photoelectron
wave function. However, the theory has never been implemented in a
computer code. If successful, this implementation should lead to a
breakthrough in the analysis of near-edge spectroscopies concerning
electronic properties.

3.4. Core hole dynamic screening and the problem of the optical
potential in the final state

As we have shown, the calculation of the total absorption cross
section (or the elastic channel in photoemission spectroscopy) can be
reduced to a one-particle problem moving in an effective optical
potential by elimination of the inelastic channels in the MMST. Since
the problem is rather complicated, we usually resort to empirical
ad hoc rules to construct such a potential. In particular, the most
widely used rule is based on the work of Von Barth & Grossman
(1982), which prescribes the use of a relaxed fully screened charge to
calculate both the Coulomb and the exchange-correlation potential
of the H-L type (the so-called Z+ 1 screened approximation).
However, in order to convince ourselves that the situation is more
complicated, it suffices to consider some absorption spectra. The
Z +1 approximation may be necessary for the description of the
K-edge absorption in diatomic molecules (N,, O,) in order to bind
the 7* resonance in the final state, since this state lies in the conti-
nuum in the ground state of the molecule. However, this approx-
imation is not necessary for the L;, L,; circular absorption edges in
the ferromagnetic phase of nickel. In this case the dichroic effect
would disappear if we were to use a self-consistent spin-polarized
relaxed potential, as has been checked by direct numerical calcula-
tions. Clearly the optical final-state potential is the result of a dynamic
screening process that depends on the system and on the type of final
state reached. In particular, in the case of nickel, the self-screening of
the core hole by the excited photoelectron and the Pauli principle
hinder the electronic relaxation and screening by the other electrons
of the system, so that the optical potential closely resembles the
initial-state unrelaxed and unscreened potential. In general, in the

case of electronic correlations in the final state, the true amount of
screening charge should be determined based on a dynamical theory,
as discussed in §3.3 above. It is very important to have a theoretical
model for the screening process since it affects the relative position of
the pre-edge and rising-edge peaks in the absorption spectra.

In summary, even though decisive advances in the understanding
of inner-shell X-ray absorption have been made over the past few
decades, much remains to be done in order to obtain a versatile tool
for extracting electronic and structural information from experi-
mental spectra. However, we have also given theoretical arguments,
supported by the applications made up to now (Benfatto et al., 2003),
that even with the present approximations structural analysis by full-
spectrum fitting is possible. Electronic analysis, like spin and charge
state, electron population analysis efc., should probably await further
improvements.

APPENDIX A
Derivation of the MS equations

We derive here the solution of the Dyson-like equation
[V + K = V(0] r) = [ ZP(r,r's ho) () &7, (52)
subject to the asymptotic scattering boundary conditions

o(r) ~ (k/m)'"? exp(ik - r) + f(7; k) exp(ikr) /7 (53)

in the framework of multiple-scattering theory and in the non muffin-
tin case.

The main ingredients for this derivation are the single and two-
centre expansions of the free Green’s function with the following
outgoing wave boundary conditions:

(a) Around one centre located at the origin,

_exp(iklr —r')

Gy(r—r;E)= = ;h(u)fﬁ(kl (54)

4jr — v/
with H} (r) = —ikH; (r) and the same definitions as in §2.1.

(b) Around two centres located at R; and R;. Defining r; =r — R;
and R; = R, — R;, we have, provided R;>r; +r;,

Gi(r—r;E)= LZL 1,.(x) G} (E)J,(x)), (55)

where

G}, =4n Yy i+ Ct), H}(Ry) (56)
L// h
are the real-space KKR structure factors already introduced by (18)
in §2.1.
(c) If the two centres are such that r, > R,, + r;, where o is the
origin of coordinates, we find

Gi(x—r;E)= PRALY o (E) H}(x,). (57)

with

Jiy =4 3= CL T (Ry,). (58)
o

We assume here that £ >0 in order to treat scattering states;
however, the above relations still hold for E <0, if we take the
analytic continuation of the functions of energy appearing in the
above equations and if we set the incoming plane wave to zero in
(53). In this way, within the same formalism we can also treat bound
states.

For simplicity we consider only short-range potentials (the exten-
sion to long-range potentials is, however, straightforward, as will be
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apparent from the following). There exists a volume €2, that encloses
all the atoms of our system, and this volume is sufficiently large that
in CQ2, the solution of (52) is of the form of (53). We partition this
‘molecular’ volume in N non-overlapping cells €2; with centres at R;
(these cells might even be empty, i.e. not enclosing a physical atom).
The cells completely fill €, (ie. without interstices, so that
Q, = Zszl ;) in such a way that:

(a) There is a finite, but small, neighbourhood around the origin of
each cell that lies completely within the cell. If there is an atom inside
the cell, its nucleus should coincide with the origin.

(b) The shortest inter-cell vector, joining the origins of nearest-
neighbour cells, is larger than any intra-cell vector.

We then start from the obvious equality involving surface integrals

X [ [Gi e = FIVel) = o)V Gi =] -my o,

—f [G:{(r —1)Vo(') — o )VG; (x — r’)] -n,do, =0, (59)
So

in which the meanings of the symbols are obvious. This equality is
valid for all r, provided that ¢(r) is continuous with its first derivatives,
as required by the solution of the Schrodinger-like equation.

By taking r inside €2; such that r, — 0, we use (54) in the surface
integral over S, (55) in the integral over §; and (57) in the integral
over S,. We then find

S| ST ®)Vele) = ple)ViL} )] - do

Sl

+ 332G, [ [1,@)Ve(r) — ¢,)VI, ()] -n,do;

£ U s;

= i [ E,)Velw,) - o)V E,)] -0, do,} =0, (60)
o S,
so that, because of the angular completeness of the set J, (r), the
expression inside the brackets {} should be zero for each L.

Now, inside each cell Qj, we introduce basis functions <1>/,4(r/-),
which are solutions of the Dyson-like equation (52) and behave at the
origin like J, (r;). These basis functions constitute a complete set so
that the general solution ¢(r) can be locally expanded as
o(r;) =Y, AL(k) @ (r). Likewise, in the outer domain CS,, in
order to impose the boundary conditions (53), we can take

olr,) =32 [A70),.(x,) + C2 (W) H(x,)]. (61)
L

where A9 (k) = 4i! Y,A(lAc) (k/m)'?, owing to the well known
decomposition of a plane wave. Inserting these expressions into (60)
using the relation

f [FIZ(r())VJL(r()) - JL(I(;)VHZ’(%)] -, da{) = SLL'
So

and the identity
> JiL”Lfil, Y (IA() =i YL(IQ) exp(ik - R;,),
7

which is  obtained from (58) by observing that
3, CEL Y (k) = Y, (k) Y, (k), we derive (15) of §2.1,

Y G A0 = A7H) = 3 (1=8;) Gl Sy A (K). - (62)

where the definitions (16) and (17) give the surface integrals C' ,, and
NTE

In the case of long-range potentials (or if the short-range potential
is substantially different from zero in the outer region) we have to
supplement (62) with a similar equation obtained from (59) by taking

r € CQ, to describe the effect of the scattering of the external
potential. However, the solution inside the central cell is very often
rather insensitive to the potential in the external region, provided the
radius of the cluster is greater than the mean free path of the
photoelectron at the energy considered. Clearly the above formalism
can be easily extended to treat bound states.

The solution of (62) proceeds via the calculation of the surface
integrals Ci;, and S} ,, and the structure factors G’Z .- These latter are
routinely calculated and, in principle, there should be no problem in
calculating the surface integrals C?,, and S’ ,,. However, their prac-
tical calculation for polyhedral cells of general shape, though feasible,
might be rather complicated. For this reason, it is preferable to use
cells of spherical shape, inscribed in the polyhedra, especially since
the quantity T3, = 3,, 8% ,,(C);/;,» which was introduced in §3.1,
can then be interpreted as the scattering amplitude of the cell. The
filling of space in this case leaves the problem of the interstitial region
(IR), which can be minimized by increasing the number of empty
spheres. However, in order to treat the irregular shape of the
remaining IR we are obliged to approximate the potential by a
constant (e.g. its volume average). By absorbing this constant into the
definition of energy the interstitial potential becomes zero, so that the
surface integrals C%,, and S,,, and (62) remain unchanged by
application of Green’s theorem. A further simplification, though not
a necessary one, is achieved by replacing the potential inside each
sphere by its angular average, so that we have to deal with spherically
symmetric potentials. In this case the basis functions @iL(r/) can be
written as Ri(r,)Y,(7;), where Ri(r;) is the solution of the radial
Schrodinger equation inside sphere i. Consequently the surface
integrals C?,, and S}, reduce to

CiLL/ = kSLL/Rg W[—ih?', Rf]lr:Rs
and
SiLL’ =30,y Rf W[fza R;]|7=Rsv

where we have introduced the Wronskian of two functions f(r) and
g(r), W[f,gl =f¢ —gf', calculated at the sphere radius R,. The
atomic scattering amplitude 7%, = 3" 8% ,,(C),,, also known as the
atomic f-matrix, takes the form L

T;;L’ =6, t; = ‘SLL/kilw[jz, R;]/W[—ihf, R;], (63)

which is the expression that would be found by solving the scattering
problem for a spherical wave of angular momentum / impinging on a
spherical potential truncated at radius r = R,. From scattering theory
we also have ti = k™! exp(i§,) sin §,, where §, is the phase shift of the
radial solution R,(r) with respect to the free solution j,(r) caused by
the potential. If this latter is real, conservation of flux requires
that k|f,|> = Im¢, (optical theorem), so that §; is real; otherwise
k|t,|* < Im1,, which implies that 8, is complex and that the difference
Im¢, — k|t,|* is related to the loss of flux due to the absorptive part of
the potential, which becomes the source of the damping of the
electronic wave (see §2.3).

APPENDIX B
The Hedin-Lundqvist potential

Much work has gone into approximating the exchange-correlation
part of the optical potential Z°P'(r,r’; E) in a way suitable for
numerical applications. Hedin & Lundqvist (1969, 1971), by incor-
porating the Sham—Kohn (Sham & Kohn, 1966) density-functional
formalism for excited states within the single-plasmon-pole approx-
imation of the electron gas dielectric function, have produced a useful
local-density approximation to X:
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(e, s E) = B[ p(), E = V(1) p0)] = Ve (1), (64)

Here X, (p, w; p) is the self-energy of an electron in a homogenous
interacting electron gas with momentum p = p(r), energy
o = E —V(r) and density p = p(r), the local density of the actual
physical system.

Since E — V,(r) > p*(r), neglecting the small exchange and corre-
lation correction, we can write for the local exchange and correlation
potential (following Lee & Beni, 1977)

Vexc(r) = 2:h [p(l'), pz(r); ,O(l‘)] (65)
The local momentum p(r) is defined as

P =K + ki) — Z,(p. p*s p) + Sylk, ki: p)
=2+ K@)+ A, (66)

where k? is the photoelectron kinetic energy measured from the
Fermi level for an extended system or from the first ionization
potential for finite systems (Hara, 1967) (atoms and molecules) and
Ki(r) = 372 p(r)]*? is the local Fermi energy. Usually, we can omit to
perform the self-consistent procedure implicit in (66) for the deter-
mination of p(r), except perhaps near the Fermi energy.

We follow Lee & Beni (1977) in extending the validity of (64) to
the atomic core region, although the H-L approach was initially
devised to describe exchange and correlation corrections to the
Hartree potential due to the valence charge.

To calculate X, (p, w; p), we use equations (25.1), (25.14) and
(25.15) of Hedin & Lundqvist (1969), which are based on the so-
called GW approximation:

Zu(p, ) = i2m) ™" [exp(iw'8) V(p))e(p, @)™
X Gy(p+p, 0+ o)dp do'. (67)

Equation (67) corresponds to the self-energy of the test electron
interacting with the charge fluctuations of the medium. Here
Gy(p, ®) = [w — p? + i8sin(w — &)] " is the propagator for the test
electron at energy w measured from the Fermi energy &g; 6 is an
infinitesimal positive quantity that is necessary for imposing the
correct boundary conditions so that the integral converges when
w — 00.

The Fermi energy & of the electron gas is given by & = k% where

ke = (37°p)"* = (Br) !

is the Fermi momentum, which corresponds to the constant density p
of the homogeneous electron gas [eventually to be taken equal to the
local density p(r) of the inhomogeneous system]. The mean inter-
particle distance r; is given by

r, = [3/(4mp)]'?
so that
B =[4/(9m)]"° ~0.52.

Moreover, the function &(p, ) is the frequency-dependent dielectric
function of the electron gas in the plasmon-pole approximation (Lee
& Beni, 1977):

[e(p, )] '=1+ 2] — }(p)]
where

@p =4[( Br)/Gm)] Pep = 41.7[r, (aw)] eV

is the plasmon energy and

() = o + &t [(4/3)(p/ke)” + (p/ke)']

is the plasmon-pole dispersion relation. We have taken the coefficient
4/3 following Filipponi et al. (1988) rather than Lee & Beni (1977).

By performing the ' integral of (67), we obtain

Zu(p.0) = = [dq (40) @ +p)/{20)'F e[, (a +p)’ - 0]}

+ o} [Pq@m)/{@2n) e [0 — o(q) — (q+p)]}.

and hence
ReX,(p. o) = — [dq@n) f(q+p)/{27) ¢ ¢[q. (q + p)° — o]}

+ o} [Pq@m)/{Cn) o — (@) — (q + )]}
(68)

ImE,(p, 0) =(1/2) o, [ (g6 [e) ¢ 0,@)]
x{flq+p)s[(a+p) — (g — o]
~[1 - fla+pls[(a+p + o @ - 0]}). (69
where we should take the principal part of the integral in (68); f(q) is

the Fermi distribution function. To proceed further we introduce the
dimensionless quantities

K2 AT\ T2
x=L =2 x=L-li+(5)+(>)]| .
kg & kg ki ki

so that

w,(q)/er = 2[w2 + X*/3 + X* /4]

=2w(X)
with
wf) = 4pfr,/3m.
Calculating the above integrals at w® = p? (i.e. E, = X}) we obtain
for ReX,(p, p?)
1-X2 X, +1 2
k 2k + + PBrg
2, X 1]«
X, +1
/ Fsex(X; Xk) dx

X -1

1 28r,
—ReZ,(p.p) = — Pr, |:1 +
&p kg

2Br, 1
3r X,

00

_/Fch(X; X)dXx | ¢, (70)

where

Fooe (X X,) =[X wX)T ™
[2w(X) + X7 — 1][2w(X) + (X — X,)* — X7]
[2w(X) + X7 + 1][2w(X) — (X — X,)* + X7]

and

[2w(X) + (X — X,)" — X7]
[2w(X) + (X + X, — X7]

Fo(X; X,) = [X w(X)] ' In

Note that we have been considering excitations above the Fermi
level, so that X, > 1. We recognize in the first term of (70) the usual
static and energy-dependent exchange obtained by Dirac (1930) and
discussed by Hara (1967):

Vol = —Z—kF[Hl _X’Eln<X—k+l>].
4

2X,  \X, —1
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This comes from the constant part of the dielectric function in the first
integral of (68). When multiplied by 3«/2, where « is a parameter, we
obtain the usual form of the X-« Slater static exchange potential
(Slater, 1979; Schwarz, 1972),

VS = —3akg/m.

Usually a parametrized form is also assumed for VoI,

P [1 =X m(Xk + 1)}
b g

2%,  \x,—1

in such a way that VO! reduces to the X-o form for X, = 1.
As already noted by Chou et al. (1985),

(k> kg)

for excitation energies much larger than the Fermi energy
(X, — 00). Thus, for high-energy photoelectrons VEDF becomes
proportional to the density p and decreases inversely with energy,
instead of being proportional to kp (or ') and independent of
energy, as for the X-a exchange VS . This behaviour is to be expected
since, with increasing energy, the Pauli exclusion principle is less and
less active, owing to the fact that at high energies the wave function of
the test electron is already nearly orthogonal to that of the electrons
in the system. Several authors have found that this energy depen-
dence is crucial for a good calculation of EXAFS phase shifts (Chou
et al., 1985, 1987, and references therein).

The next contribution in (70) still comes from the first integral in
(68) but contains the effect of the frequency dependence of the
dielectric function. Therefore, this contribution is a kind of screened
exchange. The contribution is positive and roughly constant in the
interval 1 < X, < 2 and then decays rapidly like

Vot ~ kg p™* = pk™?

Vo~ 1637 X w(X)] = 16 37* X}) ™!
k—)OO
since
X+l 1
lim [ Fo(X; X)dX = —4[w(X) X, | ~ —4X>.
X —o00 Xo—1

(This asymptotic relation actually holds already for X, > 3).

Finally, the last contribution in (70) comes from the last term in
(68), which in turn arises from the poles of the inverse dielectric
function. Therefore, this contribution is associated with a Coulomb
correlation hole and stems from the fact that the test electron tends to
keep away electrons of both spins because of the Coulomb repulsion.
The contribution has a negative sign, like the exchange, but cannot be
given an analytic form in terms of elementary functions. However, we
can calculate the behaviour of the term at high energies,

f F,.(X; X},) dXXk:oo —W;1 [7-[2/2 + ZWP)(I:1 4 O(Xl:Z)]7
0

so that the net contribution to V, is

Var 0 ~4 67 Xow) [ /24 2w, X+ 0(X )],

C
This behaviour shows that the effect of the Coulomb correlation hole
is more persistent at high energy than the D-H exchange. This effect
causes the difference in the phase shifts that are calculated with the
two potentials.

The numerical calculation of (70) does not pose particular
problems, although it is a little time consuming. A good numerical
approximation, valid in the entire energy range of the excited
photoelectron, has been given by Mustre de Leon et al. (1991). Both
options are incorporated into our computer code.

It is found that the imaginary part in (69) is amenable to quad-
rature. In fact, for X, > 1 and w = p? the integral becomes

2 Xm
4(Br,) i dx
3 X, X w(X)
0

1
E—ImEh(p,pz) = ®(X7 Xl’XZ)v (71)
F

where
Xy = {—(2/3) +2[(1/9) = w2 + (X — 1)2/4]”2}1/2
is the maximum real root of the equation
W (X) — (X2 —1)*/4 = 0.
Therefore, ImX, (p, p?) is non-zero only if X7 — 1 > 2w,, Le. for

K >2w,ep = 4(Br.)2m) Pep = w,.
In other words there is no damping if the electron kinetic energy is
not sufficient to excite the plasmon mode of the medium. Lower-
energy excitations, like particle-hole excitations, are not possible
because of the assumption of the plasmon-pole approximation for the
dielectric function &( p, w). Lower-energy excitations are negligible in
a first approximation (see Hedin & Lundqvist, 1969, page 93). The
function ®(X; X;, X,) is defined to be 1 for X; < X < X, and zero
outside. The interval [X;, X,] is any interval, lying inside [0, X)],
where w(X) < X (X, — X/2) or

fX) =XX +(1/3- X)X 4w <0.
For X? — 1> 2w,,, this cubic polynomial has three real roots, of which

only one, X/, lies in the interval [0, X,,] and is such that f(X) < Oin
[X,, X\]- Therefore, the integral becomes

er' ImX, (p, p*) = 4(Br) Br X,) ™" )} dX [X w(X)] ™!

=37 (pr, /3n)3/2X,;1X1
x In[(Xy/X,)* F(X,)/F(Xy)], (72)
where
F(X) = X* 4 6w, + w,w(X). (73)

The root X, is given by
X, = [BX; — 1)/BX))][1 — cos (¢/3) + 3" sin (¢/3)]/3,

where
0<g= arcos{l — 27w /2 X)I[3X,/BX} — 1)]3} <7

We could also exploit the facts that X, is a solution of the equation
w(X) = (X? —1)/2 and X, is solution of w(X) = X(X, — X/2) to
eliminate w(X) in (73).

Equation (73) is the same as the expressions that were obtained by
Penn (1987), apart from a volume average and a correction for some
misprints, and by Mustre de Leon et al. (1991). In the spirit of the
local-density approximation (66), the expressions (70) and (71) for
the real and imaginary parts of ,(p, p*; p) become functions of the
position r through the same dependence on the effective density p(r)
of the system under study.

J. Synchrotron Rad. (2003). 10, 26-42

C. R. Natoli et al. + X-ray absorption spectroscopy 39



research papers

APPENDIX C
Non-local core polarization potential

In order to calculate the screened polarization potential G'WYP*W"
we need the explicit expression for the full RPA (random phase
approximation) polarization propagator (Hedin & Lindquist, 1969),

unocc occ

Porio) == 3 Y20 — )| —a) - ] fu® f0),

Ju(®) = j V(%) ¥y (x) dé. (74)

Here x = (r, &) includes both space and spin variables, and ¢, are the
one-electron excitation energies of the system. The sum over k runs
over unoccupied electron states, while / runs over the occupied core
and valence electron states. By splitting the summation over / into
core and valence contributions, P can be written as a sum of core and
valence parts,

P=P 4P, (75)

where v, means occupied valence states. Similarly, we can split the
summation over k in the expression for the one-electron Green’s
function,

core+-valence

Gx, x'; ) = ; Vi) i) /(@ = &), (76)

to obtain
G=G°+G". (77)

In this case, the index c runs again over the core states while v runs
over both the occupied and the unoccupied valence states.

The question to consider is the effect of screening in the core-
polarization term GYWYP°W". For a free atom, the screening is
small and we have to a good approximation G¥VPV, where V is the
bare Coulomb potential. For long distances from the ion core, the
core-polarization term further reduces to the well known local
potential —ae*r™*, where « is the dipole polarizability and e is the
electron charge (Hedin, 1965a,b). In a solid we expect, from simple
physical considerations, that for long distances we should have a
statically screened polarization potential, GYW Y(0)P W ¥(0). Since
an r~* potential is already very weak, the additional screening should
make it negligible outside the Wigner—Seitz cell of the ion under
consideration. Inside the Wigner-Seitz cell, on the other hand, we do
not expect much screening to take place because of the cost in kinetic
energy that is needed to localize the screening charge.

The symbol GYVP°V stands for a convolution in energy space
(Fujikawa & Hedin, 1989), which can be performed analytically,

giving

unocc core valence
V , *, / V* J/
[GVVPCV](X,X/; w) — § : § : 2 : kl(r) wk (X) 1//k (x) k/(r )’
k 1 K

W — Wy — Ep

(78)

where w,; =&, —¢ and V()= [V(r—r)y;(x)y¥,(x)dx’. The
more tightly bound the core level /, the smaller its contribution to
V,,(r), because the overlap with the unoccupied function k is smaller.
Thus the outermost core level will give the dominant contributions.

We replace wy, by a constant A, the average excitation energy. This
approximation has been very successful in the free-atom case (Byron
& Joachain, 1974, 1977a,b). We define a function A(r, r’),

unocc core

Ar,r) = Zk: Xl: Vi) Vi (')

= f Vi —r) V(' — 1) [8(x; — x,) — p(xy, x,)]
X p°(x,, x1) dx;dx,, (79)

where the last equality follows by closure and p and p° are the one-
electron density matrices for all electrons and for core electrons,
respectively. With w,; = A we then have

Pl (x, X' ) = [G'VPV](x, x'; ) = A(r,¥) G*(x,x; 0 — A). (80)

With the use of closure we avoid the summation over the unoccupied
states. Still, the density matrix p(x;, x,) contains a sum over the
occupied extended states. We will here take a simplified approach and
represent the sum over Bloch functions in each atomic cell i by a sum
over localized functions Ri(r)Y,, (7). This approach is well motivated
for rare-gas solids but a more serious approximation for, say, metals.
In future, a more accurate treatment should be considered.

From (80) and the expression for Green’s function (26), we see that
the range of XP(x,x; w) is apparently not limited to atomic
dimensions. However, there are damping effects present in Green’s
function, and the energy-independent term A(r,r’) defined by (79)
decreases fairly rapidly with the distance |r — 1’| [see (101) below].
Therefore, in (26) we can neglect, to a good approximation, terms
coming from spheres other than the sphere under consideration
(labelled i). Since, for simplicity, we shall spherically average the
optical potential inside each sphere, we can then write (see Appendix
A and §2.2)

G'(r s E) =3 gi(r. /i E)Y, () Y. (7), 81

with
gir.¥s E) = R(rO) 4 R/ (r.), (82)

where R,(r) = R,(r)/[R2W(j,, R)),_g ] is the regular solution of the
radial Schrodinger equation with the optical potential matching
smoothly to j,(kr) ()" 4 k) (kr) at the sphere radius R_; R/ (r) is the
irregular solution matching smoothly to /zf (kr) = —ikhj (kr),
r. = max(r, ¥'), r. = min(r, ') and £ is the atomic r-matrix for the
atom at site 7.

Therefore, in order to obtain an expression for the atomic optical
potential at this site, we need to calculate the energy-independent
term A(r,r’). In each atomic region i we average the core charge
density to obtain a spherically symmetric function

d§(r) = (4m)"" [ dip(r). (83)

Though both r and v’ are in the same atomic region, r, and r, are not
necessarily in the same atomic region. From the first term in square
brackets in (79) we have an intraatomic contribution to A(r, r'):

L(r, ) = Y [4m/Q1+ DF I(r, ¥) Y, () Y (7). (84)
L

where both r and r’ belong to atomic region i and r,(=r,) is also in
region i. I,(r, '), is

I(r,r), =8 + 8, + 8%, (85)
where
Sh= (Y [ ds(r) 2 dr, (86)
0
Slz:('J<)/(’j:1)fd?(r1)r1drlv (87)
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R;
Sy=@r') [ds(r)rdr, (88)

and R, is the radius of the atomic region i (muffin-tin radius).

In addition to this intraatomic contribution to the first term of (79)
we have the interatomic term, where r and r’ are still in region i,
whereas r,(=r,) is in region j (j # i). This interatomic term is given
by

Ex,x) = ;[471/(21/ + DPIF L (R)P () (7

= ; Fi(r, /s R) Y (P YL(F), (89)

) YL R YI(F)

where in terms of G(LL'|L")= [Y,(?) Y, (F) Y}, (¥)d? (Gaunt’s
integral)

an(—1) @1+ 21 = D!

FLL’(R'i) = I+ +1
/ QU —1NEI+ 1)!!Rﬁ+ +
X GUA1,m —m, LIL) Yy (R, (90)
Fo(r,7iRy) = (') Z [4r/@ + DF |F (R (r?), Gy
R/
= { d/?(r)rz’+2 dr, (92)
R, =R —R,.

We note that ), |F LL,(le-)lz depends on m. To avoid this difficulty,
we use the spherically averaged value of _,, |F LL/(Rji)lz’ Finally, we
have the averaged expression of F, in (89) in terms of the Clebsch—
Gordan coefficient (/0/'0|l + I'0), which is denoted F}:

. an@i+2 - |
Fl (r, r ) = ( }’) Z|:(2[ + 1)”(2[/ + 1)”Rl+l/+1:|

x ('), 21 + 1) (101'0|1 + 1'0)?. 93)

The second term in square brackets in (79) is more difficult to
calculate in general. We note that

oce core

p(xy, x) P70y, %) =) ; daﬂ(xl) dZﬁ(xz), (94)

where d,5(x) = ¢,(x) 9j(x) and we assume that the core orbital « is
localized on site i. We take both r, and r, to be in the same region i.
For the occupied states, we will not use Bloch functions but instead
take a simplified approach and use localized functions Ri(r) Y, (7).
This approach is well motivated for rare-gas solids but a more serious
approximation for, say, metals.

By spherically averaging d,g(x) at each site i, we can obtain a
simple representation for (94) as

core occ

p(x17x2)p (XZ’XI) ~ Z dl (rl)dm(rZ) + Z Z dmn(rl)dinn(rz) (95)

m n(#m)

for r,r, €l

where m and n stand for one-electron atomic states in atom i that
have the same angular quantum number L = (I, m), e.g. 25, 3s and so
on. The quantity d’ (=d.,,) is the spherically averaged electron
density of the mth atomic function at site i, and d’,, is the cross charge
from the mth and nth atomic functions on site i written in terms of the
radial parts of the atomic wave functions, d., = R, (r)R’(r)". R

mn

refers to a localized function, which for metals has a fractional

occupation number. When we use this simple approximation in (79),
the intraatomic contribution to A can be written as

T, vy = 30,0 1, (7)) + Z T (D) T (1), (96)
with
an(r) = 47r|:r’1 frr% din(rl) dr, + }orl dfn(rl) drl]. 97)
0 r

We see that J; has only a spherically symmetric contribution.
The interatomic contribution J! is not difficult to evaluate:

Ay = S T T, (98)

m

where, by taking r, = r, Ji(r) is given as

In(r) = (@m) " [ dPom, I =Ry # ) (99)

Here 7}, is the number of electrons on site j and R; = R; — R,. Cross
terms such as @, give no contribution to J;, because of the ortho-
gonality between the mith and nth shell functions. Therefore, A(r, r’)
can be written as

A, Y) = ;A(r, ), Y, (P YY), (100)

where A is a sum of one- and two-centre terms,

A(r,F), = A(r.F) + Y Alr, P),, (101)
J#i
Afr.r)y = @) [L(r, 1)y — 47T (r, 1)), (102)
Ar, 7Y, =[4n/Q@I+ D I(r, 7)), (1= 1), (103)
_ Ay (1+1
Alr, 1), _( ;r) (211 ]) ;W( Yot (104)

We find a good convergence for the two-centre sum, the second term
on the right-hand side in (101), when we include the surrounding
atoms up to the third shell for the systems considered here.

The optical potential can be given by (105) after the spherical
averaging of the potential over 7 and 7 in the same atomic region:

=P, v'; E, + g,) = ; =, &) Y (F) YE(F), (105)

|
where TP°
coefficients,

is expressed in terms of A,, g, and Clebsch—-Gordan

Ef"l(r, rie)=—

20 - 1)l +1 .
4NZM (LOLO[I0V A, (r, g (1, 7's ).

21+1

44

(106)

As previously demonstrated, it is enough to include only A, and A, in
the expansion (106) (Fujikawa et al., 1993). We thus obtain an explicit
expression for 3P,

U, v e,) = @) [Ag(r, 1) gy, 7 p) + Ay (r F) gi(r, ¥ D)
(107)

where g, is defined by

(r,7; p). (108)

(. 7's B) + [+1
———&.(r7r;p 21+1gl+1

- /= [

&lr 5 p) =5
Each g, includes the radial solution for the potential Epol(s ) to be
determined. Since Epo depends on g, and g, in principle we have to

solve coupled self-consistent equations.
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