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After brie¯y describing the concept of short X-ray pulses

(�-function), the diffraction of such a short pulse by a crystal in the

asymmetric Laue case is given. The results of the dynamical theory

are adopted and an analytic result for the intensity distribution

behind the crystal in the diffracted direction as well as in the forward

direction is given and discussed in detail. The incoming � pulse is no

longer in®nitely short but shows a pronounced structure over a

limited temporal or spatial region which is connected to the well

known PendelloÈ sung effect. Also the limitations of these ®ndings are

critically inspected.

Keywords: free-electron lasers; X-ray optics; X-ray pulses;
dynamical diffraction.

1. Introduction

The free-electron laser (FEL) is expected to become an extraordinary

source of X-rays. This has resulted in at least two projects promising

to deliver photons with X-ray energies, namely the TESLA project at

DESY (DESY, 1997, 2001) and SLAC (SLAC, 1998). However, the

X-ray beams coming out of such a FEL have a rather special time

structure.

At TESLA-XFEL a bunch train of electrons is released at a

repetition rate of 5±10 Hz. At the undulator this train has a duration

of 1 ms but consists of 11315 single bunches of length 180 fs. The

SASE process (self-ampli®ed stimulated emission) inside the undu-

lator subdivides the single bunches further, so that the emerging

X-rays come in bursts of coherent radiation with an average length of

0.1 fs. In the following we shall consider one such isolated pulse.

For the development of X-ray optics for such a beam it is inter-

esting to know the effect of crystal re¯ection. The re¯ection of short

X-ray pulses has been investigated by several authors, among them

Wark & Lee (1999), Shastri et al. (2001) and Graeff (2002). In the

latter two papers analytic approaches were attempted whereas Wark

& Lee carried out a simulation. Besides the Bragg case, symmetric

Laue geometry was studied. Both authors found that in the Laue case

the time duration of the pulse after diffraction is 2(T/c) sin2�/cos�,
where T is the thickness of the crystal, � is the Bragg angle and c is the

speed of light. However, in the latter paper the propagation of the

beam behind the crystal was explicitly given. On the basis of quali-

tative considerations one could then expect that the asymmetric case

could reduce the time duration of the pulse and also modify the

geometry of the pulse after diffraction. This was a strong motivation

to study the asymmetric Laue case. Furthermore, this work gave the

opportunity to present a somewhat different treatment which casts a

new light on the problem. Naturally both calculations lead to the

same ®nal results.

2. Modelling a short X-ray pulse

The SASE process results in an almost parallel photon beam with a

diameter of 50 mm (r.m.s.) at the end of the undulator. Let us char-

acterize its direction by the unit vector u. The monochromator is

situated at a distance of about 800 m from the undulator and this is

the domain of Fraunhofer diffraction which induces a divergence of

2 mrad for a wavelength of 1 AÊ . This is very small compared with the

15 mrad width of a 111 diamond rocking curve. Since the transverse

spread of the photon beam is about 1.6 mm at this distance, one can

consider the incident pulse as a plane wave. We consider here a single

coherent pulse of duration 0.1 fs (but still 300 periods) as explained

above. The electric ®eld can then be approximated by Ea
0��t ÿ ur=c�.

The origin of coordinates O has been taken in the plane normal to u

where the pulse stands at t = 0 (Fig. 1). The small duration of the pulse

leads to a frequency spectrum of the order of 1016 sÿ1 which for a

central frequency of 3 � 1018 sÿ1 gives ��/� = 0.3 � 10ÿ2, which is

very broad compared with the frequency range of the order of 10ÿ5

where diffraction occurs. This justi®es a posteriori the �-function

which by Fourier transform gives an in®nite sum of plane waves with

all frequencies � and corresponding wave vectors K0 = (�/c)u,

Ea
0��t ÿ ur=c� � Ea

0=2�� � R exp i!�ur=cÿ t� d!
� Ea

0

R
exp 2�i��ur=cÿ t� d�: �1�

In fact the incident pulse has a very small but de®nite duration and

the frequency spectrum is not really in®nite. Thereby we avoid

problems with the validity of the two-wave solutions we will adopt

later; for instance, the assumption that only two waves are dominant

in the crystal or that the curvature of the asymptotes of the dispersion

surface is neglected.

In the following we consider that the crystal is at exact Bragg

incidence for a given frequency. For any other frequency the crystal is

no longer at exact Bragg incidence since the Bragg angle varies with

frequency, and we ®rst calculate the re¯ected and transmitted beams

inside the crystal (x3) and then after the crystal (x4) for this frequency.

The summation over all frequencies is performed in the second part

of x4 and leads to functions of position and time. The resulting

transmitted and diffracted signals passing through a given position

after the crystal are analysed as a function of time in x5. It is shown

that the diffracted signal is no longer a �-function but has a duration

whose value is proportional to the thickness of the crystal. The shape

of the snapshot of the re¯ected and transmitted signal is analysed

in x6.

3. Wave®elds in the crystal

The crystal is adjusted so that the angle � between u and the re¯ecting

plane is the sum of the exact Bragg angle �B,c for a given frequency �c

Figure 1
Geometry in real space of an asymmetric Laue-case diffraction. Oz is normal
to the crystal surface.



and a small refractive correction ��0 depending on the asymmetry

and which will be considered as constant here,² such that, for this

frequency, the usual dimensionless parameter � is zero. For all other

frequencies this deviation parameter differs from zero. The wave-

®elds in the crystal are described by the sum of the wave®elds of these

components with different frequencies.

First we have to express the deviation parameter � as a function of

frequency. Let us recall that

� � ��� ÿ��0� sin 2��L=�
h; �2�
where �� is the departure from the Bragg angle of the incident wave,

�L � � 
o
h� �1=2= jCj��h��h�1=2
� �

; �3�

0 = ns0 = cos 0, 
h = nsh = cos h³ where s0 and sh are unit vectors in

the direction of the incident and diffracted waves, and n is the surface

normal (see Fig. 1). �h and ��h are the Fourier coef®cients of the

electrical susceptibility, C is the polarization factor. Absorption is

usually included by complex values of the Fourier coef®cients �0, �h

and ��h. The incidence parameter � becomes complex as well, through

the then complex PendelloÈ sung distance �L. In the following we

assume at ®rst the absorption to be zero. Absorption can be re-

introduced at the end of the calculation and the results we have

obtained are valid provided the imaginary part of �L is small

compared with its real value as shown by Kato (1968). Note that the

Bessel functions involved later in this paper will have complex

arguments.

The angle of incidence of the � pulse is then �� = �B,c + ��0,

���(�c) = ��0 and �(�c) = 0. A frequency � has a departure ��
from �c and a departure �k from kc such that � = �c + �� and

K0 = (kc + �k)u, with �� = c�k.

The Bragg angle for a frequency � is equal to �B(�) = �B,c + ��B(�)

with ��B(�) =ÿ(��/�c)tan�B,c, so that the plane wave of frequency �
and wavevector K0 = (�/c)u has a departure from the Bragg angle

equal to ÿ��B(�) + ��0 and a � parameter such that

� � 2���L sin2 �B;c

ÿ �
=c
h

� � � 2�k�L sin2 �B;c

ÿ �
=
h

� �
: �4�

The crystal diffracts the plane waves within a frequency range

deduced directly from the angular range of the classical rocking curve

by using equation (4) for the correspondence between � and �. The

amplitude and the wavevector of each diffracted (and transmitted)

plane wave depend on the value of �, and the ®nal wave at a given

point and a given time t is the sum of all these waves.

Let us ®rst consider one of these incident plane waves,

Ea
0 exp 2�i��ur=cÿ t� � Ea

0 exp 2�i�K0rÿ �t�: �5�
It gives rise to two wave®elds ( j = 1, 2) inside the crystal. Each

wave®eld, in turn, consists of two plane waves, described by the wave

vectors k
�j�
0 and k

�j�
h (for details see Appendix A). We assume, in order

to simplify, that the incident wave is linearly polarized, with a

polarization vector normal to the plane of diffraction [� polarization,

C = 1 in equation (3)]. The amplitude of the forward-diffracted

(transmitted) wave for wave®eld j is

E
�j�
0 �r� � Ea

0C
�j�
0 exp 2�i K0re exp 2�i k

�j�
0 �rÿ re�; �6�

as shown in Appendix A (equation 50). re is a vector with its extremity

at the entrance surface. The amplitude of the diffracted wave for

wave®eld j is

E
�j�
h �r� � Ea

0C
�j�
h exp 2�i Khre exp 2�i k

�j�
h �rÿ re�; �7�

as shown in Appendix A (equation 51). The geometry in k-space is

shown in Fig. 2.

Kh is de®ned as

Kh � K0 � h: �8�
The coef®cients C

�j�
0 and C

�j�
h as a function of � are given in Appendix

A (equation 49). Equation (7) de®nes each j wave E
�j�
h �r� as a plane

wave propagating in the air before the crystal with vector Kh and then

propagating inside the crystal with a wavevector k
�j�
h . It may seem

quite strange to consider a re¯ected wave before the crystal but there

are two j waves inside and their total amplitude at the entrance face

(r = re) is equal to zero since C
�1�
h = ÿC

�2�
h so that ®nally these Kh

waves cancel and there is obviously no re¯ected wave before the

crystal (see details in Appendix A).

4. Wave®elds behind the crystal

In the air behind the crystal each wave®eld gives a transmitted wave

E
�j�
0 �r) with wavevector K0 and a diffracted wave E

�j�
h �r) whose

wavevector is K
0 �j�
h determined by boundary conditions applied at the

exit surface (parallel to the entrance surface, de®ned by r = rs). The

index ( j) of these vectors can be suppressed here because both

diffracted wave vectors are identical. Using equations (54) and (55)

we ®nd

E
�j�
0 �r� � Ea

0C
�j�
0 exp 2�i ��i�T � K0rs

� �
exp 2�i K0�rÿ rs�; �9�

E
�j�
h �r� � Ea

0C
�j�
h exp 2�i ��i�T � Khrs

� �
exp 2�i K0h�rÿ rs�: �10�

One has to sum over both wave®elds

J. Synchrotron Rad. (2003). 10, 248±254 Malgrange and Graeff � Diffraction of short X-ray pulses 249

research papers

Figure 2
Geometry in the reciprocal space for an asymmetric Laue case. As usual, only
the area of interest is shown. The reciprocal lattice points 0 and H are far
below the image. The Ewald spheres around these points intersect at Lc for the
central kc value, whereas with any deviation �k the intersection shifts to L. As
de®ned in equation (8), Kh = MH and Kh

0 = M0H. The point M is found by the
incident direction s0 on the new Ewald sphere with radius kc + �k, and M0 is
found by the normal to the crystal surface drawn through M.

² ��0 = ÿ(�0/2)(1 ÿ 
h/
0)/sin 2� varies with � but the domain of frequency
which is diffracted by the crystal is small enough for its variation to be
neglected.
³ The angles  0 and  h are de®ned such that  0 +  h = 2� always holds.  0 is
positive counterclockwise from the surface normal n, whereas  h is positive in
the clockwise direction. By this de®nition we ensure for the symmetric case
 0 =  h.
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E0�r� � Ea
0 C

�1�
0 exp 2�i ��1�T � C

�2�
0 exp 2�i ��2�T

h i
exp 2�i K0r

� Ea
oV��� exp 2�i K0r; �11�

Eh�r� � Ea
0 C

�1�
h exp 2�i ��1�T � C

�2�
h exp 2�i ��2�T

h i
� exp 2�i Khrs exp 2�i K0h�rÿ rs�
� Ea

oR��� exp 2�i Khrs exp 2�i K0h�rÿ rs�; �12�
where

V��� � M cos A�1� �2�1=2 ÿ i��1� �2�ÿ1=2 sin A�1� �2�1=2
� �

exp i�A;

�13�

R��� � N 1� �2
ÿ �ÿ1=2

sin A 1� �2
ÿ �1=2

exp i�A; �14�
where

M � exp�ik�0T=
0;

N � i ��h� �h�1=2=�h

� �

0=
h� �1=2exp�ik�0T=
0

and

A � �T=�L:

Considering now the dependence in time t (we still discuss a single

incident wave with a given frequency �) one obtains

E0�r; t; �� � Ea
0V������ exp 2�i K0r expÿ2�i�t; �15�

Eh�r; t; �� � Ea
0R������ exp 2�i Khrs exp 2�i K0h�rÿ rs� expÿ2�i�t:

�16�
Writing K0 = K0,c + �K0, Kh = Kh,c + �Kh, K0h = K0h;c ��K0h and

� = �c + ��, we obtain

E0�r; t; �� � Ea
0V������ exp 2�i K0;cr expÿ2�i �ct

� exp 2�i�K0r expÿ2�i ��t; �17�

Eh�r; t; �� � Ea
0R������ exp 2�i Kh;crs exp 2�i K0h;c�rÿ rs�
� expÿ2�i �ct exp 2�i �Khrs

� exp 2�i�K0h�rÿ rs� expÿ2�i ��t: �18�
Putting all constant factors related to the central wave into the factors

E0 and Eh we may rewrite

E0�r; t; �� � E0V������ exp 2�i �K0r expÿ2�i ��t; �19�

Eh�r; t; �� � EhR������ exp 2�i �Khrs exp 2�i �K0h�rÿ rs�
� expÿ2�i ��t: �20�

Finally the electric ®eld is obtained by integration of (19) and (20) on

all values of �,

E0�r; t� � E0

Z
V������� exp 2�i �K0rÿ��t� � d��; �21�

Eh�r; t� � Eh

Z
R������� exp 2�i �Khrs ��K0h�rÿ rs� ÿ��t

� �
d��:

�22�
To perform this integration one needs to express �K0, �Kh and �K0h
as functions of �� (or �k = ��/c) and then �� (or �k) as a function

of � with equation (4).

In Fig. 2 for the frequency �c the Ewald spheres in the air intersect

at the Laue point Lc and the incident wavevector is K0,c = LcO = kcu.

For a frequency � = �c + �� and a corresponding wavevector length

k = kc + �k they intersect at L. The incident wavevector is K0 = MO =

(kc + �k)u. From the de®nition (8) of Kh, Kh,c = LcH and Kh = MH.

The diffracted wave vectors in the air depend on � and are K0h = M0H.

Then �K0 = �Kh = MLc = �ku and �K0h = M0Lc which are

calculated now.

rs joins the origin to an arbitrary point on the exit surface. Let us

call it O0. urs = l0 where l0 is the distance between the incident wave

front in O and O0 (Fig. 3). Correspondingly, we de®ne l = ur. Finally,

�K0r � �kl; �23�

�Khrs � �kl0: �24�
Simple calculations show that

�K0h � M0Lc � �k ÿ sin 0ux � 1� sin 0 sin h� �=
h

� �
uz

� 	
; �25�

where ux and uz are unit vectors parallel to Ox and Oz de®ned in

Fig. 1. The positive direction of the x axis is chosen to the left of the

®gure.

Let us de®ne a coordinate system O0x0y0z0 parallel to Oxyz (Fig. 3)

with the origin O0 on the exit surface as de®ned above. Replacing �k

as a function of �, equation (21) becomes

E0�r; t� � E00

Z
V��� exp�i �
h= �L sin2 �B

ÿ �� ��l ÿ ct� d�; �26�

and equation (22) for the diffracted beam becomes

Eh�r; t� � E0h

Z
R��� exp�i �
h=��L sin2 �B�

� �
� l0 ÿ ct ÿ x0 sin 0 � z0 �1� sin 0 sin h�=
h

� �� 	
d�: �27�

The constants in front are modi®ed and now include the transfor-

mation factors when going to different integration variables. For

convenience we de®ne the variables

�0 � A� �
h=��L sin2 ��� ��l ÿ ct�;
�h � A� �
h=��L sin2 ��� �

l0 ÿ ct ÿ x0 sin 0

�
�z0 �1� sin 0 sin h�=
h

� �	
:

�28�

Figure 3
Relevant points to measure a signal at P. This point receives intensity from P0

via the 0-beam, which in turn receives intensity from the reverse Borrmann
triangle ABP0 . The same happens via the h-beam. The reverse Borrmann
triangle is in this case CDPh .



Then with the help of equations (13), (14), (26), (27) and (28) we may

write the expressions for the transmitted and the diffracted pulse

behind the crystal,

E0�r; t� � E000G��0�;
Eh�r; t� � E00hI��h�;

�29�

with

G��0� �
Z

cos A�1� �2�1=2 ÿ i��1� �2�ÿ1=2 sin A�1� �2�1=2
� �
� exp i�0� d�;

I��h� �
Z

sin A�1� �2�1=2
� �

=�1� �2�1=2
� 	

exp i�h� d�:

�30�

The integrals are evaluated in Appendix B [equations (57) and (62),

respectively]. So we ®nally have explicitly the phase factors from the

central wave,

E0�r; t� � E0000 �A� �0�=�Aÿ �0�
� �1=2

J1 �A2 ÿ �2
0�1=2

ÿ �
� exp 2�i K0;crÿ �ct

ÿ �
; �31�

Eh�r; t� � E000h J0 �A2 ÿ �2
h�1=2

ÿ �
exp 2�i K0h;crÿ �ct

ÿ �
; �32�

where all irrelevant constants are included in E0000 and E000h . The

expressions are limited to domains

ÿ 2T sin2 �
ÿ �

=
h < l ÿ ct < 0 0-beam,

ÿ 2T sin2 �
ÿ �

=
h < l0 ÿ ct ÿ x0 sin 0�
z0 �1� sin 0 sin h�=
h

� �
< 0 h-beam:

�33�

Outside these domains the electric ®eld values vanish.

The transmitted and diffracted `pulse' is no longer a �-pulse but is

spread in time and position inside limited domains. Of course, the

measured signal is the intensity which is easily obtained from equa-

tions (31) and (32) by taking the square moduli,

I0�r; t� � jE0000 j2 �A� �0�=�Aÿ �0�
� �1=2

J1 �A2 ÿ �2
0�1=2

ÿ ���� ���2;
Ih�r; t� � jE000h j2 J0 �A2 ÿ �2

h�1=2
ÿ ��� ��2: �34�

The extensions of the domains given in equations (33) are not

in¯uenced.

Let us now interpret in detail equations (33) which de®ne the

domains where the amplitudes E0 and Eh do not vanish.

5. Signal at a given point behind the crystal

The two domains for the 0- and h-direction overlap close to the exit

surface of the crystal. This situation resembles the well known

standing-wave patterns, but as the domains move with the speed of

light this overlap region is not stationary but moves along the exit

surface of the crystal.

To avoid complications we choose a point well behind the overlap

region. At this point P = (x0,z0) (see Fig. 3) the pulse in the 0-direction

arrives ®rst. The incident pulse passes through O at t = 0 and its

arrival time is

t0;1 � l=c: �35�
From condition (33) one sees that the pulse in the 0-direction lasts

until

t0;2 � 2T sin2 �
ÿ �

=c
h � l=c: �36�
Hence the pulse duration is

�t � 2T sin2 �
ÿ �

=c
h; �37�
which is understood easily as the phase front of the pulse travels at

the speed of light between two extreme paths, one being AP0P and

the other ApBP0P. The path difference is easily veri®ed to be c�t.

The arrival time of the diffracted pulse at P is

th;1 � l0=cÿ x0�sin 0�=c� z0�1� sin 0 sin h�=c
h: �38�
It lasts until

th;2 � l0=cÿ x0�sin 0�=c� z0�1� sin 0 sin h�=c
h

� �2T sin2 ��=c
h; �39�
which results in the same pulse duration as given in (37), as the path

difference between CPh and CpDPh is the same as that between AP0

and ApBP0.

6. Signal at a given time

Now we look at a snapshot of the intensity distribution behind the

crystal. Let us consider for example the time t when the beginning of

the signal arrives at B (see Fig. 6). We expect two stripes, one for the

transmitted pulse and one for the diffracted pulse. The front borders

of both stripes meet at B, the rear borders at G.

The domain of the 0-beam is derived from condition (33) which

refers to l. Lines of equal intensity are perpendicular to the incidence

direction and the extreme values are separated by �l such that

�l � 2T sin2 �
ÿ �

=
h: �40�
The distance between B and G is

BG � �l= sin 0 � 2T sin2 �=�
h sin 0�: �41�
The domain of the h-beam where the electric ®eld is different from

zero is, from condition (33), a function of

l0 ÿ ct ÿ x0 sin 0 � z0 �1� sin 0 sin h�=
h

� �
;

which is constant along lines parallel to

z0 � x0 �sin 0 cos h�=�1� sin 0 sin h�
� � � x0 tan�: �42�

The geometrical construction of such a line is simple and easy to

understand if one considers as above the wave ®elds which propagate

along the margins of the Borrmann triangle at the speed of light. The

incident pulse enters the crystal at two points, A and A0 for example

in Fig. 4, corresponding to a wave front A0A0p. Considering only the

propagation along direction s0, the wave incident at A exits the crystal

at B and that incident at A0 exits at B0. The waves in B and B0 are not

in phase because of the beam paths difference A0pA. The re¯ected

waves are in phase at point B and point B0h de®ned along the re¯ected

direction issued from B0 by the condition B0B0h = A0pA. It can be

shown that the angle between BB0h and the exit surface BB0 is equal to

the angle � de®ned above.

The intensity of the diffracted signal is con®ned between two such

parallel lines: one passing through B and the other through a point G

already given above with the 0-domain. Fig. 5 shows an independent

method of ®nding the location of G. After constructing the angle �
and the ®rst line through B (Fig. 4), the Borrmann triangle ABC is

extended to the isosceles triangle ABCh. A parallel line to BD is

drawn through Ch. The intersection of this line with the back of the

crystal gives G. It can be checked that EF = CCh.

In order to interpret this result let us consider Fig. 6 where the

Borrmann triangle ABC has been extended to the isosceles triangle

ABCh. The �-pulse is a plane wave (at a given time the signal spreads

over all the plane perpendicular to u) but owing to its temporal
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structure it contains all the frequencies. As a result, when the �-pulse

arrives at A at time t0 = OA=c all the wave ®elds are excited and

spread inside the Borrmann triangle ABC with a group velocity vg

which depends on the direction of propagation. The group velocity is

equal to c cos �= cos ', where ' is the angle between the direction of

propagation of the wave®eld and the trace of the re¯ecting planes.

The wave®elds arrive at the exit surface at different times and then

decompose outside the crystal into re¯ected and transmitted waves

propagating at c, the speed of light. It can be shown that at time

t = t0 � T=c
0, when the wave ®eld which propagates along the

margin AB of the Borrmann triangle (with speed c) arrives at the exit

surface at B, the different re¯ected beams which have propagated

inside the crystal with speed vg and outside the crystal with speed c

spread over the line BCh (and the transmitted beams over BC0).

Let us consider now the wave ®elds issued of the plane wave pulse

impinging the crystal entrance surface at point A0 at a later time. The

pattern is shifted to the right. Equivalent points on the border of each

domain are marked by circles. They move at the speed of light in the

corresponding direction.

The temporal evolution of the diffracted stripe may be seen as a

slower movement in the normal direction. That speed is its group

velocity, different from c because of the variation of the direction of

the diffracted wave vectors as a function of the frequency of the wave.

The group velocity may easily be deduced from the width of the stripe

BG sin � [equations (41) and (42)] and the duration of the pulse

[equation (37)],

vg � c
h 1� 2 sin 0 sin h � sin2  0

ÿ �ÿ1=2
: �43�

A numerical example would be for a diamond 111-re¯ection in the

symmetric Laue case, 0.89c.

In practice the lateral size of the incident pulse is limited and there

are some lateral edge effects which are not taken into account here.

It is worthwhile noticing that the variation of the intensity across

the transmitted and diffracted stripes as given in formulae (34) is at

least formally identical to the intensity variation of the beams if a

monochromatic spherical wave impinges the crystal with the same

central frequency. In both cases a dimensionless coordinate varying

from 0 to 1 is used. However, in the case of a spherical wave this

coordinate covers the base of the Borrmann triangle and the

diffracted beam has the direction of sh, whereas in the case of a

�-pulse the coordinate is con®ned to the stripes. Note that in general

points C and G in Fig. 5 do not coincide.

7. Conclusions

Analytic expressions for the diffraction of a short X-ray pulse from an

asymmetric Laue-case crystal have been deduced. They resemble the

well known PendelloÈ sung solutions for an incident spherical wave.

The incident short pulse is no longer short after diffraction but

extended over a time

�t � 2T sin2 �
ÿ �

=c
h;

and depends on three quantities:

(i) The thickness T of the crystal which is of the order of 100 mm, if

mechanical means like diamond saws are used, but can go down to

several mm if physicochemical processes from the fabrication of

electronic devices are used.

Figure 5
Constructing the point G which de®nes the second boundary of the h-domain
(see text).

Figure 4
Finding the angle �, the inclination of the h-domain with respect to the crystal
(see text).

Figure 6
The intensity distribution at two different times, when the pulse arrives at B
and B0. The propagation of equivalent points is indicated by circles. To
emphasize the different orientation of phase fronts they are indicated in the
domains when the pulse arrives at B0. The overlapping area of the transmitted
and re¯ected beams is clearly visible. For clarity the corresponding areas at B
are not hatched.



(ii) The Bragg angle. The choice is limited by the diffraction

mechanism. In order to shorten the pulse, an order of re¯ection as

low as possible should be selected. For example, for a diamond 111-

re¯ection and 1 AÊ wavelength, � = 14.08�.
(iii) The asymmetry of the crystal. Obviously the optimal choice is


h = 1, which means that the diffracted beam leaves the crystal

perpendicularly. Taking the optimal values of all three parameters

together, several fs can be achieved (e.g. for T = 10 mm, �t = 4 fs, for

T = 100 mm, �t = 40 fs).

At a given time the transmitted and diffracted beams spread over

stripes. The intensity across the stripe varies (as Bessel functions)

exactly as the intensity along the exit surface of a crystal in Laue

diffraction for an incident spherical wave. It is not really surprising

since the ultrashort pulse leads, by Fourier transform, to a wide range

of frequencies resulting in excitation of the whole dispersion surface

analogous to the case of a monochromatic spherical wave. As has

been shown, the margins of the stripes are associated with the

wave®elds propagating along the incident and re¯ected directions,

respectively, and corresponding in the integral to large values of the

modulus of the � parameter.

Finding an analytic result was possible using several assumptions

which were reasonable and are worthwhile reviewing. First, the

incident pulse must be much shorter than the response time of the

crystal ®nally deduced. This is ful®lled easily since the response time

is at least several fs to be compared with 0.1 fs. Second, the diver-

gence of the incident pulse was assumed to be zero. The divergence is

of the order of 2 mrad directly associated with the lateral width of the

beam at the exit of the undulator. It is very small compared with the

width of the rocking curve and would only somewhat blur the fringes

across the stripe. Third, the curvature of the asymptotes of the

dispersion surface was neglected. This would in¯uence large � values

which contribute to the margins of the Bessel functions. On the other

hand, in reality the ®nite pulse width strongly suppresses large

frequency deviations (hence large � values).

Finally, let us consider the transmitted and diffracted beams

given in equations (31) and (32) which are of the form

A(r, t)exp2�i(kcr ÿ �ct). On ®rst glance they look like plane waves

because of the factor exp2�i(kcr ÿ �ct), but one has to also consider

the spatial dependence of the factor A(r, t). The Fourier transform of

the whole function requires the region around kc to be occupied in

k-space. For the transmitted beam this factor is a function of l ÿ ct

where l is a distance parallel to kc. Consequently no further diver-

gence is added and one obtains a `plane' wave and, as noticed above,

the stripe is normal to the kc vector. On the contrary the re¯ected

beam is not a non-divergent wave; each frequency gives rise to a

different re¯ected wavevector and the stripe is not normal to kc. Its

propagation speed in the direction normal to the stripe is smaller than

the speed of light. Hence we have an electromagnetic ®eld distribu-

tion which travels in a vacuum slower than the speed of light.

By choosing the appropriate asymmetry angle one could not only

shorten the pulse but also evoke another interesting situation. By

setting  = 0, i.e. making the incident beam impinge normal to the

crystal surface, it follows from equation (42) that the diffracted stripe

leaves the crystal parallel to the rear surface. As its group velocity is

still lower than the speed of light, namely vg = c cos 2�, its separation

from the direct pulse depends on the distance to the crystal. A sample

behind the crystal would ®rst be hit by the direct pulse and then by its

echo, independent of the lateral position. Unfortunately this

phenomenon occurs only in regions close to the crystal where the

re¯ected and the transmitted beam superimpose and the lateral width

of this common area decreases with the distance from the crystal, in

practical situations within a few millimeters.
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APPENDIX A
Amplitudes at the crystal surfaces

The aim of this Appendix is to prove the validity of the form of the

diffracted wave given in (7) which introduces a ®ctive incident

diffracted wave. This is not done in standard books on dynamical

theory which add this wave as if it was evident.

One incident plane wave Ea
0 exp 2�iK0r gives rise to two wave®elds

in the crystal,

E�1� � E
�1�
0 exp 2�ik

�1�
0 r� E

�1�
h exp 2�ik

�1�
h r;

E�2� � E
�2�
0 exp 2�ik

�2�
0 r� E

�2�
h exp 2�ik

�2�
h r;

where the wave vectors k
�1�
0 , k

�2�
0 , k

�1�
h , k

�2�
h are determined by the

continuity of their tangential components.

In order to express the different waves E
�j�
0 exp 2�ik

�j�
0 r and

E
�j�
h exp 2�ik

�j�
h r excited by a given incident plane wave one has to

apply boundary conditions at the entrance surface for the incident

and re¯ected waves which gives

Ea
0 exp 2�iK0re � E

�1�
0 exp 2�ik

�1�
0 re � E

�2�
0 exp 2�ik

�2�
0 re;

0 � E
�1�
h exp 2�ik

�1�
h re � E

�2�
h exp 2�ik

�2�
h re;

�44�

where re is any vector with its end point at the entrance surface.

This system is easily solved by multiplying both sides of the last

equation by expÿ2�iKhre, where Kh = K0 + h, in order to obtain

identical exponential factors for E
�1�
0 and E

�1�
h and for E

�2�
0 and E

�2�
h ,

since

Kh ÿ k
�1�
h � K0 ÿ k

�1�
0 ;

Kh ÿ k
�2�
h � K0 ÿ k

�2�
0 :

�45�

One obtains the following system of two equations describing the

boundary conditions at the entrance surface,

Ea
0 � E

�1�
0 exp 2�i k

�1�
0 ÿ K0

h i
re � E

�2�
0 exp 2�i k

�2�
0 ÿ K0

h i
re;

0 � E
�1�
h exp 2�i k

�1�
h ÿ Kh

h i
re � E

�2�
h exp 2�i k

�2�
h ÿ Kh

h i
re:

�46�

Introducing the amplitude ratios �(1) = E
�1�
h =E

�1�
0 and �(2) = E

�2�
h =E

�2�
0

and using (45) we obtain a system of two unknowns and two equa-

tions,

Ea
0 � E

�1�
0 exp 2�i k

�1�
0 ÿ K0

h i
re � E

�2�
0 exp 2�i k

�2�
0 ÿ K0

h i
re;

0 � ��1�E�1�0 exp 2�i k
�1�
0 ÿ K0

h i
re � ��2�E�2�0 exp 2�i k

�2�
0 ÿ K0

h i
re;

�47�
which is easily solved.

Consequently the amplitudes of the diffracted wave®elds are

E
�1�
0 � ��2�= ��2� ÿ ��1�� �� 	

Ea
0 exp 2�i K0 ÿ k

�1�
0

h i
re;

E
�2�
0 � ÿ��1�= ��2� ÿ ��1�

� �� 	
Ea

0 exp 2�i K0 ÿ k
�2�
0

h i
re;

E
�1�
h � ��1���2�= ��2� ÿ ��1�� �� 	

Ea
0 exp 2�i Kh ÿ k

�1�
h

h i
re;

E
�2�
h � ÿ��2���1�= ��2� ÿ ��1�

� �� 	
Ea

0 exp 2�i Kh ÿ k
�2�
h

h i
re;

or

E
�j�
0 � Ea

0C
�j�
0 exp 2�i K0 ÿ k

�j�
0

h i
re;

E
�j�
h � Ea

0C
�j�
h exp 2�i Kh ÿ k

�j�
h

h i
re:

�48�
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Dynamical theory [see for example Kato (1974) and Authier (2001)]

gives the coef®cients as a function of the incidence parameter

[equation (2)],

C
�j�
0 � ��2 � 1�1=2 � �� �

= 2��2 � 1�1=2
� �

;

C
�j�
h � � ��h� �h�1=2=2�h

� ��
0=
h�1=2��2 � 1�ÿ1=2:
�49�

The upper sign holds for j = 1 and the lower one for j = 2.

The four waves inside the crystal are

E
�j�
0 �r� � E

�j�
0 exp 2�ik

�j�
0 r

� Ea
0C
�j�
0 exp 2�i K0 ÿ k

�j�
0

h i
re exp 2�ik

�j�
0 r

� Ea
0C
�j�
0 exp 2�iK0re exp 2�ik

�j�
0 �rÿ re�; �50�

E
�j�
h �r� � E

�j�
h exp 2�ik

�j�
h r

� Ea
0C
�j�
h exp 2�i Kh ÿ k

�j�
h

h i
re exp 2�ik

�j�
h r

� Ea
0C
�j�
h exp 2�iKhre exp 2�ik

�j�
h �rÿ re�; �51�

which can be arranged as

E
�j�
0 �r� � Ea

0C
�j�
0 exp 2�i k

�j�
0 ÿ K0

h i
rÿ re� � exp 2�iK0r; �52�

E
�j�
h �r� � Ea

0C
�j�
h exp 2�i k

�j�
h ÿ Kh

h i
rÿ re� � exp 2�iKhr: �53�

The last arrangement leads directly to the boundary conditions at the

back of the crystal. At a given point rs at the exit surface of a crystal of

thickness T,

E
�j�
0 �rs� � Ea

0C
�j�
0 exp 2�i��j�T exp 2�iK0rs; �54�

E
�j�
h �rs� � Ea

0C
�j�
h exp 2�i��j�T exp 2�iKhrs; �55�

with

��j� � k
�j�
0 ÿ K0

h i
n � k

�j�
h ÿ Kh

h i
n

� k�0=2
0 � �=2�L � �2 � 1
ÿ �1=2

=2�L; �56�
where the latter again comes from dynamical theory.

APPENDIX B
Evaluation of integrals over g

In Table of Integrals, Series and Products (Gradshteyn & Ryzhik,

1980) one ®nds

I��h� �
Z

sin A�1� �2�1=2
� �

=�1� �2�1=2
� 	

exp i��h d�

� �J0 �A2 ÿ �2
h�1=2

ÿ � j�hj<A; �57�

and zero outside this domain. J0(z) is the Bessel function of order

zero.

For the determination of the integral G one divides the integral

into two parts,

G��0� � H��0� ÿ K��0� �58�

with

H��0� �
Z

cos A 1� �2
ÿ �1=2

exp i��0 d�;

K��0� � i

Z
� sin A 1� �2

ÿ �1=2
h i

= 1� �2
ÿ �1=2

n o
exp i��0 d�:

�59�

Since

@I

@A
� H;

@I

@�
� K;

dJ0�z�
dz
� ÿJ1�z�; �60�

where J1(z) is the Bessel function of order 1, one obtains

H��0� � ÿ�A A2 ÿ �2
0

ÿ �ÿ1=2
J1 �A2 ÿ �2

0�1=2
ÿ �

;

K��0� � ��0 A2 ÿ �2
0

ÿ �ÿ1=2
J1 �A2 ÿ �2

0�1=2
ÿ �

:
�61�

Finally,

G��0� � ÿ� A� �0� �= A2 ÿ �2
0

ÿ �1=2
h i

J1 �A2 ÿ �2
0�1=2

ÿ �
: �62�
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