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The rather complicated time response of a crystal re¯ection to short

incident pulses has been investigated by several authors. In this paper

schemes are given to simplify this time response. In the Bragg case a

small enough crystal thickness shortens the response considerably. In

the Laue case the use of two successive re¯ections is very promising.

Keywords: free-electron lasers; X-ray optics; ultrashort X-ray
pulses; dynamical diffraction.

1. Introduction

The free-electron laser (FEL) in the self-ampli®ed spontaneous-

emission (SASE) mode is a very promising tool for providing X-ray

pulses with hitherto unprecedented high spectral brightness. Two

projects are underway which promise to deliver these X-rays, namely

the TESLA project at DESY (DESY, 1997, 2001, 2002) and the LCLS

project at SLAC (SLAC, 1998). Impressive results have been

obtained at the TESLA Test Facility (TTF) producing photon pulses

of 100 nm wavelength with a pulse duration of 50±100 fs and a peak

power of almost 1 GW (Ayvazyan et al., 2002). A SASE FEL

produces within 100±200 fs pulses with about 100 different modes

resulting in a substructure of single spikes of duration 0.1 fs. Recently,

however, a scheme has been proposed to produce single X-ray spikes

of duration 100 attoseconds (Saldin et al., 2002). In the past several

authors have investigated the time response of crystals upon which

such short pulses are incident.

The results differ for the two re¯ection geometries. In the Bragg

case the re¯ected beam leaves the crystal on the same side as the

incident beam, whereas in the Laue case it re¯ects off the back

surface.

In the Bragg case, as calculated by Shastri et al. (2001a,b), a direct

surface-re¯ected pulse occurs which has a characteristic width

controlled by the strength of the re¯ection in use. Even for an inci-

dent pulse of duration a fraction of a femtosecond the response is

several femtoseconds long. If the crystal is thin enough it is followed

by a second peak, which is due to the `echo' from the back surface of

the crystal. This pulse is much shorter and several oscillations are

visible afterwards. Its distance to the ®rst peak is controlled by the

crystal thickness. If the crystal is thick enough this peak vanishes due

to absorption. Fig. 1 shows an example for the diamond 111 re¯ec-

tion. Diamond has been chosen because of its low absorption in view

of the high intensity present in a FEL beam. The lowest possible

re¯ection, which is 111 in diamond, has been considered to obtain an

energy band as large as possible.

In the Laue case, between two prominent peaks the intensity

oscillates as known from PendelloÈ sung fringes (see Shastri et al.,

2001a; Graeff, 2002; Malgrange & Graeff, 2003).

The width of the interval between these two peaks depends on the

crystal thickness. An example can be found in Fig. 5. Here an intrinsic

width connected to the re¯ected energy range is not visible because

the oscillations owing to the internal wave®elds with slightly different

wavenumbers dominate.

In both cases (Bragg and Laue case) the time response is obviously

rather complicated. There is an intrinsic width of the re¯ected pulse

which cannot be shortened even by using shorter incident pulses. The

aim of this paper is to demonstrate that in both geometrical cases

measures can be taken to shorten and simplify the time response

considerably.

After initial submission the author was informed by the referee

that the results in the Laue case were also independently obtained by

Siddons (2001, 2004).

In view of the poorer quality of diamond (chosen to withstand the

high heat load of a FEL beam) compared with silicon, the Bragg case

is more likely to be used as a monochromator because a much smaller

volume of the crystal is used in this case.

2. Description of ultrashort pulses

Usually ultrashort pulses are described by a � function in time. This

has the advantage that it leads to analytically solvable solutions (see

e.g. Malgrange & Graeff, 2003). Therefore the frequency range of the

incident pulse is unlimited.

In numerical simulations one has to introduce limits, usually

dictated by the criterion that the result does not change within a

certain tolerance. For short times after the onset of the re¯ected

signal this requires a rather large range of the incidence parameter y.

Therefore a stronger drop of the integrand would decrease the

integration range. The assumption of a Gaussian input pulse produces

such an effect and is in addition a more realistic model.

In the following simulations we assume as input an intensity pulse

with a full width of 0.1 fs, the typical spike width within a SASE pulse.

For a diamond 111 re¯ection this corresponds to �y = 36.2. The

re¯ected wave is then obtained by using equations (10) and (10a),

IR �
��� R1
ÿ1

G� y�RB;L� y;T� exp�2�i�yt� dy
���2; �1�

with

G� y� � exp ÿy2=2�2
y

ÿ �
; �2�

and the conversion factor � (8.79� 1013 Hz) between the frequency �
and the incidence parameter y can be found from equation (8).
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Figure 1
Time response of a diamond crystal of thickness 25 mm to a very short
pulse with a central wavelength of 1 AÊ , in the symmetric Bragg case. The
`echo' at 40 fs is due to the back surface. The abscissa shows the time in
femtoseconds, and the ordinate shows the re¯ected intensity in arbitrary units.
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3. Bragg re¯ection by thin crystals

With techniques developed in modern electronic device manu-

facturing, crystals can be made very thin. Also, thin crystalline ®lms

on substrates are feasible (see Appendix B). Therefore it makes sense

to look at the response of an ultrathin crystal to a short X-ray pulse.

Fig. 2 shows the result. For a variety of crystal thicknesses T the

re¯ected intensities are plotted versus time. Whereas the surface-

re¯ected intensity stays constant, the echo from the back surface

moves towards the direct signal, as expected, but also changes its

peak re¯ectivity drastically.

Above a certain thickness, the direct surface-re¯ected pulse is a

function of the strength of the re¯ection in use. To give a rough

estimate of its width we consider the total re¯ection range as being

responsible for the time duration of the signal. The frequency range

of a collimated beam can be estimated as

��TR �
cj�hj

� sin2 �B

�3�

using equation (8) and keeping in mind that the total re¯ection range

is given by | y | < 1. The Fourier transform of such a frequency range is

proportional to the function

sin���TR t

t
: �4�

Now the time duration of the intensity response at half-maximum can

be obtained by the condition

sin���TR �t TR=2� �
�t TR=2

� �2

� ���TR� �2=2: �5�

Solving the above equation yields, with the help of equation (3),

�t TR � 2:78
� sin2 �B

�cj�hj
; �6�

giving �tTR = 5 fs for the diamond 111 re¯ection, whereas the Fourier

transform including the side tails gives 2.7 fs.

For very thin crystals of the order of a fraction of the extinction

length (�B = 7 mm, T = �B/�, see Appendix A) the echo is no longer

visible as a separate pulse but the surface-re¯ected intensity drops to

zero. Obviously the echo is completely out of phase and cancels the

surface re¯ection. In order to prove this, the surface-re¯ected wave

and echo are calculated separately and compared with each other.

The formulae are given in Appendix B. For two different crystal

thicknesses the situation is illustrated in Fig. 3. The modulus of the

amplitudes is shown versus time. The solid (positive) curve is the

surface-re¯ected pulse and the dashed (for clarity negative) curve

represents the part re¯ected from the back. Note that the onset of the

surface-re¯ected part occurs immediately, as expected, whereas the

back-re¯ected part starts with a delay, which depends on the thick-

ness of the crystal, or, in other words, on the additional path the back-

re¯ected part has to travel. Therefore, causality (the response comes

after the excitation) is ful®lled using the side tails as well, both for the

direct re¯ection and the `echo'. This is in contrast with the assumption

that the total re¯ection range is responsible for the time response
solely, where the Fourier transform

extends to negative times too. In

other words part of the re¯ection

occurs prior to the incident pulse.

For small crystal thickness T

[case (b) of Fig. 3] the surface-

re¯ected pulse and the echo can

overlap in time signi®cantly. For

larger T [case (a) of Fig. 3] both

waves no longer overlap in time but

the echo is still modulated with

varying thickness as can be seen in

Fig. 2.

The re¯ected energy range

increases when the crystal thickness

becomes smaller than the extinction

length. This is the region of the

kinematical case. By making the

crystal thinner and thinner, the

accepted energy range even exceeds

that of the incoming pulse and the

re¯ected intensity drops to zero.

Then it no longer makes any sense

to call the crystal a monochromator.

Figure 3
Modulus of amplitude. Solid (positive) curve: time response of surface-re¯ected pulse. Negative (dashed) curve:
pulse re¯ected from the back surface. (a) T = 11.35 mm, which corresponds to the last curve of Fig. 2. (b) T =
1.6 mm, corresponding to the third curve of Fig. 2 (see text).

Figure 2
Intensity response of Bragg crystals (diamond 111) of different thickness
versus time. The units of the abscissa are femtoseconds, whereas the ordinate is
in arbitrary units. The crystal thickness for the ®rst curve is T = 0.1 mm and the
thickness increases by 0.75 mm from curve to curve. Note that the curves are
shifted by 0.1 arbitrary units in the vertical direction with respect to their
neighbours for clarity (see text).



4. Laue re¯ection of two successive crystals

The focusing of wave®elds at the exit surface when using two

successive Laue re¯ections with crystals of equal thickness is well

known (Fig. 4). Hence it is no surprise that from the rather compli-

cated time structure after one Laue re¯ection (Graeff, 2002;

Malgrange & Graeff, 2003) only the central peak is left after two

re¯ections. As we assume an exact parallel setting of the two

subsequent crystals (y1 = y2) we obtain the re¯ected plane waves

after two re¯ections simply by taking the product of the amplitude

ratios after one re¯ection (equation 10a) and integrating over y. Fig. 5

shows the intensity after one and two Laue re¯ections versus time.

The intensity after one re¯ection shows a strong oscillatory behaviour

and is dominated by two peaks at the margins. The distance of these

two peaks is proportional to the thickness of the crystal. However,

after a second re¯ection a single peak is left and the intensity around

that peak is negligible and even drops to zero outside a region twice

as wide as that of a single crystal. So the total duration of the signal is

nominally doubled but only the central peak is signi®cant. The total

re¯ectivity can be maximized by varying the thickness of the crystal.

A maximum in the vicinity of 100 mm occurs at 94.5 mm. A typical

value of the width of the central peak for diamond 111, at 1 AÊ , and

with a crystal thickness of 94.5 mm is 1.7 fs, which is considerably

smaller than the direct pulse in the Bragg case (2.7 fs).

In the case where large high-quality crystals are not available, the

simple parallel setting of connecting the two Laue crystals via a

common base is not possible. It is therefore interesting to determine

the accuracy required to set the crystals parallel.

Owing to the oscillatory structure of the single-re¯ection curve in

the Laue case, the rocking curve of two subsequent Laue-case crystals

of equal thickness T shows a pronounced and narrow peak in the

centre for certain values of T (Bonse et al., 1977). A similar behaviour

is seen when looking at the time response of two Laue crystals. The

central peak requires a parallel setting of the two crystals within a

very narrow angular range as seen from Fig. 6. Whereas the rocking

curve has a full width at half-maximum of more than �y = 3, the

central peak in the time response is visible in a range of �y = 0.24

only.

We may conclude that although the time response of a crystal

re¯ection to an incident X-ray pulse seems to be rather complicated,

there are ways of in¯uencing the time structure. In the Bragg case the

`echo' is eliminated and the pulse width shortened considerably by

making the crystal thinner. In the Laue case the two spikes, the

distance of which even depends on the crystal thickness, can be

turned into a single spike by two successive re¯ections.

APPENDIX A
Some formulae from dynamical diffraction

For simplicity we restrict ourselves to centrosymmetric crystals (�h =

��h), linearly polarized light (C = 1) and the symmetric case. Formulae

for the dynamical theory of X-ray diffraction have been given by

numerous authors. We start from the formulae given by Bonse &

Graeff (1977). The normalized incidence parameter y is given by

y � ÿ�� sin 2�B � ��0�
j�hj

; �7�

with �� measuring the deviation from the exact Bragg angle �B, and

�m (m = 0, h) denoting the Fourier coef®cients of the dielectric
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Figure 4
Focusing of wave®elds when using two successive Laue crystals of equal
thickness.

Figure 5
Time response of a single (thin line) and a double (thick line) Laue crystal
(diamond 111 re¯ection, 1 AÊ wavelength, 94.5 mm thickness). Whereas with a
single Laue crystal the time response lasts for about 38 fs and is rather
complicated, the non-dispersive re¯ection by a second Laue crystal of equal
thickness is mainly a single spike, which sits on a very low-level intensity
spread over an interval of 76 fs. For better visibility the central spike has been
shifted by 20 fs; otherwise it would overlap with the second spike of the single
re¯ection.

Figure 6
Time response of two non-dispersive Laue crystals with changing relative
angle (rocking curve). Each line differs by �y = 0.025 on the rocking curve. As
the lines have been shifted in both x and y position, the origin is arbitrary.
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susceptibility for different directions (complex values with absorp-

tion). The brackets in the numerator indicate that in the symmetric

Laue case a refractive correction does not occur. Instead of the

angular dependence of the incidence parameter, for our purpose the

frequency dependence for a collimated beam is more adequate,

y � 2� sin2 �B

cj�hj
�� � ��

�
; �8�

where c/� denotes the central frequency. An important quantity for

the characterization of a re¯ection is the extinction distance for the

Bragg case,

�B �
sin �B

kj�hj
; �9�

and the PendelloÈ sung length for the Laue case,

�L �
cos �B

kj�hj
; �9a�

where k is as usual the wavenumber. Typical values for a diamond 111

re¯ection and 1 AÊ wavelength are �B = 7.01 mm and �L = 27.95 mm.

With the abbreviations A = �T=�L;B (where T is the crystal thick-

ness) and � = �h=j�hj, we obtain for the amplitude ratio between

re¯ected and incident wave for the Bragg case

E e
h=E i

0 � RB� y;T�

� i�
S� y;T�

C� y;T� � iyS� y;T� exp ÿ2�iz
k�0

sin �B

� y

�B

� �� �
; �10�

and for the Laue case

E e
h=E i

0 � RL� y;T�

� i�S� y;T� exp �iT
k�0

cos �B

� y

�L

� �
� 2�iz

y

�L

� �
; �10a�

where

C� y;T� � cos A y2 � �2
ÿ �1=2

h i
;

S� y;T� �
sin A y2 � �2� �1=2
h i

y2 � �2� �1=2
;

�11�

with the + sign for the Laue case and the ÿ sign for the Bragg case.

z measures the normal distance between the source (the origin) and

the entrance face of the crystal.

Because the dispersion relation for the frequency � and the

wavenumber k is linear for X-rays outside regions of anomalous

dispersion, the Fourier transforms in the spatial domain (spherical

wave) and the time domain (short pulse) are similar² in shape, as

shown in Fig. 7.

APPENDIX B
Re¯ection from a crystalline layer on a substrate

It is shown that the re¯ection from a crystalline layer on a substrate in

contrast to usual optics leads to the same expression for the re¯ected

amplitude as known for the case when on both sides of the crystal is a

vacuum.

Before we show that a refractive index different from 1 on the back

surface (a substrate) makes no difference at least for the amplitude,

let us calculate the surface-re¯ected wave separately to see its

interference with the back-re¯ected wave more clearly. This is with a

transversely unbound plane wave somewhat arti®cial, but mathe-

matically allowed because of the superposition principle. The incident

plane wave is

E i
0 exp 2�i K0rÿ �t� �� �

: �12�

From now on we omit the time dependence for convenience of

writing. The boundary condition at the entrance surface for the

directly re¯ected beam, denoted E e;s
h , requires that in the Bragg case

only one wave®eld is excited (usually numbered 2). The vector re ends

on the entrance surface. As usual, vacuum wavevectors are denoted

Kn whereas wavevectors inside the crystal are denoted k� j�n , j = 1, 2,

n = 0, h.

E i
0 exp 2�iK0re� � � E

�2�
0 exp 2�ik

�2�
0 re

h i
;

E e;s
h exp 2�iKhre� � � E

�2�
h exp 2�ik

�2�
h re

h i
:

�13�

A considerable amount of writing is avoided by the introduction of

the following abbreviations,

k�� j�0 � K0 ÿ k
� j�
0

h i
n;

k�� j�h � Kh ÿ k
� j�
h

h i
n;

P�x� � exp�ÿ2�ikx�;
�� j� � E

� j�
h =E

� j�
0 ;

nre � z;

�14�

and by going to matrix notation,

E i
0

0

� �
� P���2�0 z� 0

��2�P���2�h z� ÿ1

� �
E
�2�
0

E e;s
h

� �
: �15�

The solution for the second unknown is

E e;s
h � ��2�E i

0P ��2�h ÿ ��2�0

h i
z

n o
: �16�

From dynamical theory we know

Figure 7
Spatial Fourier transform of an incident spherical wave as given by Saka et al.
(1973). Crystal thickness and re¯ection parameters are the same as in Fig. 1.
The surface-re¯ected wave is given by s�q� = J0�2Aq� � J2�2Aq� and,
neglecting absorption, the ®rst back-re¯ected contribution by b�q� =
J0�2A�q2 ÿ 1�1=2� + 2��qÿ 1�=�q� 1�� J2�2A�q2 ÿ 1�1=2� + f��qÿ 1�=�q� 1��2
� J4�2A�q2 ÿ 1�1=2�g. q is a normalized spatial coordinate, Jn are Bessel
functions. In reality, with absorption the echo, of course, would be smaller than
the direct pulse. Note the similarity to Fig. 1, taking absorption into account,
which mainly affects the echo.

² `Similar' in the rigorous mathematical sense: equal disregarding a gauge
factor.



2k��1;2�0 � ÿ k�0

sin �B

ÿ y� y2 ÿ �2� �1=2
�B

;

2k��1;2�h � k�0

sin �B

ÿÿy� y2 ÿ �2� �1=2

�B

;

��1;2� � 1

�
y� y2 ÿ �2

ÿ �1=2
h i

:

�17�

Hence we obtain for the surface-re¯ected beam,

E e;s
h �

1

�
yÿ y2 ÿ �2

ÿ �1=2
h i

exp ÿ2�iz
k�0

sin �B

� y

�B

� �� �
: �18�

Including the effect of the back surface requires rewriting the

boundary conditions. On the back surface we allow for a substrate

and assume a different refractive index than on the entrance side,

expressed by wavevectors Kb
n. A vector on the back surface is denoted

by rb, where the relation rb = rs + Tn holds (where n is the surface

normal).

E i
0 exp 2�iK0re

� � � E
�1�
0 exp 2�ik

�1�
0 re

h i
� E

�2�
0 exp 2�ik

�2�
0 re

h i
;

E e
h exp 2�iKhre

� � � E
�1�
h exp 2�ik

�1�
h re

h i
� E

�2�
h exp 2�ik

�2�
h re

h i
;

E e
0 exp 2�iKb

0re

� � � E
�1�
0 exp 2�ik

�1�
0 rb

h i
� E

�2�
0 exp 2�ik

�2�
0 rb

h i
;

0 � E
�1�
h exp 2�ik

�1�
0 rb

h i
� E

�2�
h exp 2�ik

�2�
0 rb

h i
:

�19�

Analogue to the abbreviations above we de®ne

k�b;� j�
0 � Kb

0 ÿ k
� j�
0

h i
n;

nrb � z� T;
�20�

and the corresponding matrix

E i
0

0

0

0

0BB@
1CCA �

P���1�0 z� P���2�0 z� 0 0

��1�P���1�h z� ��2�P���2�h z� 0 ÿ1

P��b;�1�
0 �z� T�� P��b;�2�

0 �z� T�� ÿ1 0

��1�P���1�h �z� T�� ��2�P���2�h �z� T�� 0 0

0BBB@
1CCCA

E
�1�
0

E
�2�
0

E e
0

E e
h

0BB@
1CCA:
�21�

Note that owing to the absence of a h wave behind the crystal the

refraction of the substrate enters the boundary condition in the third

equation only. It follows directly from the boundary conditions that

the substrate has no in¯uence on the re¯ected amplitude. We could

stop here but we give the explicit solution of the boundary conditions

in matrix form.

Solving this system of linear equations for E e
0 and E e

h requires the

knowledge of three determinants,

det � ��1�P���1�h T� ÿ ��2�P���2�h T�; �22�
where we used, for the symmetric Bragg case, P����1�0 � ��2�h �z� � 1,

det3 � E i
0P

�0 ÿ �b
0

2i sin �B

�z� T�
� �

��1� ÿ ��2�� �
; �23�

det4 � ÿE i
0�
�1���2� P ��1�h z� ��2�h �z� T�

h i
ÿ P ��2�h z� ��1�h �z� T�

h in o
:

�24�

According to Cramer's rule we obtain for the outgoing beams,

E e
0 �

det3

det
� E i

0P
�0 ÿ �b

0

2i sin �B

�z� T�
� �

��1� ÿ ��2�
��1�P���1�h T � ÿ ��2�P���2�h T � ;

�25�

E e
h �

det4

det
� E i

0P ��1�h ÿ ��1�0

h i
z

n o ��1���2� P ��1�h T
h i

ÿ P ��2�h T
h in o

��1�P ��1�h T
h i

ÿ ��2�P ��2�h T
h i :

�26�
After some calculation we obtain, using (17),

E e
0

E i
0

� exp i�k
��b

0 ÿ �0�z� �0T

sin�B

� i
�T

�B

y

� �
1

C� y;T� � iyS� y;T� :
�27�

Comparing this result with the case without a substrate, the amplitude

is the same (energy conservation) whereas a phase factor

expfi�k���b
0 ÿ �0�=�sin �B���z� T�g corrects for the different k

vectors,

E e
h

E i
0

� i�
S� y;T�

C� y;T� � iyS� y;T� exp ÿ2�iz
k�0

sin�B

� y

�B

� �� �
; �28�

which is equation (10). Subtracting (18) from (28) gives the part of

the re¯ected amplitude solely passed over the back-surface re¯ection.
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