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Modern analysis of X-ray absorption ®ne structure (XAFS) is usually based on a

traditional least-squares ®tting procedure. Here an alternative Bayes±Turchin

method is discussed which has a number of advantages. In particular the method

takes advantage of a priori estimates of the model parameters and their

uncertainties and avoids the restriction on the size of the model parameter space

or the necessity for Fourier ®ltering. Thus the method permits the analysis of the

full X-ray absorption spectra (XAS), including both XAFS and X-ray

absorption near-edge spectra (XANES). The approach leads to a set of linear

equations for the model parameters, which are regularized using the `Turchin

condition'. Also, the method naturally partitions parameter space into relevant

and irrelevant subspaces which are spanned by the experimental data or the

a priori information, respectively. Finally we discuss how the method can be

applied to the analysis of XANES spectra based on ®ts of experimental data to

full multiple-scattering calculations. An illustrative application yields reasonable

results even for very short data ranges.
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1. Introduction

The goal of X-ray absorption spectra (XAS) analysis is to

extract various experimental parameters, e.g. interatomic

distances R, coordination numbers N, vibrational amplitudes

�2 etc. This requires the solution to an inverse problem, i.e. the

determination of the physical parameters, which we denote by

a vector ~x, that best ®t a model XAS spectrum �0�~x; !� to a set

of K measurements �k, k = 1 . . . K, i.e. by inverting the relation

�k = �0�~x; !k�. Most modern approaches for the analysis of

X-ray absorption ®ne structure (XAFS) are based on standard

least-squares ®tting algorithms (Lytle et al., 1988; Newville et

al., 1995), either in k- or R-space, where k = �Eÿ E0�1=2 is the

photoelectron wavenumber measured from threshold and R is

its Fourier complement. In this approach one minimizes the

normalized mean square error,

�2 �
XK

k� 1

�k ÿ �0�~x; !k�
��k

� �2

; �1�

with respect to each model parameter xi, where ��k denotes

the experimental error at each data point k. A number of

software packages for this purpose are available, e.g. FEFFIT

(Newville, 2001), EXAFSPAK (George & Pickering, 2000),

EXCURVE (Binsted, Campbell et al., 1991; Binstead, Strange

et al., 1991) and GNXAS (Filipponi & Di Cicco, 1995). The

least-squares approach has also been applied recently to the

analysis of X-ray absorption near-edge structure (XANES)

using the MSXAN package (Benfatto et al., 2001).

There are a number of problems with the least-squares

approach, however. First it is rarely obvious a priori which of

the model parameters xi or how many of them can be included

in the ®ts. Indeed, there are usually many more model para-

meters than can be represented by the data, which leads to an

ill-conditioned inverse problem, as discussed below. The

problem is typically avoided in practice by Fourier ®ltering

and a judicious selection of model parameters. For example,

the Nyquist criterion Np = �2=���k�R gives an estimate of

the number of independent variables that span a given range

in k- and R-space. This procedure, however, is subject to user

experience and subjectivity and hence dif®cult to automate.

Also the effects of systematic errors both in theory and

experiment are not easily taken into account. Moreover, many

parameters are strongly correlated, leading to large error bars

in the results without the imposition of appropriate

constraints.

To address these problems we discuss an alternative method

which permits the analysis of the full XAS spectrum, including

the XANES and/or the XAFS. The method is based on the

Bayes±Turchin approach introduced into XAFS analysis by

Krappe & Rossner (2000, 2002). The approach has several

advantages over traditional data-analysis procedures. In

particular, the method avoids the restriction on the size of the

model parameter space by making use of Bayes' theorem.

Given suitable restraints based on a priori parameters and

their errors, the Bayes±Turchin method leads to a stable set of

linear equations for the model parameters. Moreover, the



approach naturally partitions parameter space into relevant

and irrelevant subspaces, which are determined primarily by

the experimental data or the a priori information, respectively.

Thus only relevant parameters in a given model parameter

space are affected by a ®t, while irrelevant parameters are

essentially pinned at their a priori values.

A principle aim of the paper is to show that this approach is

also advantageous for the analysis of XANES spectra. This

requires a treatment of the smooth atomic background

absorption as well as the ®ne structure and fast calculations of

full-multiple-scattering theory as in the FEFF8 code (Anku-

dinov et al., 1998) which are now possible using parallel

algorithms (Ankudinov et al., 2002). Such an approach is

important, e.g. in the analysis of biostructures such as

metalloproteins. For such systems the XANES often contains

the best signal-to-noise ratio and is easiest to collect experi-

mentally. However, the region is typically eliminated by the

Fourier ®ltering in conventional analyzes.

The remainder of this paper is as follows. In x2 we discuss

the problems with the least-squares method, and in x3 we

outline the Bayes±Turchin approach. The method is illustrated

with an application to the XANES of GeCl4 in x4. Finally, x5
contains some conclusions.

2. Least-squares analysis

We begin by showing formally that the usual least-squares

approach leads to an ill-conditioned inverse problem (Krappe

& Rossner, 2002). Assuming that the theoretical model for the

XAS �0�~x; !� is a smooth function of the parameters ~x =

�x1; x2; . . . ; xN� near their true values ~x0, one can approximate

the model near any data point !k as

�0
k�~x� � �0

k�~x0� �
XN

i� 1

@�0
k

@xi

xi; �2�

where xi denotes a normalized residual, e.g. xR �
�Rÿ R0�=�R and �R is a nominal scaling factor chosen so

that xR is of order unity in ®ts. Inserting this approximation

into the de®nition of �2, we obtain

�2 �
��� ~�ÿXN

i

~Gixi

���2; �3�

where the vector ~� denotes the signal components,

�k �
�k ÿ �0

k

��k

� ��k ÿ ��0
k: �4�

Here �� = �=�� represents the dimensionless XAS, and

Gki � ~Gi are the components of the normalized model

gradients ~Gi, i.e.

Gki �
1

��k

@�0
k

@xi

: �5�

With these de®nitions, minimizing �2 with respect to the

parameters xi leads to a set of N linear equations,

XN

j� 1

Qijxj � bi; i � 1 . . . N; �6�

where Qij are components of the N � N information matrix Q,

Qij � ~Gi � ~Gj � GT
ikGkj; �7�

and bi are the normalized signal components,

bi � ~� � ~Gi: �8�
Since the dot product is invariant under coordinate rotations,

the information matrix does not depend on the space (e.g. k or

R) in which it is evaluated.

To show that these equations are ill-conditioned, consider

the eigenvalues q� of the symmetric matrix Q, listed in order

of decreasing magnitude. Since Q is directly related to the

model gradients, it is clear that parameters on which the model

depends strongly correspond to large eigenvalues and,

conversely, those which have little effect on the model

correspond to small eigenvalues. The conditioning number ZQ

is de®ned as the ratio q1=qN, which can grow large as the

number of parameters is increased. For the applications to

XAFS discussed by Krappe & Rossner (2002), ZQ can be up to

1016. Thus in the eigen space spanned by the eigenvectors of

the matrix Q, the solutions to the linear equations are formally

given by

x� � b�=q�: �9�
However, the signal components b� are generally limited by

the experimental noise and only include one factor of the

gradients, while the eigenvalues q� involve a product of

gradients and can be much smaller. Thus, as a result of noise,

the weak eigen-components are intrinsically unstable. Thus

the standard least-squares approach becomes unstable as the

number of parameters is increased, necessitating some form of

regularization. Various methods of regularization exist, e.g.

Wiener ®ltering (Bijaoui, 2002); however, many of these are

more or less ad hoc. In the next section we show how the

Bayesian approach naturally regularizes the inversion.

3. Bayes±Turchin approach

The Bayes±Turchin approach of Krappe & Rossner (2002)

addresses the ill-posed nature of the inverse problem by

making use of known or a priori information on the model

parameters ~x. Here we will only summarize the key results, as

the original papers provide much more detail. For simplicity

we will assume that the parameters xi have Gaussian distri-

butions, which may be correlated, i.e. they are characterized by

the a priori probability distribution,

Pprior�~x� � N exp ÿ�1=2��2
prior

� �
; �10�

where N is a normalization factor and �2
prior is a quadratic

form,

�2
prior �

X
ij

Aijxixj; �11�
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with a kernel A determined by the inverse of the cross-

correlation matrix

Aÿ1
ij � hxixji: �12�

Thus, for example, the a priori variance �2
prior�R� of the coor-

dinate R yields Aÿ1
R;R = �2

prior�R�=�2
R.

Secondly, as discussed by Krappe & Rossner (2000), the

method explicitly takes into account theoretical errors by

considering the dependence of the model �0�~x; ~y�~x�; !] on

both the model parameters ~x and on the theoretical para-

meters, e.g. the phase shifts, scattering amplitudes, mean free

paths etc.; these are denoted by a dimensionless vector ~y =

y1; y2; . . . ; the components of which may also depend on the

model parameters ~x.

The incorporation of the a priori information is carried out

using Bayes theorem for the conditional probability distribu-

tion, given the a priori information. This yields the a posteriori

probability distribution for the model parameters x given ��,

Ppost�xj ��� �
Pprior�x�Pcond� ��jx�R

Pprior�x�Pcond� ��jx� dNx
: �13�

Here the conditional probability is

Pcond � exp ÿ�1=2��2
cond

� �
; �14�

where in tensor notation (i.e. writing Gij � G),

�2
cond � xTQxÿ 2bTx� ��ÿ ��0

ÿ �T
C ��ÿ ��0
ÿ �

: �15�
Here the K � K matrix C appears,

C ' �1� Bÿ1 � TDÿ1TT �ÿ1; �16�
which characterizes the errors in the theory. In particular, B

characterizes the truncation error arising, for example, from a

®nite cluster size of the model, while D involves errors in the

theoretical parameters (e.g. the phase shifts) and T their

gradients. If the off-diagonal terms are neglected, the effect of

C is to renormalize the mean-square error �k at each point k

by the sum of the squares of the experimental, model and

truncation errors.

As a result, one obtains an a posteriori distribution given by

Ppost�~x� � exp ÿ�1=2��2
post

� �
; �17�

where �2
post = �2

prior � �2
cond is given by the quadratic form,

�2
post � xAx� �DÿGx�T C�DÿGx�: �18�

The a posteriori expectation values of the model parameters,

h~xi � R ~xPpost�~x� dNx; �19�
are obtained by minimizing �2

post with respect to xi. This yields

the regularized linear equationsXN

j� 1

�Qij � Aij

� �
xj � �bi; i � 1 . . . N; �20�

where the renormalized information matrix is

Q � GTCG; �21�
and the renormalized signal coef®cients are given by

�bi � DC ~Gi: �22�
Clearly the a priori information in the matrix A regularizes the

inversion, since in the eigen-space of Q�A the solutions are

then always stable. That is, the formal solutions for the model

parameters are

x� �
b�

q� � a�
; �23�

which is well behaved even when q� ! 0.

Moreover, it is seen that the a priori information naturally

partitions the data into relevant and irrelevant subspaces, R

and P, respectively, where

x� � b�=q�; � 2 R; �24�
x� � b�=a�; � 2 P: �25�

Thus only the parameters in the relevant subspace are

signi®cantly ®t by the data, while the parameters in the irre-

levant subspace do not deviate signi®cantly from their a priori

values. An important ®nding is that the dimension NR of the

relevant subspace R is signi®cantly smaller than that given by

the Nyquist criterion, i.e. NR <Np = �2=���k�R, since NR

takes into account the effects of experimental noise and

systematic error.

These conditions can be satis®ed by setting Ann0 = ��n;n0 for

an appropriate cut-off � (Krappe & Rossner, 2000). In parti-

cular, two methods for determining � were introduced by

Turchin et al. (1971). The ®rst ®xes �� such that the effective

number of degrees of freedom is

Keff � K ÿ Tr Q�Q�A�ÿ1: �26�
This criterion ensures that the information in the data is not

distorted by a priori information. A second criterion, for

situations when one would like to decrease the effect of the

a priori information, gives a value �0�<��.

4. XAS analysis

4.1. XAFS analysis

In the original papers of Krappe & Rossner (2000, 2002),

the Bayes method was applied to the analysis of XAFS data of

Cu metal based on a theoretical model using the multiple-

scattering path expansion and the FEFF8 code. In an initial

test, a large model parameter space of dimension N = 158 was

used, including the variables, S2
0, E0, R1 . . . R78, �2

1 . . . �2
78. Of

these, only a small number turn out to be important. The

dimension of the relevant subspace for this model was found

to be NR = 21 from the Turchin cut-off �� and NR = 40 from the

cut-off �0�, both much smaller than the Nyquist estimate, Np =

55. Subsequent investigations for a variety of systems showed

that the approach is very robust. In these investigations, the

vibrational information was ®t to a small set of spring

constants �s using an ef®cient theoretical model (Poiarkova &

Rehr, 1999), which is much more ef®cient than ®tting pairwise

Debye±Waller factors. The third cumulants were also included

as model parameters.
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4.2. XANES analysis

Here we have attempted to extend the Bayes±Turchin

method for XANES analysis. The near edge requires a

different ®tting procedure for several reasons. First, the

measured absorption contains a background contribution

�back (from the other edges) as well as the atomic background

�0 from a given edge, in addition to the ®ne structure �, all of

which must be taken into account,

� � �back � �0�1� ��: �27�
Second, the path expansion for the ®ne structure does not

always converge well in the XANES region, thus often

necessitating full multiple-scattering calculations, which do

not have a simple analytical form. Thus numerical gradients of

the model parameters are needed,

Gki �
��~x� �xix̂i� ÿ ��~xÿ �xix̂i�

2�xi

; �28�

where x̂i is the ith unit vector. To ®t the atomic background,

we have adopted a new Bayesian background-subtraction

procedure introduced by Krappe & Rossner (2004). In this

method, a correction ��0�!� is added to an a priori back-

ground absorption �0�!� from FEFF, i.e. with a small set of

spline parameters ��1; ��2; . . . ; ��T, where in our work T is

typically 3±5. Related Bayesian background-subtraction

algorithms have also been developed by Klementev (2001).

4.3. Results

The above formalism was tested using high-quality gas-

phase GeCl4 data (Bouldin, 1990) using the FEFF8 code. The

model parameters included E0, R and between three and ®ve

spline parameters ��t . Thus this example with its rather

restricted parameter set should be viewed as a preliminary

step towards more extensive future analysis. The pre-edge

background �back was isolated using the ATHENA package

(Ravel & Newville, 2005) and subtracted from the data prior

to ®tting. The a priori error values of these few parameters

were found to have little effect on the ®t, that is, all of these

parameters were found to be relevant. However, such a priori

estimates are generally expected to become important when

additional parameters, such as distortions, spring constants

and the mean free path, are added.

Our results are illustrated in Fig. 1, which shows the result of

a ®t in k-space of the XANES of GeCl4 from threshold to k =

3.89 AÊ ÿ1, i.e. 11013±11170 eV. Clearly the ®t is qualitatively

satisfactory, and leads to a reduced �2 of �2
red ' 19, where

�2
red = �2=�K ÿ 7�, where K ÿ 7 is the number of data points

minus the number of model parameters, or the number of

degrees of freedom. The experimental error ��k at all the

data points was taken to be 0.01, based on the observed

¯uctuations in the tail of the experimental spectrum. Theo-

retical errors were not included, but are typically larger than

��k, as discussed by Krappe & Rossner (2002). As seen in

Fig. 1, the theoretical error is quite large near 11120 eV,

probably due to the neglect of non-spherical corrections and

many-electron excitations in the theory. This systematic error

is likely to be the primary source of error in the ®t. The a priori

and ®tted values of the parameters R and the threshold level

E0 are shown in Table 1.

An important question to be considered by these preli-

minary results is how the ®tted parameters vary as the data

range is reduced. Remarkably this is found to be reasonably

stable, even for very small data ranges. Results for the near-

neighbor distance R with respect to the data range �0; kmax� for

various values of the maximum wavevector kmax are given in

Table 2. Note that the results for the ®tted distances R tend

toward the experimental value 2.113 AÊ as the k-range is

increased while the errors tend to decrease. The errors in the

®t parameters are still not well determined, owing to the lack

of a treatment of the theoretical errors, which appear to

dominate the ®t. The r.m.s. errors in R, obtained from
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Figure 1
Experimental XAS (solid) and ®t (dashes) for GeCl4 for kmax =
3.89 AÊ ÿ1. The experimental near-neighbor distance is 2.113 AÊ . Also
shown is the a priori atomic background �0 from FEFF8 (short dashes)
and the corrected �0 from a three-point spline ®t (dots). The model
parameters included in the ®t were E0, R, an absolute energy shift, an
experimental broadening term and three spline parameters.

Table 2
Variation of the ®tted near-neighbor distance R and error estimate �R
versus data range kmax.

The initial guess in all cases was set to R = 2.0 � 0.2 AÊ .

Emax (eV) kmax (AÊ ÿ1) R (AÊ ) �R

11 120 1.14 2.11 � 0.07
11 130 1.98 1.92 � 0.03
11 140 2.57 2.22 � 0.06
11 150 3.06 2.12 � 0.04
11 160 3.46 2.16 � 0.02
11 170 3.81 2.10 � 0.01
11 180 4.14 2.14 � 0.02
11 190 4.46 2.13 � 0.01
11 200 4.70 2.103 � 0.008

Table 1
Key parameters and their a priori and ®nal ®tted values and uncertainties.

A priori value Fit value

R 2.00 � 0.02 2.10 � 0.01
E0 ÿ4 � 1 ÿ4.7 � 0.2



�Qÿ1
R;R�1=2, are typically less than about 0.03 AÊ . However, since

our ®ts did not include the theoretical error, and �2
red ' 20,

these errors are underestimates.

5. Conclusions

We have found that the Bayes±Turchin approach can be

applied to the analysis of XANES data, even over short

experimental data ranges. The spline correction to the atomic

background �0 is found to be stable and thus provides a useful

procedure to improve background subtraction in XAS.

Such developments are important, e.g. in the analysis of

biostructures such as metalloproteins. For such systems the

Bayes±Turchin approach has many advantages compared with

conventional least-squares ®tting methods. In particular, the

method avoids the restriction on the size of the model para-

meter space. Moreover, the method can take advantage of

a priori estimates of model parameters, as well as their

uncertainties and correlations, thus improving the signi®cance

of ®ts. Thus the method can perhaps be automated and has the

potential to provide a smart black-box XAS analysis tool.

Finally, the method is quite general and can be applied as an

add-on to existing XAS analysis techniques by modifying the

�2 function which is minimized, thus providing a procedure for

adding fuzzy constraints on model parameters.
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