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High-throughput protein crystallography requires the automation of

multiple steps used in the protein structure determination. One

crucial step is to ®nd and monitor the crystal quality on the basis of its

diffraction pattern. It is often time-consuming to scan protein crystals

when selecting a good candidate for exposure. The use of neural

networks for this purpose is explored. A dynamic neural network

algorithm to achieve a fast convergence and high-speed image

recognition has been developed. On the test set a 96% success rate in

identifying properly the quality of the crystal has been achieved.
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1. Introduction

High-throughput protein crystallography requires the automation of

multiple steps from cloning and expression to three-dimensional

model construction via crystallization. Several of these steps have

been, or are being, automated (Terwilliger, 2002). The so-called

crystallization robots allow for screening of large numbers of condi-

tions to produce X-ray diffraction quality crystals. The selection of

good diffracting crystals, however, is still a tedious process that can

require many hours. Even with the advent of automated sample

changers the selection of a good diffracting protein crystal relies on

the experimenter, who also checks for deterioration owing to radia-

tion damage. Therefore, for high-throughput structure determination

an automated diffraction pattern diagnostic tool is highly desirable.

There have been different approaches to solving this problem. A

traditional way is to analyze each diffraction pattern using diffrac-

tion-analysis packages and relying on the value of, for example,

mosaicity and resolution limit to determine the crystal quality. The

drawback of this solution is that it is a computer-intensive procedure

and it is somewhat dependent on the experimenter. In this paper we

explore the possibility of applying a neural network paradigm to

recognize the quality of the crystal. Neural networks were introduced

in the 1940s and have been applied in general to problems where

pattern recognition is required. Neural networks offer exceptionally

robust performance in classi®cation problems, even in the presence of

noisy input. They provide the accuracy of handwriting- and speech-

recognition applications. They are extremely powerful and, unlike

traditional techniques for pattern recognition, the individual differ-

ences in diffraction patterns such as intensity and contrast are

insigni®cant to the classi®cation accuracy. This ¯exibility makes

neural networks the ideal choice for identifying good from poor

protein crystals based on their diffraction patterns.

In this paper we explore the use of a cascade-correlation neural

network to monitor protein diffraction patterns. This technique is

extremely fast and can be used in conjunction with automated crystal-

mounting systems to allow for high-throughput protein crystal-

lography studies.

2. Neural networks and cascade correlation

As the name implies, neural networks take a cue from the human

brain by emulating its structure. Work on neural networks (Haykin,

1999; Bishop, 1995) began in the 1940s by McCulloch and Pitts and

was followed by the advent of Frank Rosenblatt's Perceptron (Rojas,

1996; Lawrence et al., 1996; Haykin, 1994).

The neuron is the basic structural unit of a neural network. In the

brain, a neuron receives electrical impulses from numerous sources. If

there are enough agonist signals, the neuron triggers all of its outputs.

A neural network neuron functions similarly. A neuron receives any

number of inputs and weights the inputs based on their importance.

Just as in a real neuron, the weighted inputs are summed and the

output, de®ned by a threshold function (e.g. a step function), is sent to

every neuron downstream. In a neural network, weights and

threshold function parameters are selected to provide a desired

output, e.g. for classi®cation, and they are chosen during a process

known as training. A barrage of positive inputs will provide a positive

output and vice versa. The original Perceptron (Rojas, 1996) received

two inputs and gave a single output. Although this system worked

well for simple problems, Minsky demonstrated in 1969 that non-

linear classi®cations, such as exclusive-or (XOR) logic, were impos-

sible (Haykin, 1994).

It was not until the 1980s that training algorithms for multi-layered

networks were introduced to solve this problem, restoring the

usefulness of neural networks. A multi-layered network consists of

numerous neurons, which are arranged into levels as shown in Fig. 1.

The ®rst layer receives external inputs and is aptly named the input

layer. The top layer provides the solution and is called the output

layer. Sandwiched between the input and output layers are any

number of hidden layers. Multi-layered neural network architecture

is a generalization of Rosenblatt's Perceptron and allows the selection

of events in a multi-dimensional space de®ned by the input para-

meters. It is believed that a three-layered network, as indicated in

Fig. 1, can accurately classify any non-linear function. Multi-layered

networks commonly use more sophisticated threshold functions such

as the sigmoid function,

f �x� � 1
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Figure 1
Classic neural network architecture. Nodes and layers are ®xed at the creation
time and the training process adjusts weights for best performance.
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which ranges from ÿ0.5 to 0.5. It is the smoothness of the sigmoid

function that prevents any individual output from becoming too large

and overpowering the network (Rojas, 1996; Lawrence et al., 1996;

Lippmann, 1987).

The power of a neural network is contained in its ability to

remember and provide classi®cations based on past data. Past input

samples are remembered through the network's weights. The ef®-

ciency of a neural network is determined by how it learns. The most

widely used teaching technique for neural networks is via supervised

learning. In the supervised-learning algorithm a training data set

whose classi®cations are known is shown to the network one at a

time. Each time, the weights are adjusted to provide the desired

output with the given inputs. Back-propagation, radial-basis and

delta-rule training algorithms are among the most popular and

versatile (Rojas, 1996).

Back propagation was one of the ®rst training algorithms devel-

oped. It is widely used for its simplicity; however, it is far from being

the most ef®cient. To train a back-propagation network, every weight

in the network must be initialized by a small random number. As the

network is trained, the randomness of the initial weights guarantees

that each neuron will have a different weight. The entire data set used

for training is presented to the network one at the time. For every

training sample, the desired output is compared with the actual

output, and the weights of each neuron are altered based on the

amount of error it contributed. The error of a neural network is

de®ned as the discrepancy between its current output and the

expected response. Functionally the error depends on the weights.

After many iterations, or epochs, the weights reach values that offer

minimal output error. This process can take many CPU cycles.

Teaching the XOR classi®cation to a simple network consisting of two

input, two hidden and one output neuron using back-propagation can

take over 500000 epochs to reach an acceptable error level. Fahlman

& Lebiere (1991) identi®ed two likely culprits responsible for this

time-consuming training curve: the step-size problem and the

moving-target problem.

The back-propagation algorithm minimizes the error of the

network after each interaction, adjusting the weights to ®nd a

minimum for the error. This is done simply by correcting the weights

in a ®rst approximation by evaluating the correction term as the

product of the derivative of the error at the ith interaction and a ®xed

step size. If the steps are too small, many iterations will be required to

converge. If the steps are too large, then it is easy to overshoot the

position of the minimum. The ideal step size for a given problem

requires detailed high-order-derivative analysis, a task that is not

performed by the algorithm (Fahlman & Lebiere, 1991; Werbos,

1990).

The moving-target problem appears because the weights of each

neuron are adjusted independently. An advantage of a large network

is that each neuron becomes a specialized feature detector; its weights

become tuned to identify a speci®c characteristic of its inputs. As the

weights are altered, the role of each neuron becomes increasingly

de®ned. However, back-propagation does not coordinate this

development; several neurons may identify a particular feature (e.g.

feature A) and ignore another (feature B). When the error signal of

feature A is eliminated, feature B remains. The neurons may then

abandon feature A and begin focusing on feature B. Throughout

numerous epochs, the neurons `dance' between feature A and feature

B. It may take several thousand epochs before both feature A and

feature B are identi®ed at the same time (Fahlman & Lebiere, 1991;

Lawrence et al., 1996).

Developed in 1990 by Fahlman, the cascade-correlation algorithm

provides a solution (Fahlman & Lebiere, 1991) to reduce the number

of epochs. Cascade-correlation neural networks, shown in Fig. 2, are

similar to traditional networks in that the neuron is the most basic

unit. The architecture, however, is rather unique. It is assumed that

the neural network is not a static structure but dynamically changes

as required. An untrained cascade-correlation network is a blank

slate; it has no hidden units. A cascade-correlation network's output

weights are trained until either the solution is found or progress

stagnates. If a single-layered network will suf®ce, training is complete.

If further training yields no appreciable reduction of error, a

hidden neuron is recruited. A pool of hidden neurons (usually eight)

is created and trained until their error reduction halts. The hidden

neuron with the greatest correspondence to the overall error (the one

that will affect it the most) is then installed in the network and the

others are discarded. The new hidden neuron perturbs the network

and signi®cant error reduction is accomplished after each hidden

neuron is added. This ingenious design eliminates the moving-target

problem by training feature detectors one by one and only accepting

the best. The weights of hidden neurons are static; once they are

initially trained they are not touched again. The features they identify

are permanently cast into the memory of the network.

Preserving the placement of hidden neurons allows cascade

correlation to accumulate experience after its initial training session.

Few neural network architectures allow this. If a back-propagation

network is retrained it forgets its initial training. This is not the case

for cascade correlation.

The step-size problem contributes greatly to error stagnation as a

function of the iteration. When a network takes steps that are too

small, the error value reaches an asymptote. Cascade correlation

avoids this by using the quick-prop algorithm. Quick-prop makes a

bold assumption that the network error is a paraboloid function and

evaluates the second derivative (change of slope). With each epoch it

takes a different-sized step corresponding to the change of the error

slope. If the error is reducing rapidly, quick-prop descends quickly.

Once the slope ¯attens out, quick-prop slows down so that it does not

pass the minimum. Quick-prop is like a person searching for a house:

if the person knows he is far away, he drives fast; once he approaches

the house, he slows down and looks more carefully (Fahlman &

Lebiere, 1991). The cascade-correlation algorithm trains substantially

Figure 2
Cascade-correlation neural network architecture.



faster than virtually any other existing algorithm (Fahlman &

Lebiere, 1991; Thrum et al., 1991; Humpert, 1990).

3. Experimental results and discussion

Our software (CrySis) was written to analyze the diffraction patterns

from protein crystals. It is written in C++ and uses the open source

graphics library SDL and open source examples of the cascade-

correlation algorithm.². A total of 711 diffraction patterns from the

X6A beamline at the National Synchrotron Light Source (NSLS)

were used in this study. Of these, 500 images were selected to train

CrySis and the remaining 151 images were used to test the accuracy of

the network. Each pattern is a 2048 � 2048 pixel image of an X-ray

diffraction pattern in IMG ®le format. The images were from 16

crystals of ®ve different proteins and included different derivatives,

and data at room temperature and 100 K. The image sets used for

training and for tests are somewhat orthogonal in the mathematical

sense since they are from different proteins or different crystals.

The network could theoretically be trained to accept �4 � 106

pixel images as input, but that would be too much data for a

conventional workstation to handle owing

to the number of weights and threshold

parameters. The complexity of the network

required to train such data would be

hopelessly inef®cient. To gain accurate

results in an acceptable time window, the

images are pre-processed. This feature-

extraction process takes advantage of the

characteristics of the diffraction patterns.

Good and poor quality protein diffraction

patterns differ qualitatively in many ways.

Diffraction images of a good crystal have

numerous extremely intense peaks as

compared with poor crystals, as shown in

Figs. 3 and 4, respectively. Peaks are

arranged in a different, but meaningful,

order for every diffraction pattern. The

location of the peaks does not differentiate

a viable crystal from a poor one, but the

distribution of peaks does. The intensity of

the peaks in a viable crystal is at its

maximum in the center of the image, and

slowly falls off towards the outside of the

detector acceptance; the intensity gradient

for a poor scatterer is very steep (Dauter,

1997; Otwinowski & Minor, 1997; P¯ugrath,

1997).

Based on the observations above, we

searched for the minimum set of parameters

that could meaningfully classify the images.

A choice of coordinates for the analysis was

arbitrarily made. The center of the image

was chosen as coordinate (0, 0) for the

extraction of the parameters used in the

analysis. The ®rst implementation relied

solely on a frequency distribution of the

peaks and the peak value of the ten most

intense peaks. This criterion, as expected,

did not perform well because it is far from being a unique char-

acterization of the image. It took almost 10 min to train the network,

and after almost 4000 epochs the success rate was a dismal 60%.

Using only the frequency and peak intensities led a fraction of viable

crystals to score less than many poor ones. Some poor crystals have a

number of intense peaks, and some good ones have relatively few.

Judgement based on such a narrow scope was leading CrySis to

misidentify the training set. It had to take into account more factors

than just frequency and peak intensity. Nevertheless, the neural

network was giving sensible results in the sense that we could

understand the results. It is often dif®cult to predict or understand the

behavior of a neural network since it is not a linear system.

In an attempt to improve the performance, a simple peak-®nding

algorithm was implemented. Images were pre-processed by ®rst

evaluating the average pixel intensity and its standard deviation. Any

group of pixels whose intensity is two standard deviations above the

mean and whose size is greater than 5 pixels (single-pixel peaks can

be the result of extraneous factors) can be considered a diffraction

peak. Next, each image is divided arbitrarily into 14 concentric rings

with a radial increment of 256 pixels. We do not calibrate the distance

in any units but rather work with raw detector pixels. The number of

peaks found in each region is counted to generate three distributions:

frequency, percentage and intensity distribution. Frequency and

percentage distribution are mathematically de®ned as dN/dr and
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Figure 3
Diffraction pattern resulting from the scattering of X-rays from a good quality protein crystal, and peaks
found by software.

Figure 4
Diffraction pattern resulting from the scattering of X-rays from a poor quality protein crystal, and peaks
found by software.

² Lisp and C implementation of Cascade Correlation, Carnegie Mellon
University, http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/
areas/neural/systems/cascor/.
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(1/Ntot)dN/dr, where N is the number of counts in each ring, r is the

average radius of the ring and Ntot is the total number of peaks in the

image. The intensity distribution is the average peak intensity for

each ring. The second implementation of CrySis bases its decisions on

these three distributions. After the image is analyzed, the data (42

¯oating numbers shown in Fig. 5) are fed into the cascade-correlation

neural network. In principle, a more sophisticated principal compo-

nent analysis (Haykin, 1999) could be applied to the images for

feature extraction. For the purposes of crystal quality analysis,

however, the parameters chosen above, based on expert image

analysis, were favored.

Images used for training are from previously exposed crystals and

were analyzed with the HKL-2000 suite (Otwinowski & Minor, 1997);

good sets were used in structural determination. These images were

scored from ÿ0.5 (unusable) to +0.5 (viable crystal) in discrete steps

of 0.1. The scores are based on two considerations. First we examine

the image mosaicity. Low-mosaicity images received high scores and

high-mosaicity images received low scores. Roughly speaking, the

scoring scale is proportional to the mosaicity. However, it is known

that in some cases images with high mosaicity led to determination of

protein structures. In these cases the score was set to zero. The

R-factor was not used to score the images because it depends on the

entire data set and in some cases crystals become unusable after

being exposed for some time owing to radiation damage. The output

of the neural network varies continuously from ÿ0.5 to +0.5 and

digitization was not applied to the ®nal result.

To train CrySis, each image of the 500-image training set was

analyzed and their distributions saved to ®le. Both the distributions

and rates were given to the network. The analysis ®le was then

loaded, and the cascade-correlation training algorithm established

the network weights. The training process took on average a mere 170

epochs and 1.3 s to complete. The output of the neural network was

then veri®ed against the true value and considered a correct answer if

the result was within � = � 21=2" of the true value, where " = 0.1 is the

step size of the scoring. Every image (100%) found in the training set

was successfully classi®ed. CrySis was tested with the 151 diffraction

patterns not including the training set. In this set, 145 of the 151

(96%) patterns were successfully classi®ed. Clearly, the expanded

analysis parameters vastly improved the performance. Most of the

missed identi®cations were from images that were considered good.

This is not entirely surprising because there was a bias in our training

sample towards bad images (�60%).

It is entirely possible that in the case of a cascade-correlation

neural network not only weights but the hidden layer topology will

depend on the sequence that images are presented. We note that the

initial weights of any neural network are always initialized using

random-number generators (Haykin, 1999; Bishop, 1995). Therefore,

the resulting weights will always be different for each training session

even if the same sequence of images is presented. The topology of the

hidden layer can be different because it is driven by the derivative of

the network error, which may depend on the sequence of how the

data are presented. Hidden nodes in cascade-correlation neural

networks are added to move the network away from a slow conver-

ging error. However, what matters in the end is the performance of

the neural network. To be sure of this statement, we have performed

training sessions where data are presented to the network in many

different sequences and have not noticed any changes in the

performance or training time, although small variations (1 to 2) in the

number of hidden nodes were observed.

4. Conclusions and outlook

Cascade-correlation neural networks present several advantages over

the more traditional network architectures. They train extremely fast

and allow for growth. In the present study we only used 500 sample

images for training. As it remembers previous training sessions, one

can add new images for further training. One of the dangers of the

neural network is that it can develop tunnel vision and a tendency to

recognize only patterns that are very similar to ones used in the

training. If a cascade-correlation network develops this feature, it will

need to be retrained from scratch with a thinned number of samples.

The use of neural networks is seen as a tool to aid non-expert

crystallographers during data collection. Since the output of the

neural network from CrySis has a continuous numerical value, it

requires an expert crystallographer to de®ne a threshold for an

acceptable image quality. It is unavoidable that certain images will fall

in gray areas. In this case, direct inspection of the image will be

required. However, as mentioned above, cascade-correlation

networks allow for growth and therefore corrections to its behavior

can be made. Hence, as time evolves one can expect the results given

by the network to improve.

In spite of the very encouraging results of this study, more tests are

required to de®nitively prove that a cascade-correlation neural

network will be a useful tool for high-throughput protein crystal-

lography. The current feature-extraction component of CrySis uses a

set of arbitrarily chosen parameters. Whether or not this set of

parameters biases the behavior of the neural network needs to be

understood. The parameters are, however, based on what an expert

would look for in order to evaluate the image quality. Perhaps a more

elegant solution to the image pre-processing will make use of a

Fourier frequency analysis or Wavelet analysis to extract the relevant

input parameters.

Figure 5
Weighted scores (input parameters) as a function of distance from the center
of the image. (a) For a crystal considered `good' and (b) for a poor quality
crystal.
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