
research papers

236 # 2003 International Union of Crystallography � Printed in Great Britain ± all rights reserved J. Synchrotron Rad. (2003). 10, 236±241
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Instrumental advances and experimental procedures for determining

invariant triplet phases by three-beam X-ray diffraction are

presented. A simple X-ray diffractometer is described. It allows the

exploitation of the natural linear polarization of synchrotron

radiation for eliminating systematic errors in triplet-phase determi-

nation. Examples of data-collection procedures with the diffract-

ometer for composing a polarization-dependent set of azimuthal

scans are given as well as the suggestion of an analytical procedure

for extracting accurate triplet phases.
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1. Introduction

X-ray waves diffracted by crystals are proportional to the Fourier

components of the periodic electronic density of the medium, named

structure factors. They carry precise information on the scattering

power and position of each atom in the unit cell. Since the intensity of

an electromagnetic wave depends on the modulus square of its

amplitude, the phases of the structure factors are not measurable by

X-ray detectors. This is known as the crystallographic phase problem.

The structure determination methods currently available are based

on measurements of the structure factor modulus, combined with

phasing procedures (see Helliwell, 2002, and references therein) that

have allowed thousands of crystal structures to be known today.

However, whatever the phasing procedure used, it is also based on

intensity data collection of several re¯ections. The number of

measured intensities and complexity of the structures limit the

accuracy of the phase values assigned to each re¯ection. On this

scenario, direct experimental measurements of re¯ection phases with

good accuracy can provide alternative information about the crys-

talline structure without the necessity of re®ning the resolution of the

whole structure.

Interference of the X-ray diffracted waves has been investigated

for decades as a possible procedure for physically measuring re¯ec-

tion phases (Hart & Lang, 1961; Colella, 1974; Post, 1977; Shen &

Colella, 1987; Chang, 1982; Weckert & HuÈ mmer, 1997; Stetsko et al.,

2001, and many others). The simplest way to set two diffracted waves

to interfere is by exciting a three-beam diffraction (3-BD) in a crystal.

When it is excited, each diffracted beam is a sum of two wave®elds,

i.e. the EP and ES waves shown in Fig. 1. The primary wave EP is

produced by a single re¯ection (re¯ection A) while the secondary

wave ES comes from a double-bounce re¯ection formed by re¯ection

B plus the coupling re¯ection C, whose indexes are given by A ÿ B.

By keeping one wave excited and changing the angular condition of

the other, characteristic interference pro®les are obtained. The most

common is the interference pro®le obtained by an azimuthal scan

(�-scan) of the sample, where the intensity I(�) = jEP + ES(�)j2 is a

function of the crystal rotation around the diffraction vector, gA, of

the re¯ection A. Since the primary wave is kept excited during the �
rotation, its strength is taken as constant in a ®rst approximation (a

correction to this approximation will be discussed later). Normalized

by the intensity of the primary re¯ection jEPj2, I(�) can be written as

Inor��� � 1� R2��� � 2�R��� cos  cos�� �: �1�

It is very similar to the expression of any two interfering electro-

magnetic waves with a phase difference � , an amplitude ratio

R(�) = jES(�)j/jEPj, and an angle  between the oscillation directions

of the wave®elds EP and ES. For the moment � = 1, and the reason for

including it is discussed below. The phase difference is the sum of two

phase angles: the invariant phase triplet �T = �B + �Cÿ �A where �G is

the phase of the structure factor of re¯ection G (= A, B or C), and the

phase shift 
(�) of the resonant term, the term that describes the

excitation of the secondary wave due to the crystal rotation (Weckert

& HuÈ mmer, 1997). In other words, � = 
(�) + �T, where 
(�) is

well known from X-ray diffraction theory and �T is the desired triplet-

phase value to be determined from experiment.

Equation (1) represents the simplest available approach of the

3-BD phenomenon, also known as the second-order Born approx-

imation (Shen & Colella, 1988; Chang & Tang, 1988). In spite of its

simplicity, after some modi®cations this theoretical approach has

recently been used for measuring triplet-phase values from experi-

mental �-scans with very good accuracy (MorelhaÄo & Kycia, 2002).

The major modi®cation in the approach consists of ®tting the

experimental pro®les with an extra parameter � in equation (1),

varying in the range from 0 to 1, i.e. 0 � � � 1. The practical effect of

this parameter is to reduce the contribution of the interference term

of the azimuthal pro®les. This can be understood as a loss of coher-

ence of the diffracted beams or as if the diffracted beams would have

a partial capability to interfere. However, further discussion on any

physical justi®cation of this parameter is beyond the scope of this

article, which is just intended to present the equipment and

measuring procedures used for accurate triplet-phase determination

as well as to discuss its relevance.

In this article, a simple and low-cost X-ray diffractometer is

described. It has been designed specially to explore the strength

tuning of the multiple-diffracted waves by the linear polarization of

Figure 1
Ewald construction of a three-beam diffraction in reciprocal space. Wave EP:
primary wave from a single re¯ection A (diffraction vector gA) and wavevector
kA = gA + k0. Wave ES: secondary wave from re¯ection B (diffraction vector
gB) coupled by re¯ection C (diffraction vector gC = gA ÿ gB) and wavevector
kA = gC + kB. The � and � rotation axes are aligned along gA and the incident-
beam direction, respectively.



synchrotron radiation (MorelhaÄo & Avanci, 2001). The diffract-

ometer allows the measurement of several azimuthal pro®les with

different values of Rmax = R(�0), which is possible by varying the state

of linear polarization. The data set composed of polarization-

dependent �-scans contains enough information to experimentally

provide an accurate and reliable value of the triplet phase.

2. Three-axis goniometer

A systematic procedure to generate multiple X-ray waves in crystals

is summarized as (i) choice of a primary re¯ection (re¯ection A);

(ii) adjusting the incidence (!) and detector (2�) angles for exciting

and monitoring the primary wave EP; (iii) alignment of the diffraction

vector gA with the � rotation axis; and (iv) scanning the azimuthal

axis (�-scan) to generate the secondary wave ES. This procedure

basically requires a goniometry of three circles, the 2�, ! and � circles,

as shown in Fig. 2. It can easily be accomplished by a four-circle

diffractometer, where the fourth circle is the Eulerian circle used to

adjust the angle between the ! and � axes. It is necessary for most

common single-crystal diffraction experiments, but for n-BD

experiments the ! and � axes can be set orthogonal to each other and

kept unchanged even during the crystal alignment. The ®nal and

precise positioning of the diffraction vector along the � axis is carried

out by the tilt arcs !0 and !0 0. Since the incidence plane of the

goniometer must rotate around the incident-beam direction for

exploitation of the linear polarization of synchrotron radiation, the

real necessity of designing a goniometer speci®cally for phase

measurements is due to technical reasons. The extra weight of the

Eulerian circle compromises the stability, alignment and cost of the

equipment if it is to work in any inclined plane from the horizontal to

the vertical. Then, the construction of a three-axis goniometer with

orthogonal-built-in ! and � axes signi®cantly reduces the load

capability required by the ! rotation stage as well as by the inclina-

tion table (�-table), i.e. the table that rotates the whole goniometer

around the incident-beam direction as shown in Fig. 3.

3. Triplet phase determination with the diffractometer

The diffractometer in Fig. 3 is currently operating at the X-ray

diffraction beamline (XRD-1) of the National Synchrotron Light

Source (LNLS), Brazil. It is a bending-magnet beamline with a two-

crystal Si(111) monochromator. Vertical and horizontal beam diver-

gences are usually set to about 10" and 24", respectively. The very

basic alignment procedure of the equipment consists of positioning

the center of the goniometer, i.e. the intersection of the ! and � axes,

over the � rotation axis of the table and aligning this axis along the

incident-beam direction. The state of linear polarization of the

synchrotron radiation with respect to the diffraction geometry is

changed by the inclination of the �-table. It is able to rotate the

incidence plane of the goniometer at least from � = ÿ90� to +90�.
� = 0 corresponds to the incident plane in the horizontal position

(� polarization) and at � = �90� it is vertical (� polarization); the

+ and ÿ signs denote the detector above and below the horizontal

plane, respectively. For aligning the sample, a large goniometric head

provides tilt arcs with a range of �25�. After setting the primary

diffraction vector along the � axis, it is also necessary to ®nd a crystal

reference direction for the azimuthal rotation. It allows the wave-

vector of the incident radiation to be described in the crystal's reci-

procal space as a function of the ! and � angles of the goniometer.

Long �-scans covering ranges of tens of degrees, also called

Renninger scans (Renninger, 1937), sometimes have to be collected

before being able to identify the position of the reference direction.

In most cases the linear polarization breaks the intensity symmetry of

n-BDs and only their positions obey the symmetry mirrors, as can be

observed in Fig. 4.

To ef®ciently explore the linear polarization for measuring triplet

phases, it is necessary to select the primary re¯ection and the X-ray

wavelength to produce a scattering angle 2�A near �/2. At this scat-

tering geometry the strength of the primary wave is very tunable by

the polarization direction, i.e. the inclination of the �-table. The

drastic effect of the � and � polarizations in the pro®le of a 3-BD

when 2�A = �/2 is illustrated in the ! :� maps in Fig. 5. At � = 0�

(� polarization) the primary re¯ection is forbidden by polarization,

the contribution of the primary wave jEPj2 is minimized and reference

values are obtained for the intensity of the secondary wave jESj2.

When the value of jESj2 at � = 0� is known, the value of Rmax can be

calculated for any polarization direction (see Fig. 6).

The extra degree of freedom given by the � rotation of the inci-

dence plane raises the following question: in what polarization should

the triplet phase be measured? The intensity pro®les have better

sensitivity for measuring �T when the intensities of the waves are
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Figure 2
Three-axis goniometry for n-BD. The ! and � axes are orthogonal, the � axis
lies in the incident plane, the plane of the ! and 2� circles, and the direction of
the � axis rotates with !. The !0 and !0 0 arcs are used to align a diffraction
vector to the direction of the � axis.

Figure 3
X-ray diffractometer for accurate triplet-phase determination. Parts 1 to 6 are
components of the three-axis goniometer, 7 is the �-table, and 8 shows the
incidence-beam direction. 1, 3 and 5 are the 2�, ! and � rotation stages of the
goniometer, respectively. 2 is the detector arm and 4 is attached to the ! axis.
The goniometric head, 6, contains the !0 and !0 0 arcs (Fig. 2) for precisely
aligning the diffraction vector along the � axis. In this ®gure, the incident plane
is at the horizontal position.
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almost the same, Rmax = jES(�0)j/jEPj ' 1 (Weckert & HuÈ mmer, 1997;

Stetsko et al., 2001, and references therein). In general there are two

� positions of the diffractometer where this happens, as shown in

Fig. 6. The angle  between the wave®elds is different in each one of

these positions, as already pointed out by Juretschke (1986). If the

wave®elds are orthogonal ( ' 90�), no phase information can be

extracted from the intensity pro®les, as demonstrated by the �-scan at

� = ÿ32� in Fig. 7. Otherwise, any polarization where  is near 0 or

180� can provide good data for extracting �T, as shown by other scans

in Fig. 7.

For a general application of the diffractometer in triplet-phase

determination, it is important to demonstrate that even in the cases

where Rmax cannot be directly measured, as for instance when 2�A is

different from �/2, the possibility of obtaining a polarization-

dependent set of �-scans solves the problem. Moreover, it also solves

two other problems in phasing the 3-BDs: (i) how to obtain the

reliability of the determined value of �T, i.e. establishing the error bar,

as in the above data set (Fig. 7) that provides an error in �T (=ÿ66.5�)
of about �1.5�; and (ii) how to eliminate the systematic errors due to

the Aufhellung effect (Wagner, 1923). In a few words, the Aufhellung

is the reduction in the primary intensity due to the amount of energy

taken out by the kB beam (see Fig. 1). This effect becomes more

signi®cant as the intensity of the primary re¯ection increases with the

polarization angle. The exact form of equation (1) is given in

Appendix A, where the polarization coef®cients, the adjustable

parameter b0 for empirical Aufhellung corrections, and the line pro®le

function are shown explicitly. According to the notation used there,

Rmax = R(vS/vP). Since R is independent of the polarization coef®-

cients, hereafter the text will refer to R instead of to Rmax. An

example of the phasing procedure when R is unknown and

Aufhellung occurs is provided by the data set in Fig. 8. By taking R

and b0 as global variables, the ®t of each �-scan is optimized by

adjusting � and �T besides the peak position �0 and width w [see

equation (6) for more details]. Then, the values of R and b0 are also

adjusted for producing a minimum deviation in �T, as shown in Fig. 9.

In this case it provides an experimental value for �T of 37 � 2�.
For comparison, the theoretical values of the phase triplets for

these 3-BDs are provided here. In the GaSb crystal, by taking the

origin of the unit cell at the Sb atoms, and its diagonal orientated

Figure 4
A Renninger scan (�-scan) for locating the reference direction of the
azimuthal rotation. The symmetry mirror position at � = 0 corresponds to the
[1�10] crystal direction lying in the incidence plane of the goniometer. The
indexes of the B and C re¯ections of some 3-BDs are given. Step size: 0.005�.

Figure 5
Two-dimensional intensity pro®les (! :� maps) of a three-beam diffraction for
(a) � and (b) � polarizations. Primary wave EP from re¯ection 006 (re¯ection
A). Secondary wave ES from re¯ections 113 and �1�13 (B and C re¯ections).
Crystal: GaSb (001). Wavelength: 1.4370 AÊ . Beam divergences: 9" (vertical)
and 23.8" (horizontal). Mesh resolution: (a) 0.0032� and (b) 0.0016�.

Figure 6
Relative intensities of the primary jEPj2 and secondary jESj2 waves as a
function of the polarization angle �, the inclination of the �-table. Re¯ection
A: �226. Re¯ections B and C: �3�13 and 133. Crystal: GaSb (001). Wavelength:
1.2998 AÊ (2�A' 90�). IP = 246 265 counts sÿ1 (at � = 90� and �� 6� 0) and IS =
71 814 counts sÿ1 (at � = 0� and �� = 0).



along the SbÐGa bond, the phases of the �226, �3�13 and 133 re¯ections

are �A = 0, �B = ÿ31� and �C = ÿ31�, respectively, which implies �T =

ÿ62�. This was calculated for the atomic scattering factors, f 0
Sb and

f 0
Ga, with a Debye±Waller B factor of 15 AÊ 2. If anomalous dispersion

corrections, f = f 0 + f 0 + if 0 0, are taken into account for a wavelength

of 1.2992 AÊ ( f 0Sb = 0.067, f 00Sb = 4.383, f 0Ga = ÿ2.194 and f 00Ga = 0.523),

the phase values become �A = 16.2�, �B =ÿ21.4�, �C =ÿ21.4� and �T =

ÿ59�. Some corrections due to the formation of chemical bonds may

also be considered. The cloud of charges due to shared electrons in

the covalent bonds changes the average X-ray

scattering around the atomic sites. One rough

estimation of this effect is obtained by

assuming an even contribution of the cloud to

the scattering at either Sb and Ga sites. Since

Sb atoms donate ®ve electrons and Ga atoms

donate three electrons to the cloud, the net

charge, i.e. cloud/2 + core, around each site is

better represented by Sb+1 and Gaÿ1. In terms

of the variation in the atomic scattering factors,

it is represented by transferring one scattering

charge unit from the Sb to the Ga atoms, fSb!
fSb ÿ 1 and fGa ! fGa + 1, then the phase

values become �A = 18.9�, �B = ÿ23.5�, �C =

ÿ23.5� and �T =ÿ65.9�. In the case of the KDP

crystal (KH2PO4), the phase triplet of the 3-

BD shown in Fig. 9 does not change its value

by transferring one electron from K to P sites,

and anomalous dispersion corrections are very

small. With the origin of the unit cell at the P

atoms, the phases of the 260, 33�2 and �132

re¯ections are �A = 0, �B = 21.4� and �C = 13.2�,
respectively. Then, the phase triplet is �T =

34.6�. Dispersion corrections provide �A = 6.3�,
�B = 24.8�, �C = 16.9� and �T = 35.5� ( f 0P = 0.32,

f 00P = 0.49, f 0K = 0.38 and f 00K = 1.2 for � =

1.65382 AÊ ).

4. Discussion

Besides providing an experimental sense on the reliability of the

measured phases, the polarization-dependent set of �-scans is very

important for developing or checking any theoretical description of

the 3-BD process in crystals. The standard second-order Born

approximation, represented by equation (1) with � = 1, fails in

reproducing all scans in the set with the same triplet-phase values,

after adjusting the R-value to reproduce the curve at � = 0. As the
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Figure 7
Experimental (open circles) and simulated (solid lines) �-scans of the �3�13 and 133 3-BD in GaSb crystal
as a function of the polarization angle �. Primary re¯ection: �226. Simulated curves were generated using
equation (2) (see Appendix A) for the `out! in' position. The best-®t values of �T and � (for R2 = 1.334
and b0 = 0) are shown on the left-hand side of each scan. The number on the other side stands for the
maximum intensity normalized by the base line, 1. Wavelength: 1.2998 AÊ (2�A ' 90�). After MorelhaÄo
& Kycia (2002).

Figure 8
Experimental (open circles) and simulated (solid lines) �-scans of the 33�2 and
�132 3-BD in KDP (KH2PO4, potassium dihydrogen phosphate) crystal as a
function of the polarization angle �. Primary re¯ection: 260. Simulated curves
were generated using equation (2) (Appendix A) for the `out! in' position.
The best-®t values of �T and �, for R = 0.6515 and b0 = 0.84 [R332 = 0.485 and
R132 = 0.515, see equation (3)], are shown on the left-hand side of each scan.
The number on the other side stands for the maximum intensity normalized by
the base line, 1. Wavelength: 1.65382 AÊ (2�A ' 90�).

Figure 9
Comparison of the triplet-phase angles obtained from ®tting the �-scans in
Fig. 8 with different values of R and b0. The minimum deviation in the triplet-
phase values is obtained for R = 0.6515 and b0 = 0.84 (shaded diamonds). The
horizontal solid line shows the theoretical value, �T = 35.6�. The open circles
show changes of ÿ20%, ÿ5%, +5% and +20% in R, from top to bottom,
respectively. The open squares show the systematic error if Aufhellung is
neglected (b0 = 0). The scan number refers to the �-scans in Fig. 8 as ordered.
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polarization angle increases, the asymmetries of the pro®les due to

the interference of the primary and secondary waves are very much

enhanced in theory, i.e. in the simulated curves, than observed in the

experimental curves. On the framework of the second-order

approximation, this fact suggests that not all of the power (intensity)

assigned to the secondary wave at � = 0 is interfering with the primary

wave as it is excited at higher � angles, as for instance if crystalline

defects were present in the diffracting crystal volume. For this reason,

the � parameter was included in equation (1) to reduce the contri-

bution of the interference term. Does � < 1 mean that the diffracted

beams have a partial capability to interfere? Or is it just a conse-

quence of the incompleteness of this theoretical approach? The true

answer to such questions will be the subject of future works, but what

can certainly be said at this moment is that, by assuming � = 1 in

equation (1), very signi®cant systematic errors are generated in the

experimental values of the triplet phases as shown elsewhere

(MorelhaÄo & Kycia, 2002).

There are very accurate theoretical descriptions of the 3-BD

process in perfect crystals, as provided by the n-beam dynamical

theory (Colella, 1974; Weckert & HuÈ mmer, 1997) or the expanded

distorted-wave Born approximation (Shen, 1999). When such

theories are applied in phase determination, they implicitly assume

that no crystalline defects are visible in the diffracting volume by any

of the three re¯ections (A, B or C) of the respective 3-BD case. The

data-collection procedure proposed here is able to not only check the

validity of such an assumption but also to ®gure out the price paid for

it, i.e. the systematic error that it generates. Moreover, new theore-

tical approaches can be proposed for describing the diffraction

process when particular or several types of defects are present in the

crystals. The approach in Appendix A is limited to samples where the

pro®le functions of the scattered intensities from the hypothetical

crystal defects as well as of the Aufhellung effect are the same

function used to simulate the 3-BD pro®le in the perfect lattice,

i.e. | f(�)|. Whatever the proposed approach is, it has to ®t not only

one �-scan but also a polarization-dependent set of �-scans, as well as

to provide the same triplet phase for all polarizations, at least for

those polarizations where the Aufhellung is not dominant, as shown

for the data set in Fig. 8.

In both polarization-dependent data sets, Figs. 7 and 8, the �
parameter is observed to vary as a function of the polarization angle

�. There are several hypotheses that could be considered as plausible

sources of such variation: contamination of the incident beam due to

some amount of non-linearly polarized radiation (further discussion

on this hypothesis is provided at the end of Appendix A); translation

of the beam spot on samples with non-uniform density of crystalline

defects; or even the �-rotation of the incidence plane with respect to

the X-ray optics, which affect how the primary and double-bounce

re¯ections interact with both the vertical energy fan from the

monochromator and the beam divergences. All these hypotheses will

require further investigation, for which the instrumental degree of

freedom for carrying out �-scans at several polarization angles is

essential. Since there are several reasons for such variation, � cannot

be taken as a global variable for ®tting the data set. It's value has to

be adjusted along with �T for each �-scan.

5. Conclusion

For accurate determination of the invariant phase triplets, exploita-

tion of linearly polarized synchrotron radiation is very important. It

requires an X-ray diffractometer similar to the one described in this

article, or a more expensive one, to allow data collection for

composing a polarization-dependent set of �-scans. Otherwise,

insertion devices capable of rotating the linear polarization direction

have to be developed to operate in the X-ray energy range used in

crystallography. Since the polarization-dependent data set breaks the

degeneracy of the azimuthal pro®les due to partial interference of the

diffracted beams, the data set can provide the necessary experimental

evidence for guiding the development of new theoretical approaches

for the three-beam diffraction phenomenon, i.e. approaches capable

of phasing real non-perfect crystals, where at least a minimum of

asymmetry can still be observed in the azimuthal pro®les.

APPENDIX A
Modi®ed second-order Born approximation of the three-beam
diffraction

The complete parametric form (MorelhaÄo & Kycia, 2002) of the

equation used to simulate the pro®les presented in this article is

I��� � v2
P 1ÿ b f ����� ��2h i
� R2 f ����� ��2v2

S � 2�R f ����� ��vP � vS cos 
� �T� �: �2�
The primary and secondary waves were normalized by the amplitude

re¯ectivity of the primary re¯ection, EP = vP and ES =

R f ��� exp�i�T�vS, where

f ��� � �w= 2 �ÿ �0� � � iw
� � �3�

is the line pro®le function used to describe the excitation of the

secondary wave with the � rotation. The + and ÿ signs in the

numerator denote the cases where the diffraction vector gB moves

from the outside to the inside, `out! in', of the Ewald sphere and

vice versa, `in ! out', respectively. The Lorentzian width w deter-

mines the range of the secondary ®eld from its maximum at �0. � is

de®ned in x1, and

b � b0�RBv2
B � RCv2

C�; �4�
where RG is estimated as jFGj2/(jFBj2 + jFCj2) and FG is the theoretical

structure factor of re¯ection G (= B or C). The polarization coef®-

cients depend on the direction of the diffracted beams, kA,B = gA,B +

k0, as well as on the polarization direction, ê, and were calculated

according to

vP � k̂A � �k̂A � ê�;
vS � k̂A � fk̂A � �k̂B � �k̂B � ê��g;
vB � k̂B � �k̂B � ê�;
vC � k̂B � fk̂B � �k̂A � �k̂A � ê��g:

�5�

The polarization direction with respect to the rotation angle � of the

incidence plane of the diffractometer has been written as ê =

sin����̂ ÿ cos����̂, where �̂ = k̂0 � k̂A= sin 2�A and �̂ = �̂ � k̂0.

To compare the simulated and experimental �-scans, the error

function

E�p� � �1=�N ÿ 1��
XN

n� 1

I��n; p� ÿ IEXP��n�
�� �� �6�

has been used, where p = [�0, w, R, b0, �, �T] is the parameter vector of

the adjustable parameters and N is the total number of data points in

the scan.

A1. Non-linearly polarized radiation

A small amount of circular/elliptically polarized radiation can exist

in the incident beam. It provides extra contributions to both the EP



and ES waves. The primary wave®eld is always � polarized when

scattered at �/2 from the incident-beam direction. The direction of

the secondary wave®eld varies with �, but only its � component

participates in the interference term, which is properly taken into

account by the dot product vP�vS in equation (2). Circular/elliptically

polarized radiation sent through the double-bounce re¯ection, B + C,

provides an extra � component, rextra, in the interference term. The

dependence of these contributions on the polarization angle � is

different to that predicted by equation (5). It produces variations in �
to compensate this extra � component. The interference term, I�, of

equation (2) is sensitive to the contamination of non-linearly polar-

ized radiation according to

I� � 2R f
�� ��vP vS�0 cos  ��u

ÿ �
cos 
� �T� �;

where vP�vS = cos  and vP�rextra = �u. Since �, instead of �0, is the

®tting parameter, its dependence with the polarization angle is given

by � = �0 + �u/vS cos .
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