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A new method to determine local structure in terms of a few structural

parameters is proposed and realised in FitIt software. It is based on fitting of

X-ray absorption near-edge structure (XANES) spectra using the combination

of full multiple-scattering calculations, and multi-dimensional interpolation of

spectra as a function of structural parameters. The procedure is divided into two

steps: the construction of an interpolation polynomial, and the fitting of

experimental spectra using the interpolation polynomial. During the construc-

tion of the polynomial, multiple-scattering calculations for certain sets of

structural parameters are needed. The strategy for the selection of the most

important expansion terms and corresponding sets of structural parameters is

proposed. Fitting of the spectrum using multi-dimensional interpolation is very

fast (a few seconds) because multiple-scattering calculations are unnecessary

during this step. Also, this approach allows the development of a visual interface

with the possibility of seeing the spectrum that corresponds to any set of

structural parameters immediately. Thus, using a very limited number of

multiple-scattering calculations, which are most time-consuming, it is possible to

fit XANES. The interpolation polynomial construction procedure for three

model molecules, FeS4, FeO6 and Ni(CN)4, is demonstrated. An additional test

has been performed for the latter most-complex example to check the

assumption that a minimum of discrepancy between theoretical and experi-

mental spectra corresponds only to the correct structure of the complex. A

comparison with another XANES fitting software, MXAN, is given.
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1. Introduction

Nowadays it is well known that an X-ray absorption spectrum

is very sensitive to the local structure around the absorbing

atom. In particular, extended X-ray absorption fine-structure

(EXAFS) analysis is successfully used to determine bond

lengths, coordination numbers and type of nearest neighbours

of the absorbing atom. The extraction of structural informa-

tion from X-ray absorption near-edge spectra is more complex

because of the effects of multiple scattering of the photo-

electron in this region of the spectra, and therefore there is no

direct way to extract structural information from an experi-

mental spectrum (like Fourier transformation in EXAFS). On

the other hand, multiple-scattering (MS) effects in the

XANES lead to a sensitivity of the spectrum to the bond

angles. The mean free path of the photoelectron is also longer

in the XANES region (Muller et al., 1982). Thus the spectrum

is rather sensitive to the positions of the atoms, which are at a

distance of up to 4–5 Å from the absorbing atom.

A few approaches are currently being developed to extract

quantitative structural information from XANES. Two of

them come from EXAFS analysis. It was proposed (Bugaev et

al., 2001) to use Fourier filtration of XANES to determine the

interatomic distances and coordination numbers. This tech-

nique allows obtaining the same structural information as in

classical EXAFS, but can be applied in those cases when the

spectra are measured over a very limited k-range. However,

the possibility of extracting single-scattering contributions

from XANES has been demonstrated only for crystalline

compounds and minerals consisting of low-Z elements

(Bugaev et al., 1998, 2000). For other materials the perspec-

tives of this methodology are still unknown.

The second technique, which uses the XANES region of

spectra in a way close to EXAFS analysis, is fitting of XAS in

the k-range starting from k = 0 and taking into account the

limited number of MS paths. Most of the modern EXAFS

fitting codes [FEFFIT (Newville et al., 1995; Newville, 2001),

EXCURVE (Gurman et al., 1986), GNXAS (Filipponi et al.,

1995), XFIT (Ellis & Freeman, 1995)] allow the addition of

MS paths during EXAFS analysis. Nevertheless, to the best of

our knowledge a few attempts to start fitting from k = 0 were

made only using the XFit code (Rich et al., 1999; Weder et al.,

2001; Zhou et al., 2003). Such a technique allows obtaining not

only bond lengths and coordination numbers but also bond



angles. The use of a limited number of MS paths in many cases

does not allow the correct interpretation of the XANES

regions and therefore can lead to the errors in the structure

determination. The influence of the XANES region was

significantly minimized using k3 weighting of the spectrum

during fitting and therefore not all of the structural informa-

tion contained in XANES was extracted.

Full MS algorithms allow one to obtain accurately the

XANES spectrum corresponding to a given geometry, but

they are rather time-consuming. Thus the fitting of the spectra

using these algorithms is a much more difficult procedure. A

combination of full MS calculations and different methods of

structure optimization (for example, molecular dynamics) can

be used to probe the local structure (Smolentsev et al., 2004),

but from a spectroscopic point of view this technique is

qualitative because it allows the most realistic geometrical

model to be selected. However, the values of the structural

parameters come from molecular dynamics and therefore the

spectrum can be insensitive to certain parameters, or rather

small variations of any parameter, which can lead to a better

agreement between theoretical and experimental spectra.

Recently, a new method of extracting quantitative geome-

trical information by varying the structure and fitting XANES

has been proposed (Benfatto & Della Longa, 2001). It has

been applied to the local structure determination of the active

metal site of the protein myoglobin (Della Longa et al., 2001;

Benfatto et al., 2003), the zinc site of the protein superoxide

dismutase (Benfatto et al., 2001), and Co, Ni, Zn and Cu

aqueous solutions (Angelo et al., 2002; Benfatto et al., 2002).

This technique is based on a direct comparison of the

experimental XAFS spectrum with the results of MS calcu-

lations for different sets of structural parameters. Such an

approach has been realised in the MXAN computational

procedure. It combines a MS scheme for calculations of

XANES [namely the CONTINUUM code (Natoli & Benfatto,

1986)] and the multi-dimensional minima search functions

MINUIT of the CERN library (James, 1994). For each set of

structural parameters during the search of the minima the

procedure of MS calculations is executed. Calculations of each

spectrum are rather long (a few hours for disordered systems),

and therefore the MXAN fitting procedure for a large number

of parameters and for disordered systems is possible only

using long workstation runs or clusters of high-performance

computers.

In this paper we describe a new approach, which is realised

in our FitIt computer program. It is based on the idea that it is

possible to calculate the XANES spectrum for a set of

geometrical parameters rather close to the initial one by

expanding a spectrum as a function of several structural

parameters. Within this assumption a fitting of structural

parameters to minimize the discrepancy between theoretical

and experimental spectra is a very fast procedure. This algo-

rithm allows the significant reduction of the number of MS

calculations and thus decreases the overall computational

time. We will show for several models that by using a special

polynomial interpolation scheme it is possible to obtain a very

close fit of the interpolated XANES spectrum to the spectrum

calculated by the ab initio approach, for any arbitrary set of

structural parameters from physically limited intervals. Thus, if

the ab initio theoretical XANES spectrum for the actual set of

structural parameters reproduces the experimental spectrum,

it will be possible using our approach to fit the real set of

structural parameters by performing ab initio calculations only

for a limited number of ‘node’ sets of structural parameters.

2. Method of calculation

2.1. Method of structure determination

It is well known that XANES is very sensitive to different

conformational changes: structural distortions, exchange of

atomic species, addition or loss of ligands, oxidation or

reduction of absorbing atoms etc. To determine the structure

of a compound under study in any unknown form (for

example, after such modifications) it is necessary to construct

an initial structural model which is rather close to the expected

structure and to select the parameters of geometry which will

be varied. All conformational changes have to be taken into

account during construction of the initial model. Then bond

lengths and angles can be refined by varying them within

rather small physical limits (for example, for distances a

typical value for such variation is about �0.1 Å). For the

refinement of these structural parameters the approach

described below can be used.

To fit an XANES spectrum in the space of structural

parameters we first construct an energy-dependent inter-

polation polynomial which reproduces a theoretical spectrum

for all values of parameters within certain limits. Ab initio

calculations of X-ray absorption spectra for different sets of

parameters are performed at this stage. We suppose that an

algorithm of spectra calculations is suitable for quantitative

analysis of XANES and that the values of non-structural

parameters have optimal values. To set these parameters

correctly we propose to test the method using model

compounds rather close to the studied ones, but with known

structure. After minimization of the discrepancy between the

theoretical and experiment spectra by varying the non-struc-

tural parameters, they should be fixed to exclude their influ-

ence on the results of local structure refinement.

All the ab initio calculations described below were

performed using the FEFF8.2 package (Ankudinov et al.,

1998) with the following non-structural parameters: Hedin–

Lunqvist exchange potential, with additional imaginary part

1.0 eV (typical experimental broadening), self-consistent

calculations of potential with 15% overlapping of muffin-tin

spheres and full MS calculations of spectra for the whole

molecule. Self-consistent potential and phase shifts were

calculated for each molecule and were then used as fixed

during all subsequent calculations.

After polynomial construction (details of this procedure

will be described below) we searched the minima of discre-

pancy between the experimental and interpolated spectra by

varying the structural parameters. Here we assume that the

values of the parameters, which correspond to the minimal
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discrepancy between the experimental and theoretical spectra

(which we will call the best-fit parameters), are the closest to

the values in the real system. In some cases it is possible that a

few distinct best-fit structures exist. In such cases it is neces-

sary to use additional spectral information [for example, to

extend the analyzed energy ranges, to improve statistics on the

experimental spectrum or to use additional XANES spectra

(other absorption edges) of the same compounds] or to use

arguments that come from other techniques. Multi-dimen-

sional interpolation is very fast and therefore optimization of

the strategy of multi-dimensional minima search is not very

important. We use a simple gradient search of a minima

algorithm. To find all local multi-dimensional minima we

repeat this procedure starting from different random points.

To compare interpolated and experimental spectra we use two

standard criteria:

(i) the mean square deviation,

1

E2 � E1

RE2

E1

�iðEÞ � �expðEÞ
� �2

dE;

or (ii) the Chebishev criterion,

max
E1 <E<E2

�iðEÞ � �expðEÞ
�� ��;

where E1 and E2 are the energy limits of the spectra

comparison, �i(E) is the interpolated spectrum and �exp(E) is

the experimental spectrum. The same normalization of all

spectra was used, ½1=ðE2 � E1Þ�
R E2

E1
�2ðEÞ dE = 1.

Software realizing this fitting algorithm has been developed.

It is called FitIt and has a visual user-friendly interface. The

configuration of the program to be used in combination with

different MS codes [currently FEFF (Ankudinov et al., 1998),

G4XANES (Della Longa et al., 1995) and FDMNES (Joly,

2001)] is possible.

2.2. Multi-dimensional interpolation approximation

As mentioned above, the most time-consuming part of the

XANES fitting procedure is MS calculations of spectra.

Therefore the minimization of the number of required spectra

calculations is essentially important. For this purpose we

propose to use multi-dimensional interpolation of the spec-

trum as a function of the structural parameters. This means

that to calculate the absorption coefficient �(E) for the set of

parameters p0 = ð p1 þ �p1; p2 þ �p2; . . . ; pn þ �pnÞ, where p0 =

ð p1; p2; . . . ; pnÞ is a starting set of structural parameters and

�pn is a deviation of parameter pn from the starting value, we

use the following expansion,

�i

�
E; p1 þ �p1; p2 þ �p2; . . . ; pn þ �pn

�

¼ � E; p1; p2; . . . ; pnð Þ þ
P

n

AnðEÞ�pn

þ
P

m;n

BmnðEÞ�pm�pn þ . . . : ð1Þ

The main problem in this case is to calculate energy-depen-

dent coefficients and to find a minimal number of terms which

are necessary to interpolate the spectrum correctly. The

coefficients can be deduced from the results of MS calcula-

tions for certain sets of structural parameters solving a linear

system of equations,

�i E; pk
� �

¼ � E; pk
� �

: ð2Þ

In this formula, pk is the set of structural parameters for the

interpolation node number k, �ðE; pkÞ is the result of MS

calculations of the XANES spectrum for this set of para-

meters, and �iðE; pkÞ is the interpolated spectrum calculated

using (1), which contains a linear combination of unknown

coefficients AnðEÞ;BmnðEÞ. The set of parameters pk in the

aggregate with corresponding spectrum �ðE; pkÞ, which is

exactly equal to an interpolated spectrum, we will call the

‘interpolation node’. If, from the symmetry of the molecule, it

is clear that for different sets of parameters spectra are equal,

corresponding interpolation nodes will be called equivalent.

In the simplest case of the linear interpolation of a spectrum

with one structural parameter, the interpolated spectrum

becomes just a linear combination of two spectra,

�i E; p0 þ �p
� �

¼ � E; p0
� �

þ
� E; p1
� �

� � E; p0ð Þ

p1 � p0
�p:

2.3. Construction of the polynomial

The number of terms necessary to interpolate an XANES

spectrum correctly depends on the particular system, para-

meters and limits of variations. Therefore there is no universal

interpolation polynomial, and a clear strategy of its

construction is necessary. In Appendix A we have described

the most important steps of this procedure. The proposed

strategy consists of step-by-step testing and correction of the

polynomial. Starting with the simplest polynomial, discre-

pancies between interpolated and MS-calculated spectra are

checked for certain sets of structural parameters, which we will

call ‘control points’. They are selected so that the influence of

the tested term of the polynomial is maximal for this set of

parameters. For example, if one starts first with a linear

approximation and wants to check the �p2
1 term necessity, the

control point �p1 = 0.5, �pi = 0 (i = 2 . . . n) must be used (here n

is the total number of parameters). For �p1�p2 the control

point is �p1 = 1, �p2 = 1, �pi = 0 (i = 3 . . . n) and for �p1�p
2
2 the

control point is �p1 = 1, �p2 = 0.5, �pi = 0 (i = 3 . . . n). Here and

below, relative units for all deviations of parameters are

employed (�pi = 0 corresponds to the initial value of the

parameter and �pi = 1 corresponds to the deviation equal to

the limit of the variation for this parameter). Also we will use

vector notation for sets of parameters [for example, (1, 0.5) is

equivalent to �p1 = 1, �p2 = 0.5].

If the modulus of the maximal discrepancy between inter-

polated and MS-calculated spectra exceeds 10% of the

difference between MS calculations for the control set of

parameters (control point) and the spectrum calculated for the

initial set of the parameters [�pi = 0 (i = 1 . . . n)], then one has

to include the corresponding term in the constructed inter-

polation polynomial. To calculate the energy-dependent

coefficient for this term, a new equation corresponding to this
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control point is added into system (2). In the sequel this

control point and corresponding spectrum form an inter-

polation node of the polynomial. The next control points are

tested using this improved polynomial. If it is found that any

term is negligible in the polynomial then it is possible to

reduce the number of more complex terms, which have to be

tested on subsequent steps, and thus reduce the number of

control points that correspond with the required number of

MS calculations.

There is good reason to believe that higher-order cross

terms are negligible if they are the product of any previously

neglected term and another one. It can be easily proved by

contradiction in the case of systems without any symmetry. If

our polynomial does not contain the term �pi�pj but includes

�pi�pj�pk, it is clear that the expansion around different but

rather close starting sets of parameters (for example, with

different values of pk) should be the same. Only energy-

dependent coefficients should be different. Therefore the

expansions for these two structures will not contain terms

proportional to �pi�pj . On the other hand, the dependence on

�pi�pj will appear for the structure with changed value of pk

owing to the �pi�pj�pk term. This contradiction demonstrates

an inexpediency of inclusion of considered higher-order terms.

This rule is fundamental and it allows a convergence to be

reached while constructing the interpolation polynomial very

fast (see examples below).

For molecules with symmetry the situation is a bit different.

The terms in expansion (1) should be invariant to symmetry

operations. In many cases it allows odd terms from one

parameter interpolation to be excluded (if positive and

negative changes of parameter lead to the same spectrum

changes), and the number of possible cross terms to be

reduced. The analysis of cross terms, using the rule described

above, sometimes leads to the loss of a few terms which

describe the reduction of a symmetry, but an overall strategy

based on this rule still remains fruitful. Therefore we propose

to correct the polynomial constructed on the basis of this

principle using symmetrically invariant terms, or terms

corresponding to the highly asymmetric geometry.

3. Results and discussion

To demonstrate the validity of the multi-dimensional inter-

polation approximation and how the strategy described in

Appendix A works, we have constructed interpolation poly-

nomials for three types of coordination: tetrahedral, octahe-

dral and square-planar. We suppose that the method will be

very fruitful in the field of metallo-organic chemistry and

especially for the investigations of active metal centres in the

proteins. Therefore we have chosen arrangements which are

common in this field: FeS4, FeO6 and Ni(CN)4. The first two

examples are very simple. Distances and angles were varied

separately owing to the much smaller effect of the angles in

comparison with the distance variations. The last example is

more complex and demonstrates a typical procedure. Varied

parameters are schematically shown in Fig. 1.

In Table 1 we have summarized a number of non-equivalent

sets of structural parameters (control points) for which MS

calculations were performed. Not all of these spectra were

used as interpolation nodes. A part of them is calculated to

show the unimportance of certain terms. The number of

spectra which represent non-equivalent interpolation nodes is

also listed.

In x3.2 we will check for Ni(CN)4 that the assumption that

the best-fit parameters found within the multi-dimensional

interpolation approximation correspond to the unique

‘correct’ structure of the molecule, and discuss inaccuracies of

the method. In the last section a comparison of the proposed

approach with the algorithm realised in the MXAN software

will be given.

3.1. Tests of approximation

3.1.1. Tetrahedral coordination. For the FeS4 model

structure with tetrahedral-type coordination, two types of

structural parameters (Fe—S bond lengths and S—Fe—S

angles) have been varied (seven structural parameters in total;
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Figure 1
Pictorial view of the model molecules and varied structural parameters.

Table 1
Number of MS calculations and non-equivalent interpolation nodes
needed to construct interpolation polynomials for model molecules.

Model
Varied
parameters

Number of
parameters

Number of MS
calculations

Number of
non-equivalent
interpolation
nodes

FeS4 Distances 4 4 2
FeS4 Angles 3 5 2
FeO6 Distances 3 6 3
FeO6 Angles 3 10 6
Ni(CN)4 Distances

and angles
6 32 15



see Fig. 1). The limits of variations were 0.2 Å for distances

(�p1, �p2, �p3, �p4) and 29� for angles (�p5, �p6, �p7).

To demonstrate the accuracy of the method for different

limits of variations we have presented in Fig. 2 the maximal

error of interpolation as a function of deviation of one para-

meter (the Fe—S bond length). Dependencies for two limits of

variations (0.1 and 0.2 Å) are shown. As can be clearly seen,

the largest error value is in the centre between interpolation

nodes (the nodes are �p1 = 0 and �p1 = 1 for first-order

interpolation and �p1 = 0, �p1 = 0.5 and �p1 = 1 for second-

order interpolation), and it increases very fast with expansion

of the variation limits. The maximal difference between the

spectrum for the initial structure and that for another one

corresponding to a 0.1 Å elongation of the Fe—S bond length

is 0.02 normalized units. In the case of the first-order inter-

polation with 0.2 Å limit the error is 0.0055 normalized units

(more than 25%) and therefore it is necessary to add a second-

order term or reduce the limits of the variations. When the

limit of variation is 0.1 Å the largest error is 15%. A more

effective way of improving the interpolation is to add the

second-order term. In this way the error of interpolation is

again maximal almost in the middle between interpolation

points (�p1 = 0.2 and �p1 = 0.8) and equal to 10% for �p1 = 0.2

and 3% for �p1 = 0.8. In some cases it is very important to

reduce the error of one-parameter interpolation for the higher

values of parameters, because the influence of cross terms

increases in this region and the simultaneous influence of both

these factors can lead to the incorrect interpolation. Therefore

the possibility of reducing this error by adding a second-order

term into the one-parameter interpolation is very important.

In the case of a tetrahedron the variation of angles leads to

much smaller modifications of spectra in comparison with

distances. Even with very large changes of angle (�30�) the

maximal effect is four times smaller than the effect of a 0.2 Å

distance elongation. Therefore there are three possibilities: to

increase the limits of the variations of angles (but in this case

the higher-order interpolation polynomial for the angles will

be needed and therefore this variant is unfavourable); to

reduce the limits of the distance variations; or to vary the

distances and angles independently (firstly all the distances

with fixed angles and then the angles with fixed best-fit

parameters for the distances). Below we will demonstrate the

latter variant with independent interpolation polynomials for

distances and angles.

To construct the polynomials the strategy described in

Appendix A was used. As a first approximation we have

interpolated the spectrum linearly. For this purpose MS

calculations for sets of parameters (1, 0, 0, 0, 0, 0, 0) and (0, 0,

0, 0, 1, 0, 0) were performed. Then we analyzed the importance

of cross terms on the basis of the comparison of linearly

interpolated and MS-calculated spectra for the sets of para-

meters (1, 1, 0, 0, 0, 0, 0) and (0, 0, 0, 0, 1, 1, 0). It was found

that such terms are important only for angle variations

(parameters p5, p6, p7). Using the same polynomial we have

tested the influence of square terms on the basis of spectral

comparison for other sets of parameters: (0.5, 0, 0, 0, 0, 0, 0)

and (0, 0, 0, 0, 0.5, 0, 0). We have concluded that such terms

should be taken into account in the case of distances variations

only. After improvement of the polynomial according to our

strategy we have analyzed only one cross term with three

parameters (for angular deviations only). Comparison of

interpolated and MS-calculated spectra for the set of para-

meters (0, 0, 0, 0, 1, 1, 1) demonstrated that this term is

negligible. These steps of polynomial construction are

summarized in Table 2.

Thus we have obtained the following interpolation poly-

nomials,

�i ¼ � p0
� �
þ
P4

n¼ 1

AnðEÞ�pn þ
P4

n¼ 1

BnðEÞ�p
2
n

for distances, and
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Figure 2
Maximal difference between interpolated and theoretical spectra for
different values of the parameter deviation. Squares (triangles)
correspond to first-order interpolation with the limit of variations being
0.2 (0.1) Å. Circles correspond to second-order interpolation with the
limit of variations being 0.2 Å. Calculations were performed for Fe K-
edge XANES of FeS4 for variations of one of the bond lengths.

Table 2
List of non-equivalent control points used for MS calculations and all corresponding expansion terms of interpolation polynomials for the FeS4 molecule.
Terms are shown only for interpolation nodes. A few terms are associated with the same set of parameters if they are equivalent due to the molecule
symmetry.

Step of strategy
Distances variation Angles variation

(see Appendix A) Set of parameters Terms of polynomial Set of parameters Terms of polynomial

2 (1, 0, 0, 0, 0, 0, 0) �p1, �p2, �p3, �p4 (0, 0, 0, 0, 1, 0, 0) �p5, �p6, �p7

3 (1, 1, 0, 0, 0, 0, 0) (0, 0, 0, 0, 1, 1, 0) �p5�p6, �p5�p7, �p6�p7

4 (0.5, 0, 0, 0, 0, 0, 0) �p2
1, �p2

2, �p2
3, �p2

4 (0, 0, 0, 0, 0.5, 0, 0)
6 (0, 0, 0, 0, 1, 1, 1)



�i ¼ � p0
� �
þ
P7

n¼ 5

AnðEÞ�pn þ
P7

n;m¼ 5
n 6¼m

BmnðEÞ�pm�pn

for angles.

In Fig. 3 we have presented interpolated

and calculated spectra for the set of para-

meters (0.8, 0.8, 0.8, 0.8, 0, 0, 0) and starting

calculated spectrum. We have chosen this set

of parameters because we expected maximal

error of interpolation for them (one-para-

meter interpolation has a maximal error at

this point, and cross terms, which were

neglected, were also rather large because

they increase with the increase of values of all

parameters). The quality of interpolation

during angle variations is demonstrated in

Fig. 3 for an analogous set of parameters. As

can be clearly seen, the interpolated spectrum

reproduces all trends quite well and the error

of interpolation is much less than the effect of

parameters changes on the spectrum.

3.1.2. Octahedral coordination. In this

case we have varied the following structural parameters: three

Fe—O distances and three O—Fe—O angles. Schematically

they are shown in Fig. 1. The limits of variations were 0.2 Å for

distances (�p1, �p2, �p3) and �20� for angles (�p4, �p5, �p6). In

the case of octahedral geometry it was also reasonable to vary

the distances and angles independently because distance

variations influence mostly the relative energy positions of

XANES features while angle variations influence mostly the

intensity of the main peak.

Owing to the symmetry (positive and negative increments

of parameters correspond to the same spectra), linear terms

for angles variations are zeros. Therefore we used the

following interpolation polynomial as a first approximation,

�i ¼ � p0
� �
þ
P3

1

AiðEÞ�pi

for distances and

�i ¼ � p0
� �
þ
P6

4

AiðEÞ�p
2
i

for angles. Inclusion of additional interpolation nodes for

single-parameter interpolations allows the error of interpola-

tion to be minimized (see step 4 in Table 3).

Angular distortions between bonds in three perpendicular

planes demonstrate different types of symmetry invariant

cross terms. From the symmetry it is clear that spectra calcu-

lated for the sets of parameters (0, 0, 0, 1, 1, 0) and (0, 0, 0, 1,

�1, 0) are exactly the same, but differ from the following

couple of sets: (0, 0, 0, �1, 1, 0) and (0, 0, 0, �1, �1, 0). Term

�p4�p
2
5 allows these symmetrical relations to be reproduced. A

couple of parameters, p5 and p6, demonstrate another case:

sets of parameters (0, 0, 0, 0, 1, 1) and (0, 0, 0, 0, �1, �1) are

equivalent, but differ from the couples (0, 0, 0, 0, �1, 1) and

(0, 0, 0, 0, 1, �1). Therefore cross term �p5�p6 has to be

considered. Simultaneous variations of parameters p4 and p6

do not lead to the loss of symmetry for each of these para-

meters; therefore cross term �p2
4�p

2
6 has to be used, but it is
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Table 3
List of non-equivalent control points used for MS calculations and all corresponding
expansion terms of the interpolation polynomials for the FeO6 molecule. Terms are shown
only for interpolation nodes. A few terms are associated with the same set of parameters if
they are equivalent due to the molecule symmetry.

Distances variation Angles variation

Step of
strategy Set of parameters Terms of polynomial Set of parameters Terms of polynomial

2 (1, 0, 0, 0, 0, 0) �p1, �p2, �p3 (0, 0, 0, 1, 0, 0) �p2
4, �p2

5, �p2
6

3 (1, 1, 0, 0, 0, 0) �p1�p2 (0, 0, 0, 1, 1, 0) �p2
4�p

2
5

(1, 0, 1, 0, 0, 0) (0, 0, 0, �1, 1, 0) �p4�p
2
5

(0, 0, 0, 0, 1, 1) �p2
5�p

2
6

(0, 0, 0, 0, �1, 1) �p5�p6

(0, 0, 0, 1, 0, 1)
4 (0.5, 0, 0, 0, 0, 0) �p2

1, �p2
2, �p2

3 (0, 0, 0, 0.5, 0, 0) �p4
4, �p4

5, �p4
6

5 (1, 0.5, 0, 0, 0, 0) (0, 0, 0, 1, 0.5, 0)
(0, 0, 0, 0.5, 1, 0)
(0, 0, 0, 0, 1, 0.5)

Figure 3
Top: comparison of interpolated (dots) and MS-calculated (dashes)
spectra for control sets of parameters: (0.8, 0.8, 0.8, 0.8, 0, 0, 0) (all varied
distances are equal to 2.46 Å) for distances variation and (0, 0, 0, 0, 0.8,
0.8, 0.8) (all varied angles are equal to 132�) for angles variation. Solid
lines correspond to the MS calculations for the initial set of parameters
(0, 0, 0, 0, 0, 0, 0). It is difficult to resolve the dotted and dashed curves
because they are very close. Bottom: difference between interpolated and
MS-calculated spectra for control sets of parameters. The solid (dashed)
line corresponds to the angles (distances) variation. Calculations were
performed for Fe K-edge XANES of FeS4.



negligible in the present case. Contributions from other terms

are weak (see a list of control points in Table 3).

The couples of parameters p1, p2 and p1, p3 represent two

types of distance variations with angles of 90� and 180�

between bonds. Cross terms are different for these two cases

and only one of them has been included in the polynomial. All

other terms are neglected according to the strategy. At the end

we have obtained the following polynomials,

�i ¼ � p0
� �
þ
P3

n¼ 1

AnðEÞ�pn þ
P3

n¼ 1

BnðEÞ�p
2
n þ CðEÞ�p1�p2

for distances and

�i ¼ � p0
� �
þ
P6

n¼ 4

AnðEÞ�p
2
n þ

P6

n¼ 4

BnðEÞ�p
4
n þ C45ðEÞ�p4�p

2
5

þD45ðEÞ�p
2
4�p

2
5 þ C56ðEÞ�p5�p6 þD56ðEÞ�p

2
5�p

2
6

for angles. All steps of polynomial construction are summar-

ized in Table 3.

To demonstrate how interpolation works we have presented

in Fig. 4 calculated and interpolated spectra for the sets of

parameters (0.75, 0,75, 0,75, 0, 0, 0) and (0, 0, 0, 0.75, 0.75,

0.75), for which we expect the maximal error of interpolation.

For other sets of parameters the discrepancy between inter-

polation and MS calculations is smaller.

3.1.3. Square-planar coordination. The Ni(CN)4 model

molecule demonstrates a more complex example with six

parameters varied simultaneously: parameters p1 and p2

represent first-shell distance changes while p2 and p3 represent

second-shell distance variations. Parameter p5 corresponds to

the Ni—C—N angle deviation from 180� and parameter p6 is

the angle between the C—Ni—C chains (see Fig. 1). For all

parameters the inversion symmetry was fixed. The following

limits of variations were used: 0.2 Å for �p1 and �p2, 0.1 Å for

�p3 and �p4 and 15� for �p5 and �p6.

In the same manner as for octahedral geometry only

second-order terms have been considered as a first approx-

imation for angular parameters. To achieve good one-para-

meter interpolation, additional interpolation nodes have been

included (see step 4 in Table 4). It has been found that the

cross terms between parameters, which are from perpendi-

cular Ni—C—N chains, are negligible if at least one of these

parameters perturbs only second-shell atoms (in particular

�p1�p4, �p1�p
2
6, �p3�p4 etc.). This significantly reduced the

number of subsequent control points during steps 5 and 6 (see

the list of corresponding control points in Table 4). A reduc-
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Figure 4
Top: comparison of interpolated (dots) and MS-calculated (dashes)
spectra for control sets of parameters: (0.75, 0.75, 0.75, 0, 0, 0) for
distances variation (all varied distances are equal to 2.15 Å) and (0, 0, 0,
0.75, 0.75, 0.75) for angles variation (all varied angles are equal to 105�).
The solid lines correspond to the MS calculations for the initial set of
parameters (0, 0, 0, 0, 0, 0). It is difficult to resolve the dotted and dashed
curves because they are very close. Bottom: difference between
interpolated and calculated spectra for control sets of parameters. The
solid (dashed) line corresponds to the angles (distances) variation.
Calculations were performed for Fe K-edge XANES of FeO6.

Table 4
List of non-equivalent control points used for MS calculations and all
corresponding expansion terms of interpolation polynomials for the FeO6

molecule. Terms are shown only for interpolation nodes. A few terms are
associated with the same set of parameters if they are equivalent due to
the molecule symmetry.

Step of
strategy Set of parameters Terms of polynomial

2 (1, 0, 0, 0, 0, 0) �p1, �p2

(0, 0, 1, 0, 0, 0) �p3, �p4

(0, 0, 0, 0, 1, 0) �p2
5

(0, 0, 0, 0, 0, 1) �p2
6

3 (1, 1, 0, 0, 0, 0) �p1�p2

(1, 0, 1, 0, 0, 0) �p1�p3, �p2�p4

(1, 0, 0, 1, 0, 0)
(1, 0, 0, 0, 1, 0) �p1�p

2
5, �p2�p

2
5

(1, 0, 0, 0, 0, 1)
(0, 1, 0, 0, 0, 1) �p2�p

2
6

(0, 0, 1, 1, 0, 0)
(0, 0, 1, 0, 1, 0)
(0, 0, 1, 0, 0, 1)
(0, 0, 0, 1, 0, 1) �p4�p

2
6

(0, 0, 0, 0, 1, 1)
(0, 1, 0, 1, 1, 1) �p2�p4�p5�p6

4 (0.5, 0, 0, 0, 0, 0) �p2
1, �p2

2

(0, 0, 0.5, 0, 0, 0) �p2
3, �p2

4

(0, 0, 0, 0, 0.5, 0) �p5
4

(0, 0, 0, 0, 0, 0.5) �p6
4

5 (1, 0.5, 0, 0, 0, 0)
(1, 0, 0.5, 0, 0, 0)
(0.5, 0, 1, 0, 0, 0)
(1, 0, 0, 0, 0.5, 0)
(0.5, 0, 0, 0, 1, 0)
(0, 1, 0, 0, 0, 0.5)
(0, 0.5, 0, 0, 0, 1)
(0, 0, 0, 1, 0, 0.5)
(0, 0, 0, 0.5, 0, 1)

6 (1, 1, 0, 0, 1, 0) �p1�p2�p
2
5

(0, 1, 0, 1, 0, 1)



tion of symmetry during simultaneous variations of both

angular parameters can be taken into account considering

�p5�p6 and �p2
5�p

2
6 terms [equivalent nodes are (0, 0, 0, 0, 1, 1)

and (0, 0, 0, 0, �1, �1); (0, 0, 0, 0, 1, �1) and (0, 0, 0, 0, �1, 1)]

or adding terms which correspond to the maximally distorted

geometry: �p2�p4�p5�p6 (in this case only positive values of

angular deviations will be reasonable). Using this variant we

have obtained the following interpolation function,

�i ¼ � p0
� �
þ
P4

n¼ 1

AnðEÞ�pn þ
P6

n¼ 1

BnðEÞ�p
2
n þ

P6

n¼ 5

CnðEÞ�p
4
n

þD12ðEÞ�p1�p2 þD13ðEÞ�p1�p3 þD24ðEÞ�p2�p4

þ E26ðEÞ�p2�p
2
6 þ E46ðEÞ�p4�p

2
6 þ E15ðEÞ�p1�p

2
5

þ E25ðEÞ�p2�p
2
5 þ F125ðEÞ�p1�p2�p

2
5

þG2456ðEÞ�p2�p4�p5�p6:

All steps of the polynomial construction are summarized in

Table 4.

Calculated and interpolated spectra for the control set of

structural parameters (0.75, 0.75, 0.75, 0.75, 0.75, 0.75) are

shown in Fig. 5. Good agreement has been obtained.

3.2. Convergence of the fitting procedure

To demonstrate that the proposed interpolation approx-

imation does not lead to serious errors in the determination of

the structural parameters, and to check the assumption that

the discrepancy between the theoretical and experimental

spectrum is minimal for the correct values of the structural

parameters, we have tested the convergence of the fitting

procedure for the Ni(CN)4 molecule. We have used the results

of MS calculations for the random set of structural parameters,

which we will call ‘correct’, instead of the experimental

spectrum. Then we have started a fitting procedure to test if

the best-fit parameters are close to these ‘correct’ parameters

or not. For the Ni(CN)4 model molecule we used structural

parameters and the interpolation polynomial described above.

To find all local minima, a gradient search in the space of the

structural parameters was performed from 20 random points.

Mean square deviation was minimized with precision 0.001

normalized units. We would like to stress that during this

procedure it is not necessary to perform any MS calculations

and therefore the minimization is very fast (a few seconds).

Two minima with the same discrepancy of 0.008 normalized

units have been found. Best-fit parameters and ‘correct’ values

are listed in Table 5 to demonstrate the different sensitivity of

the spectrum to the parameters uncertainties, which corre-

sponds to a 0.001 normalized unit increase of the discrepancy

between the theoretical and experimental spectra. For real

systems (and real experimental spectra) we expect the preci-

sion of the first-shell distances determination to be in the

range 0.02–0.05 Å. Neglecting the p6 parameter, two minima

correspond to approximately the same geometry with another

indexing of parameters. The deviation of the Ni—C—N angle

(p6) for one of the chains leads to non-equivalence of struc-

tures and thus an additional ‘false’ minimum appears. Two

reasons leading to the appearance of this minimum are

possible. It can be an error of interpolation and in this case the

discrepancy between the interpolated and MS-calculated

spectrum for this set of parameters should be significant. The

alternative assumption that only the correct structure corre-

sponds to the minimal discrepancy between the theoretical

and experimental spectra can be invalid. Then experimental,

interpolated and MS-calculated spectra should be very similar.

As is clear from Fig. 6, the discrepancy between the experi-
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Figure 5
Top: comparison of interpolated (dotted) and MS-calculated (dashed)
spectra for control sets of parameters: (0.75, 0.75, 0.75, 0.75, 0.75, 0.75)
(Ni—C bond lengths are 1.9 Å, C—N bond lengths are 1.175 Å, angle
between C—Ni—C chains is 101.25� and Ni—C—N angle is 168.75�).
Solid lines correspond to the MS calculations for the initial set of
parameters (0, 0, 0, 0, 0, 0). It is difficult to resolve the dotted and dashed
curves because they are very close. Bottom: difference between
interpolated and calculated spectra for control sets of parameters.
Calculations were performed for Ni K-edge XANES of Ni(CN)4.

Table 5
Values of structural parameters p and unitless deviations �p for two distinct best-fit sets of parameters (Minimum 1 and Minimum 2), and ‘correct’ values
which correspond to the MS-calculated spectrum used instead of the experiment during fitting.

�p1 p1 (Å) �p2 p2 (Å) �p3 p3 (Å) �p4 p4 (Å) �p5 p5 (�) �p6 p6 (�)

‘Correct’ 0.75 1.9 0.25 1.8 0.9 1.19 0.35 1.135 0.9 103.5 0.55 8.25
Minimum 1 0.19 (5) 1.788 (1) 0.87 (3) 1.924 (6) 0.38 (7) 1.138 (7) 1.00 (6) 1.200 (6) 1.04 (4) 105.6 (6) 0.2 (2) 3 (3)
Minimum 2 0.83 (3) 1.916 (6) 0.24 (2) 1.798 (4) 1.02 (6) 1.202 (6) 0.42 (7) 1.142 (7) 1.05 (5) 105.75 (75) 0.6 (2) 9 (3)



mental and MS-calculated spectrum for the set of parameters

‘Minimum 1’ (‘false’ minimum) is very small. This means that

the second reason described above is valid. We have to

conclude that XANES spectra are very similar for two distinct

structures and therefore in some cases it is impossible to

obtain a unique set of structural parameters on the basis of

XANES analysis alone (or at least it is necessary to increase

the amount of spectroscopic information: analyzed energy

range or resolution of spectra etc.). Nevertheless, we have

quite a good sensitivity to the distance in Ni—C—N chains

and these distances can be obtained rather accurately and

uniquely from XANES analysis. Only the results for the angles

do not have a single meaning, but they influence the distances

rather weakly. In any case one of the best-fit sets of parameters

is very close to the ‘correct’ values. For distance determination

the error is 0.02 Å for an angle between chains of 2.5� and for

a Ni—C—N angle of 6�. The errors do not exceed the typical

sensitivity of the XANES spectra to these parameters and

therefore the use of the multi-dimensional interpolation

approximation does not lead to significant errors and thus the

application of the method is reasonable.

3.3. Comparison with MXAN

As is clear from the examples described above, the multi-

dimensional interpolation of XANES spectra as a function of

the structural parameters allows XANES fitting to be

performed on the basis of a very small number of MS calcu-

lations. This is the main advantage of the method because it

leads to a significant reduction in overall computational time

in comparison with the MXAN procedure (Benfatto & Della

Longa, 2001), in which time-consuming MS calculations of the

spectra need to be performed at each step of the minimum

search. Nevertheless, our method requires additional analysis

by the user to construct the interpolation polynomial. There-

fore, a significant decrease in overall time (calculations of

spectra and construction of polynomial) is expected mainly for

complex cases (large clusters without symmetry) or using

time-consuming algorithms of spectra calculations, such as the

finite-difference method (Joly, 2001) which is very important

for materials where the muffin-tin approximation for the

potential is not valid. For simple compounds it is possible that

by using the MXAN approach one can obtain a result faster.

The limitation of the present method itself is that maximal

values of the variations of the parameter have not to be too

large. This is because it will be rather difficult to construct an

interpolation polynomial if more than two terms are used for

one-parameter interpolation. In many cases this internal limit

of our FitIt software is close to the physical limits of parameter

variations and therefore multi-dimensional interpolation can

be used. The MXAN procedure is free from any limits except

physical ones and from this point of view it is more universal.

The fitting procedure using MXAN for certain sets of non-

structural parameters is fully automatic, but cannot be

controlled by the user. It works perfectly when the values of

non-structural parameters are correct. Otherwise the best-fit

geometry can be unphysical because the effect of structural

parameters on the XANES spectrum will compensate

systematic errors arising from incorrect non-structural para-

meters. To avoid this, authors of MXAN propose to use an

iterative strategy for the variations of structural and non-

structural parameters. Our method requires the analysis of

spectrum dependencies on structural parameters during

polynomial construction and therefore it is less automatic. But

the use of multi-dimensional interpolation allows the devel-

opment of a visual interface for FitIt. Calculations of the

spectra within this approach are very fast and can be

performed in real time; therefore the user can immediately see

the shape of the spectrum calculated for any set of structural

parameters. Because of this, it is rather easy to identify the

errors arising from incorrect values of non-structural para-

meters, and then set other criteria for experimental and

theoretical spectra comparisons, which is insensitive to such

uncertainties of non-structural parameters, or change the

values of non-structural parameters. Here it is very important

that for reasonable non-structural parameters only energy-

dependent coefficients in the interpolation polynomial have to

be recalculated. Therefore it is not necessary to repeat

calculations for all control points which have not been

included in the interpolation polynomial and repeat the full

procedure of polynomial construction. Only the calculations

for interpolation nodes are necessary. This allows the reduc-

tion of computational time during this step of the fitting.

The last advantage of the multi-dimensional interpolation

approach realised in FitIt which we would like to mention is

the separation of the interpolation polynomial construction

and the fitting procedure. During the construction of the

polynomial there is no comparison of the theoretical spectra

with the experimental one. Only the discrepancies between

interpolated and MS-calculated spectra are important. During

the fitting procedure only the experimental and interpolated

spectra are used and this step is very fast. Therefore it is

possible to switch between different experimental spectra or

different criteria of experimental and interpolated spectra

comparisons without any additional MS calculations. It is

useful, for example, to fit spectra of different phases of
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Figure 6
Results of MS calculations for two best-fit sets of parameters (dashes) and
for the ‘correct’ structure (solid line). Values of structural parameters are
listed in Table 5. Calculations were performed for Ni K-edge XANES of
Ni(CN)4.



compounds which have a rather close structure or fit a series of

spectra from time-resolved experiments. Using the algorithm,

which is realised in MXAN, the sets of structural parameters

for MS calculations depend on the discrepancy between

theoretical and experimental spectra. Therefore the time-

consuming procedure in MXAN has to be repeated for

different experimental spectra or even other criteria of spectra

comparison.

4. Conclusion

A novel approach for local atomic structure refinement on the

base of theoretical XANES analysis is proposed. It is shown

that, for different types of structural parameters within

reasonable limits of variations, the multi-dimensional inter-

polation approximation is quite accurate and a rather small

number of time-consuming MS calculations are needed to fit

the XANES. We have demonstrated the method using

examples typical for metallo-organic chemistry, but it can be

applied to other compounds including crystals (we have

already tested it, but these results are not presented here). A

rather small number of MS calculations and visual control of

the fitting procedures are the main advantages of the FitIt

software.

APPENDIX A
Strategy of the polynomial construction

The strategy described below consists of the step-by-step

testing and correction of the polynomial. It is based on the

idea that higher-order cross terms are negligible if they are the

product of any previously neglected term and another one,

and on the criteria of the interpolation quality {the modulus of

maximal discrepancy between interpolated and MS-calculated

spectra is less than 10% of the difference between the MS

calculations for the control point and the spectrum calculated

for the initial set of parameters [�pi = 0 (i = 1 . . . n)]}. The

logical sequence of steps of polynomial construction is shown

in Fig. 7.

Step 1 is the choice of variation limits for the structural

parameters. The influence of different parameters on the

spectrum should be of the same order. If the influence of one

parameter pi is significantly less than another parameter pj , a

relative accuracy of interpolation as a function of pj should be

much smaller (and will require more terms in the interpolation

polynomial). Otherwise the absolute error of interpolation for

the parameter pj will be comparable with the effect from

variations of pi. It is also reasonable to use not more than

three nodes for single-parameter interpolation (it can be

controlled in step 4). Otherwise there is a risk of having too

many cross terms of high order. In the case of metal XANES

spectra of metallo-organic compounds, a starting point for

these limits can be 0.15–0.2 Å for the distances and 15–30� for

the angles.

Step 2 is the choice of the first approximation for the

interpolation polynomial. The simplest approximation is

linear interpolation of spectra as a function of all parameters.

To calculate derivatives in this case it is necessary to calculate

spectra with only one parameter pi maximally deviated from

the starting values: �pi = 1, �pj = 0, j = 1 . . . n, j 6¼ i: In some

cases, from the symmetry of the cluster it is clear that positive

and negative changes of a parameter will lead to the same

effect on the spectrum (for example, parameter p5 in the FeO6

model molecule in Fig. 1). For such a parameter a linear term

is equal to zero and thus one needs to use a second order in the

polynomial.

Step 3 is the determination of cross terms with two para-

meters (pi and pk). For this purpose it is necessary to perform

MS calculations for the following set of parameters: �pi = 1,

�pk = 1, �pj = 0, j = 1 . . . n, j 6¼ i, j 6¼ k: If the error of inter-

polation is rather large (according to the criteria formulated

above), this set of parameters and corresponding spectrum

should be added as interpolation node. If there is almost no

cross term influence on the result of the interpolation, higher-

order terms with this couple of parameters and any other

parameters can be negligible.
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Figure 7
Logical sketch of the polynomial construction strategy. The numbers of
steps and examples of control points are shown in corresponding blocks.



It can be that one parameter has symmetry (for example,

parameter p4 for the FeO6 model molecule in Fig. 1) and thus

we ignore its linear term and add its second-order term, but

after changes of another parameter (for example, parameter

p5 for the FeO6 model molecule in Fig. 1) this symmetry has

been lost. It is reasonable in this case to use a term which is

invariant to the symmetry operations (for example, term

�p4�p
2
5 for the FeO6 model molecule). Also, in most of the

cases the same results can be obtained by adding to the initial

polynomial a term corresponding to highly asymmetric

geometry [for example, term �p2�p4�p5�p6 for the Ni(CN)4

model molecule].

Step 4 is the comparison of the results of the interpolation

as a function of each variable and MS calculations. Maximal

deviation of the interpolated spectrum from calculations using

MS theory is expected for the following sets of the parameters:

�pi = 0.5, �pj = 0, j = 1 . . . n, j 6¼ i (see Fig. 2), i.e. in the middle

of the interval between interpolation nodes. Therefore these

points should be used to control the accuracy of the inter-

polation. If the quality of interpolation is not sufficiently good

it is necessary to add a higher-order term for this parameter

(normally �p2
i is used, but for the parameters with symmetry

effect, mentioned above, �p4
i is necessary).

Step 5 is the determination of higher-order cross terms with

two parameters. Such analysis should be performed only for

the couples of parameters with cross term included in step 3

and additional one-parameter terms included in step 4. The

following control points have to be used: �pi = 1, �pk = 0.5,

�pj = 0, j = 1 . . . n, j 6¼ i, j 6¼ k: In the case of a linear first

approximation the corresponding terms are �pi�p
2
k. For the

second-order first approximation they are �p2
i �p

4
k.

Step 6 is checking of the cross terms with three parameters.

This analysis should be performed only for the couples of

parameters which contain the same parameters. For example,

if one uses three cross terms: �pi�p
2
j , �p2

j �pk and �pi�pk, one

should consider only a single term: �pi�p
2
j �pk. Owing to this

and to the fact that normally not all of the cross terms between

two variables are necessary, the number of subsequent terms

(and therefore necessary MS calculations) decreases very

rapidly. Analogous checks and improvements of the poly-

nomial have to be performed until the convergence is reached

(there is no possibility of constructing higher-order terms

within the above-described limitations). For real compounds it

can be reached rather fast.
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