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Recent achievements in experimental and computational methods

open the possibility of measuring and inverting the diffraction pattern

from a ®nite object of submicrometer size. In this paper the

possibilities of such experiments for two-dimensional arrays of

quantum dots are discussed. The diffraction pattern corresponding to

coherent and partial coherent illumination of a sample was

generated. Test calculations based on the iterative algorithms were

applied to reconstruct the shape of the individual islands in such a

quantum structure directly from its diffraction pattern. It is

demonstrated that, in the case of coherent illumination, the correct

shape and orientation of an individual island can be obtained. In the

case of partially coherent illumination, the correct shape of the

particle can be obtained only when the coherence of the incoming

beam is reduced to match the size of the island.
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1. Introduction

Quantum structures (quantum wires and quantum dots) are impor-

tant elements of modern nanophysics and nanotechnology. Con®ne-

ment of the electron wavefunction to dimensions of the order of 10 to

100 nm, which is less than the electron's mean free path, drastically

changes both energy levels and the density of states. On the one hand

this provides a unique opportunity to test quantum mechanical

concepts, and on the other provides wide opportunities for applica-

tions in the optoelectronics and semiconductor industry (Bimberg et

al., 1999). Different methods have been proposed for growing such

nanostructures. One common approach is the self-organized growth

technique when nanostructures are spontaneously formed during the

deposition of strained epitaxic layers. This technique can produce

very small structures with a high lateral density that can be grown

within a short time. Unfortunately the control of the growth process

during self-organization is dif®cult, as size, shape and composition

depend sensitively on several parameters. At the same time it is clear

that the electronic properties of nanodevices based on quantum

structures are ®rst of all determined by their shape.

Characterization techniques are required both for the studies of

the fundamental physical properties as well as for the optimization of

growth parameters of quantum structures. Surface atomic force

microscopy (AFM) (Springholz et al., 1998; Lee et al., 2001) and

scanning tunnelling microscopy (STM) (Medeiros-Ribeiro et al.,

1998; Marquez et al., 2001) are commonly used for characterization of

the shape and the size of the quantum structures, but only when they

are present on an open surface. For practical applications, however,

the quantum structures have to be overgrown. It is known that this is

often accompanied by a considerable change of the size and shape of

the nanostructures due to interdiffusion and segregation (Sutter &

Lagally, 1998; Mateeva et al., 1999). Hence, methods are required that

allow for the characterization of buried quantum dots. This is often

done by transmission electron microscopy (TEM) (Liu, Gibson et al.,

2000; Walther et al., 2001) and cross-sectional STM (Eisele et al., 1999;

Liu, Tersoff et al., 2000). Although these methods often give `direct

images', they are only two-dimensional and the applications are often

limited by elaborate sample preparation.

Owing to their high penetration depth, X-rays are favorable in the

study of buried crystal structures. First of all, X-ray methods are non-

destructive and, secondly, different X-ray scattering and diffraction

techniques can provide complementary information about the shape,

size, deformation and composition of the quantum structures. As was

shown in a series of papers, the average shapes, sizes and correlation

lengths can be effectively obtained by grazing-incidence small-angle

X-ray scattering (GISAXS) (Schmidbauer et al., 1998; Stangl et al.,

2000; Holy et al., 2001). Composition and strain can be investigated by

X-ray diffraction using coplanar geometry (XRD) (Shen et al., 1996;

Darhuber et al., 1997; Wiebach et al., 2000) or in grazing-incidence

diffraction (GID) (Steinfort et al., 1996; Kegel et al., 2001). These

X-ray scattering techniques have been widely applied to the study of

quantum structures (Holy et al., 1999; Stangl et al., 2002). Already in

the early publications (Shen et al., 1993; Salditt et al., 1994) the

questions of coherence length of the incoming beam and diffraction

contrast from periodic quantum structures were addressed. These

ideas were even used for a detailed study of the partial coherence of

the synchrotron beam (Lin et al., 1998). In all these methods,

however, contrary to imaging methods discussed before, average

information is obtained. Furthermore, the most valuable information

(shape, size and deformation) can be obtained only indirectly by

comparing results of the experiment with simulated diffraction

patterns obtained from models. In this paper we want to discuss the

possibilities of combining diffraction methods with a new lensless

imaging technique for investigation of quantum structures.

Recently it was shown that if a sample of ®nite size is coherently

illuminated and its diffraction pattern is measured with a frequency

that is two times higher than the Nyquist frequency, then (in

dimensions higher than one) it can be uniquely inverted to give a

real-space image of the sample (Miao et al., 1999, 2002). It was shown

that, by illuminating just one crystalline particle of submicrometer

size with a coherent X-ray beam, the shape of this particle can be

obtained in two dimensions and three dimensions (Robinson et al.,

2001; Williams et al., 2003). An oversampling method was also tested

on a computer-generated two-dimensional crystal structure and

repeated motif without orientational regularity (Miao & Sayre, 2000).

However, under the present state of the experimental capabilities,

owing to a variety of reasons, it is dif®cult to perform such an

experiment on quantum structures. First of all, it is dif®cult to illu-

minate just one quantum dot even using focusing techniques because

the size and the distance separation between typical quantum dots is

on the nanometer scale. Secondly, even using the high ¯ux of third-

generation X-ray synchrotron sources, the signal obtained just from

scattering by one quantum dot will be below a measurable level. So,

instead of illuminating one quantum dot the favorable strategy might

be coherent illumination of a ®nite array of quantum dots. In this case

both problems stated above could be overcome. Nanometer focusing

of the incoming beam is not necessary and the signal scattered by a

®nite number of the dots will be measurable at synchrotron sources.

The ideas are quite general and in principle can be applied to

different diffraction techniques not limited to X-rays. For example,

the same approach can also be useful for imaging by electron beams.

As was demonstrated in a recent experiment (Zuo et al., 2003), if the

diffraction pattern is recorded using TEM (without the use of imaging

J. Synchrotron Rad. (2003). 10, 409±415 # 2003 International Union of Crystallography � Printed in Great Britain ± all rights reserved 409

research papers

² On leave from Institute of Crystallography RAS, Leninsky pr. 59, 117333
Moscow, Russia.



research papers

410 I. A. Vartanyants and I. K. Robinson � Imaging of quantum array structures J. Synchrotron Rad. (2003). 10, 409±415

lenses for converting the image from reciprocal to real space), atomic

resolution can be successfully obtained by inversion of the over-

sampled data. In this paper we would like to discuss the feasibility of

this technique for imaging quantum structures by computer simula-

tions.

Quite a different approach, proposed recently by SzoÈ ke (2001) for

biological crystals, can also be used for imaging quantum structures as

test objects. If, instead of a highly coherent beam, the sample is

illuminated by an incoherent beam with coherence length approxi-

mately equal to the distance between the molecules, then the

diffraction pattern just from one molecule will be recorded. The

intensity recorded on the detector will be an incoherent sum of

coherent diffraction patterns from all identical molecules illuminated

by this strongly incoherent beam. Here we are not discussing

different approaches of preparing such an incoherent beam, which

can be rather dif®cult, but will show by computer simulations the

advantages and disadvantages of this approach for quantum structure

imaging.

The paper is organized as follows. In x2 we will discuss imaging of

quantum structures with coherent illumination, in x3 imaging with an

incoherent beam, and in the last section we will give the conclusion

and discussion of the results obtained.

2. Imaging of quantum structures with coherent beams

Here, for purposes of clarity, we will consider the case of the in-line

geometry when a two-dimensional detector (such as a CCD camera)

is positioned downstream from the sample and the array of quantum

dots (QD) is perpendicular to the beam propagation direction. With

the same purpose we will consider a regular array of QDs arranged in

a two-dimensional lattice, which often occurs in practice owing to

self-organization during growth (Stangl et al., 2002). The shape of the

QDs will be taken in the form of triangular pyramids, terminated by

{100} side facets.

In the case of coherent illumination of such an array of QDs, the

electron density p�r� can be written in the following form,

p�r� � S�r� sz�r� 
 p1�r�
� �

; �1�
where S�r� is the shape of the coherently illuminated area on the

sample, sz�r� =
R

dz s�r; z� is the projection of the shape function (or

electron density) of one island s�r; z� on the surface plane, p1�r� =P
n ��rÿ rn� is a periodic function de®ning a two-dimensional lattice,


 is a convolution sign and r is a two-dimensional coordinate vector

in the plane of the sample surface. The scattered amplitude in the

kinematic approximation is just the Fourier transform (FT) of this

electron density,

A�q� � R p�r� exp�iqr� dr; �2�
where q is a two-dimensional scattering vector. The intensity

measured at the detector is the square modulus of this amplitude with

the necessary loss of the phase.

In the case of the perfect two-dimensional lattice considered here it

is possible to show that this amplitude is equal to

A�q� �P
n

sz�hn�S�qÿ hn�; �3�

where sz�q� is the FT of sz�r�, the shape function of the island, S�q� is

the FT of S�r�, the coherently illuminated area, and hn = 2�Hn, Hn

being the two-dimensional reciprocal-lattice vectors. When the size of

the QD is much smaller then the distance between QDs which are

themselves much smaller than the coherently illuminated area, the

scattered intensity can be written as

Icoh�q� � jA�q�j2 �
P

n

jsz�hn�j2jS�qÿ hn�j2 � cross terms: �4�

This equation has a simple meaning. The leading term in this

expression describes the diffraction pattern from an array of QDs

which is a periodic array of the Bragg peaks with the symmetry of the

two-dimensional lattice of QDs. Each Bragg peak will be smeared by

the distribution jS�q�j2 with a half-width of about 2�=L, where L is

the size of the coherently illuminated area. In addition, the whole

pattern will be modulated by the FT of the shape function corre-

sponding to one island, jsz�hn�j2. There will be intensity modulation

between the Bragg peaks because of a small cross-term contribution

in (4). Our goal will be to invert this diffraction pattern in order to

reconstruct the electron density p�r�, (1). It is important here that the

diffraction pattern has to be recorded continuously including all

information between the Bragg peaks measured over a wide reci-

procal space region.

We generated an array of QDs of pyramid shape shown in Fig. 1(a).

The edge of each pyramid was 40 pixels in size (a magni®ed image of

one pyramid is shown in Fig. 1b). The two-dimensional array was

generated by two unit vectors, a1 = (64, 0) and a2 = (32, 55), giving rise

to the hexagonal structure shown in Fig. 1(a). It was then assumed

that this array of QDs was coherently illuminated by a beam with a

circular shape and radius L = 150 pixels, ramping smoothly to zero

over ten more pixels. The diffraction pattern corresponding to this

array of QDs was calculated as a discrete FT and is shown in Fig. 1(c).

The diffraction pattern reproduces all the main features that we

would expect. First of all the regular hexagonal array of Bragg spots is

clearly observed in the ®gure. The size of each Bragg spot is de®ned

by the size of the coherently illuminated area and has a circular shape.

Figure 1
(a) Computer simulated two-dimensional array of quantum dots of pyramid
shape. The total size of the array is 512� 512 pixels. (b) Magni®ed image of an
individual island. (c) Diffraction intensity corresponding to the two-
dimensional array of QDs in (a). The central 255 � 255 pixels of the
diffraction pattern are shown. (d) Diffraction intensity corresponding to an
individual island in (b).



The whole intensity is modulated by the shape of the FT of a single

QD (Fig. 1d). Typical features of this diffraction pattern consist of

strong ¯ares of intensity originating from scattering from each facet

(Vartanyants & Robinson, 2001). The diffraction pattern does not

contain any interference fringes because there are no parallel facets

on a triangular-shape pyramid [contrary to interference fringes from

real Au particles, where such fringes were observed (Robinson et al.,

2001; Williams et al., 2003)].

If the typical size of the island in the two-dimensional array is

about 50 nm, then the reciprocal-space region shown in Figs. 1(c) and

1(d) will correspond to �Q ' 2.22 nmÿ1 with the pixel size �q =

0.0087 nmÿ1. This is more then an order of magnitude bigger than the

resolution obtained in recent coherent X-ray diffraction experiments

(Robinson et al., 2001; Williams et al., 2003). The coherently illumi-

nated region assumed in our calculations will be L = 0.21 mm.

The calculated diffraction pattern was used to reconstruct the

initial two-dimensional lattice of QDs. In order to invert the intensity

distribution shown in Fig. 1(c) we used an iterative approach ®rst

proposed by Gerchberg & Saxton (1972) and then further developed

by Fienup (1982). It is important for this method of phase retrieval

that no starting model is used for ®tting the data. In the ®rst step the

missing phases are taken as a pseudo-random set and are combined

with the amplitudes in reciprocal space. Then a FT is applied back

and forth with speci®c constraints used in both real and reciprocal

space. To test the reproducibility, the calculations were repeated with

another set of starting random phases. The following constraints were

applied. In reciprocal space the calculated amplitude on each itera-

tion step was replaced by the Fourier amplitude I�q�1=2, (4). In real

space, assuming relaxed islands without strain, we can take as a

powerful constraint that the electron density p�r�, (1), has to be real

and positive. One further important parameter for reconstructing the

image from the diffracted intensity is to de®ne the support region. In

our case (Fig. 2a) we took it as a product of two functions. One of

them was the function S�r� de®ning the coherently illuminated region

and the other was a lattice function de®ning the position of each

individual island in the lattice. In the real experiment such a function

can be estimated from the symmetry of the Bragg spots in the

diffracted pattern. The size of each small quadrangle can be taken as

a little bit bigger then the actual size of the particle (which can also be

estimated from the shape of the diffraction pattern) allowing small

shifts of the position of individual islands from ideal lattice sites. Such

a constraint is in fact similar to the `atomicity' projection constraint

proposed recently (Elser, 2003) for crystallographic reconstruction

with atomic resolution. Using such a support provides us with a high

oversampling ratio (� = SFFT=Ssupport � 2) as is important for the

convergence of the algorithm (Millane, 1996; Miao et al., 1998). To

avoid stagnations we used an alternation of two algorithms: error

reduction (ER) and hybrid input±output (HIO) (Fienup, 1982;

Millane & Stroud, 1997), having about 1000 cycles for each set of

random phases. A detailed description of these algorithms and actual

parameters used in reconstruction was given in our previous publi-

cation (Vartanyants & Robinson, 2001).

Two typical reconstructed images corresponding to the lowest

value of the error metric are shown in Fig. 2. The image presented in

Fig. 2(b) gives an exact reconstruction of the QD array. It not only

gives the correct position of each island that is de®ned by our choice

of support region in the form of a two-dimensional lattice but also

gives the correct orientation of each island. The corresponding

diffraction pattern is presented in Fig. 2(c). It has all the features

present in the initial diffraction pattern (Fig. 1c). In Fig. 2(d) we also

present another result of reconstruction that often appears in the

®tting. The position of each island is again reproduced correctly;

however, the shape of the individual island is not reconstructed

properly. The origin of the problem lies in the inversion symmetry of

the diffraction pattern (Fig. 1c). The positive electron density of

Fig. 1(a) rotated through 180� will produce the same diffraction

pattern as in Fig. 1(c). So, the reconstructed image shown in Fig. 2(d)

is a mixture of these two twin images. This is a well known source of

frustration of these iterative methods (Fienup & Wackerman, 1986).

Our test calculations have shown that for 20 independent ®ts with

different starting phases the correct image is obtained typically for

the two lowest values of the error metrics. The next best result was

usually a superposition of two twin images.

We also checked how stable the reconstruction procedure was to

the exact matching of the original and constraint lattice functions

(Figs. 1a and 2a). Our calculations have shown that mismatch of the

lattice vectors by as much as a few pixels still gives a good recon-

struction image with a slight blurring that increases with the

mismatch. The most important restriction here is that the shifted

position of each individual quadrangle in Fig. 2(a) would still cover

the position of the QDs in Fig. 1(a).

3. Imaging with partially coherent beams

In the previous section we were considering the coherent illumination

of the two-dimensional lattice containing a ®nite number of QDs.

Now we will investigate how imaging of an individual island can

change if a partially coherent incoming beam is considered. The

general properties of partially coherent radiation are well established

in the optics literature (Goodman, 1985; Born & Wolf, 1999; Mandel

& Wolf, 1995). Vartanyants & Robinson (2001) showed that partially

coherent X-ray illumination of an object with electron density p�r�,
(1), gives a far-®eld intensity distribution on the detector,
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Figure 2
(a) Support used for reconstruction of the quantum dot array. (b) Image of the
quantum dot array reconstructed from the diffraction pattern shown in
Fig. 1(c). (c) Diffraction intensity corresponding to the reconstructed image
(b). (d) The real-space ®t as a result of superposition of two twin images.
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I�q� � RR dr dr0 p�r�p�r0� Jin�r; r0� exp ÿiq�rÿ r0�� �; �5�
where Jin�r; r0� is the mutual intensity function (MIF) of the beam

incoming on the sample. Expression (5) is valid if quasimonochro-

matic conditions are satis®ed, which means in this kind of experiment

that time delays for X-ray propagation in a sample �� = �lr ÿ lr0 �=c

are much less than coherence times, �� � �c = lc=c. The MIF Jin�r; r0�
describes the statistical properties of the incoming wave®eld as a

correlation function between two complex scalar values of the elec-

tric ®eld, Ein�r1; t� and Ein�r2; t�, at different points r1 and r2 in space

at the same time t. It is usual also to introduce the normalized MIF,

�in�r1; r2� � Jin�r1; r2�= Iin�r1�Iin�r2�
� �1=2

; �6�
which is known as the complex coherence factor (CCF), and Iin�r1�
and Iin�r2� are the intensity values of the incoming beam at points r1

and r2, respectively.

It was shown in our previous paper (Vartanyants & Robinson,

2003) that in general the shape of the CCF (6) can be very compli-

cated owing to scattering from any optics present on the beamline

where experiments are performed. Below we will consider a Gaussian

form for the CCF,

�in�rÿ r0� � exp ÿ�rÿ r0�2=2l 2
coh

� �
; �7�

where lcoh is the transverse coherence length. This expression for the

CCF will be an exact far-®eld solution according to the van Cittert±

Zernike theorem (Goodman, 1985; Mandel & Wolf, 1995) for an

incoherent source with Gaussian distribution of intensity. If the half-

width of this intensity distribution in both directions is given by �
then the transverse coherence length lcoh in (7) is equal to lcoh =

�L1=�2���, where � is the wavelength of the incoming beam and L1 is

the distance from the source to the object.

Expression (5) can be written equivalently in the following form

(Vartanyants & Robinson, 2001),

I�q� � R dr '11�r��in�r� exp ÿiq � r� �; �8�
where

'11�r� �
R

dr0 p�r0�p�r0 � r� �9�
is the autocorrelation function of the electron density p�r�: Using the

convolution theorem, the scattered intensity (8) can be expressed in

terms of Icoh�q�, (4),

I�q� � Icoh�q� 
 �in�q� � A�q��� ��2 
 �in�q�; �10�
where �in�q� is the FT of the CCF (6). Now, substituting the

expression for A�q�, (3), we obtain the following result for the

diffracted intensity from a two-dimensional array of QDs in the case

of partially coherent illumination,

I�q� �P
n

jsz�hn�j2 jS�qÿ hn�j2 
 �in�q�
� � � cross terms: �11�

Assuming a Gaussian shape for the CCF �in�r�; (7), we will also have

a Gaussian distribution for �in�q� in the reciprocal space with a

typical length qcoh ' 2�=lcoh. In the case of coherent illumination,

lcoh � L, where L is the typical size of the illuminated part of the

sample and qcoh � qL = 2�=L. In this limit, the FT of the CCF �in�q�
can be replaced by a delta function, �in�q� ! ��q�. Substituting this

into (11) will immediately give the coherent limit of (4), when the

intensity distribution around each two-dimensional Bragg point is

given by qL.

If instead the coherence length lcoh is decreased, this will lead to an

increase of qcoh in reciprocal space. When lcoh reaches the size L

owing to convolution in equation (11) we will have an approximately

twice as broad distribution in the reciprocal space around each Bragg

peak. If we further decrease the coherence length but still keep it

larger than the two-dimensional period of the QD lattice, then in (11)

we will still have a periodic distribution of intensity corresponding to

each Bragg position but with an increased width of each peak that will

still be determined by the coherence length. Continuing this process,

we will ®nally come to the situation where the coherence length will

be less than the separation between the islands in the QD structure,

but still bigger than the size of one individual island. In reciprocal

space we expect a continuous non-periodic distribution of intensity

with a shape given by the FT of an individual island, jsz�q�j2.

Our special interest in this work was to test the idea of SzoÈ ke

(2001) mentioned in the introduction to understand what kind of

image of a quantum structure can be obtained by the inversion of

diffraction patterns for the different values of the transverse coher-

ence length lcoh. For this purpose we generated a different array of

QDs, shown in Fig. 3(a). As in our previous example (Fig. 1), it

consists of a two-dimensional array of pyramids but in this case with a

square shape. The symmetry of the two-dimensional lattice was given

by the lattice unit vectors a1 = (60, 0) and a2 = (60, 34). The shape of

an individual island is shown in Fig. 3(b), the FT of the two-dimen-

sional array of QDs is shown in Fig. 3(c), and the FT of an individual

island is shown in Fig. 3(d). The diffraction pattern in Fig. 3(c)

consists of an array of small individual Bragg spots with intensity

smeared in the vertical and horizontal directions. The smearing

originates from truncation of the two-dimensional lattice on each side

of the sample. The width of each individual Bragg spot is much

narrower than in the previous example (Fig. 1c) because the coher-

ently illuminated area in the latter case is much larger. Like in the

previous example, the overall modulation of the diffraction pattern is

clearly observed by the shape of the FT of the individual island

(Fig. 3d).

On the left-hand panels of Fig. 4, three different CCFs are shown

for the incoming X-ray beam with reduced coherence length.

Figure 3
(a) Computer simulated two-dimensional array of quantum dots of pyramid
shape used for the tests of the partial coherence effects. The total size of the
array is 512 � 512 pixels. (b) Magni®ed image of an individual island. (c)
Diffraction intensity corresponding to two-dimensional array of quantum dots
in (a). The central 255 � 255 pixels of the diffraction pattern are shown. (d)
Diffraction intensity corresponding to an individual island in (b).



According to (7), we assumed a Gaussian shape for the incoming

CCF �in�r�: Three different cases are shown for lcoh = 128, 64 and 31

pixels (Figs. 4b, 4c and 4d, respectively). The right-hand panels show

the corresponding diffraction patterns (Figs. 4f, 4g and 4h), calculated

according to equations (5) and (8). These patterns produce the

general behavior that was predicted by the analysis of (11). The ®rst

trend is the increasing size of the Bragg spots, which have approxi-

mately a circular shape and a half-width of �2�=lcoh. In the extreme

case of a very small coherence length, lcoh = 31 pixels, the Bragg spots

are hardly visible and the diffraction pattern becomes similar to the

continuous diffraction pattern of an individual island (Fig. 3d). This

behavior is also clearly observed from the central cross section of the

diffraction patterns shown in Fig. 5.

We applied the iteration algorithm described in the previous

section with the hope of reconstructing the shape of individual

islands. The support region was taken in the form of a small square of

size 35 � 35 pixels. Applying this algorithm we obtained the recon-

structed images presented in Fig. 6. It is clearly seen from this ®gure

that when the coherence length is large the reconstructed image

resembles the correlation function '11�r�, (9) (Fig. 6a). When the

coherence length is reduced, the number of copies surrounding the

central particle is also reduced (Figs. 6b and 6c). Finally, in the limit of

very small coherence lengths (about the size of an individual island),

the reconstructed image contains only one bright reconstructed
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Figure 5
The equatorial cross section of the diffraction patterns from Figs. 3 and 4. (a)
Coherent illumination of the two-dimensional array of quantum dots and
individual island from Figs. 3(c) and 3(d). (b) Partially coherent illumination of
the two-dimensional array of quantum dots with coherent lengths lcoh = 128,
64, 31 and 15 pixels from Fig. 4.

Figure 4
Complex coherence factor �in�r� (left-hand panel) used for calculation of
diffraction intensity patterns (right-hand panel). For comparison, in the top
row we show the case of coherent illumination. The values of the coherence
lengths in the other rows are, from top to bottom, lcoh = 128, 64 and 31 pixels.
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particle in the middle of an array (Fig. 6d). These results are under-

stood to arise from using a single support instead of an array.

The average shape of the individual island can already be distin-

guished in the images with large coherence length (Figs. 6e, 6f and

6g); however, the quality deteriorates with reduced coherence.

Finally, when the coherence length reaches the size of the particle the

image quality improves and resembles the correct shape (Fig. 6h).

Comparison of this image with the image of the original particle

(Fig. 3b) shows that some small variations of density have been

introduced inside the particle.

Several comments are necessary here. We have demonstrated in

these calculations that, contrary to common belief, even if the

coherence length is reduced to the size of an individual island in the

array the diffraction pattern still contains enough information to be

oversampled and hence inverted. Of course, the reconstructed shape

of the island can contain artifacts due to reduced coherence as

discussed in a study of partial coherence effects on the imaging of

single crystals (Vartanyants & Robinson, 2001, 2003).

In x2, when the array of QDs is illuminated coherently the shape of

each island is reconstructed individually. At the same time, in our last

example with highly reduced coherence length, it is an average shape

over a number of illuminated islands that is reconstructed. In both

cases, however, the result is obtained by a model-independent phase-

retrieval method.

4. Conclusions

In this paper we have discussed the possibilities of imaging of

quantum structures by inversion of X-ray diffraction patterns

obtained with coherent and partially coherent illumination of the

sample. It was shown that the diffraction pattern from a two-

dimensional lattice of QDs can be inverted to give the correct shape

and orientation of individual islands. For successful reconstruction,

the experimental diffraction pattern has to be oversampled in a

suf®cient reciprocal space range �q > qa = 2�=a, where a is the

average size of an island in quantum structure. The reconstructed

image can occasionally be a superposition of twin images because

these are both possible solutions of the inversion problem.

In this paper we limited ourselves to the case of a periodic array of

identical quantum dots. Periodicity was used as an important support,

shown in Fig. 2(a). If the initial array of QDs is non-periodic,

reconstruction of the position and shape of the individual QD can

become a more challenging problem. We believe that if the sample is

illuminated by a ®nite-size coherent beam, however, the problem can

be solved by oversampling and an additional `atomicity' projection

constraint proposed recently by Elser (2003). More computer

calculations will be necessary to test these ideas.

We discussed the situation when the individual particles are totally

relaxed. It is known, however, that often QDs have a complicated

internal strain pro®le induced by the substrate crystal (Kegel et al.,

2001). This strain will reveal itself in the diffraction experiment by

breaking the symmetry of the diffraction pattern (Robinson &

Vartanyants, 2001). We believe that by applying a similar iteration

algorithm, as discussed in this paper, the strain pro®le can also be

reconstructed successfully once the shape of the QDs is known

(Vartanyants et al., 2000).

We also tested SzoÈ ke's idea of working in the extreme incoherent

limit (SzoÈ ke, 2001). The correct shape of the particle can be obtained

when the transverse coherence length of the incoming beam becomes

of the order of the individual particle size, lcoh ' a.

We hope that these ideas will be tested on real arrays of QDs in the

near future. All parameters needed to achieve a successful recon-

struction can be estimated directly from the data, so no further

assumptions are required.

Figure 6
Reconstructed real-space images obtained from the diffraction patterns of
Fig. 4 corresponding to different values of the coherence length lcoh of the
incoming beam. The left-hand panel shows an image of the total array of 512�
512 pixels. The right-hand panel shows a magni®ed image (40 � 40 pixels) of
the central island.
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