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The DXAS Calibration computer program provides a quantitative and

automated solution to the problem of calibrating spectra from dispersive

XAS beamlines. Such spectra, obtained in arbitrary energy units, are calibrated

with respect to the absorption features of a supplied reference spectrum, which

has been obtained under similar conditions on a calibrated beamline. In addition

to basic energy coordinate transformation parameters, DXAS Calibration

supplies instrument corrections to compensate for mismatches in instrument

response functions between the dispersive and reference beamlines.
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1. Introduction

Dispersive XAS beamlines, such as ID24 of the ESRF, utilize a single

Si(111) Bragg diffracting or Si(311) Laue diffracting polychromator

crystal which is elliptically bent and illuminated by white X-rays,

typically over an area of 10 mm vertically by 40 mm horizontally, to

produce a wavelength-dispersive diffracted beam (ESRF, 2001).

This beam, spread out into a broad horizontal fan, converges to a

focus, allowing a sample to be simultaneously illuminated by X-rays

of wavelengths corresponding to an energy range of typically 700–

1500 eV. Beyond this focal spot, each wavelength component

diverges again, and is detected by a position-sensitive CCD array of

18 pixels � 1152 pixels in the case of ID24, as shown in Fig. 1.

As a result of this geometry, the energies of X-rays detected in each

pixel of the CCD (which are related to X-ray wavelength given E =

hc/�) are dependent on the source and optics settings, on the amount

of bending in the polychromator crystal, and on the distance between

the detector and the focal spot, and as such cannot be accurately

determined prior to measurement. It is therefore required that cali-

bration be carried out a posteriori with respect to a spectrum of

known calibration.

Thus, each absorption spectrum is acquired on a relative scale and

presented to the user as a function of CCD channel (pixel) number.

The user is then required to manually calibrate the energy and

absorption scales, converting from CCD channel number to a real

energy scale and from relative to an absolute absorption scale. This is

usually accomplished by comparing an acquired spectrum with a

reference obtained from a standard calibrated XAS beamline such as

BM29, the X-ray absorption spectroscopy beamline at the ESRF.

Some tools already exist to aid the user in this task (ESRF, 2001), but

none are fully automated and therefore accuracy is limited by human

judgement.1 Additionally, few are dedicated to the calibration

requirements of dispersive-XAS beamlines and hence can often be

difficult to use. DXAS Calibration solves these problems by providing

an automated graphically driven calibration solution that is dedicated

to the problems presented by dispersive-XAS beamlines.

2. The calibration process

2.1. Calibration parameters

Assuming that the dispersive and reference spectra were acquired

under the same environmental conditions, from the same sample

material and also, for now, that the instrument response functions of

the dispersive and reference beamlines were identical, then calibra-

tion is reduced to calculating the values of a set of parameters

necessary to transform the channel number ‘pseudo-energy’ axis to

an absolute energy scale, and relative absorption to absolute

absorption. Algorithmically, these parameters are the coefficients of

two polynomials: one for energy calibration and one for absorption

normalization, so that, for each pixel i,

E 0i ¼ a0 þ a1Ei þ a2E 2
i þ . . .þ anE n

i ; ð1Þ

�0i ¼ b0 þ b1�i þ b2�
2
i þ . . .þ bn�

n
i ; ð2Þ

Figure 1
The optics of beamline ID24 of the ESRF (ESRF, 2005).

1 Subsequent to submission, the referee has pointed out that a calibration
program exists in the commercial WinXAS software (http://www.winxas.de),
but this seems to be semi-automatic.

http://crossmark.crossref.org/dialog/?doi=10.1107/S0909049506039215&domain=pdf&date_stamp=2006-10-18


where Ei and �i are the original energy (which may be just the pixel

number) and absorption coefficients, respectively, and E 0i and �0i are

the transformed coordinates. As a result, a0 and b0 perform a simple

translation of the spectrum, a1 and b1 stretch the spectrum in a linear

fashion, and higher-order coefficients induce non-linear deformations

in the spectrum. Setting a1 and b1 to 1 and all other parameters to 0

will return the original spectrum as it was experimentally recorded.

The order n of the polynomial is specified by the user, and is typically

between 2 and 4. An option also exists allowing a user to correct any

absorption drift if necessary. Given that all parameters ai and bi are

independent, they may be inserted into a single vector a for use by

the calibration algorithm.

Frequently, these parameters alone will suffice in generating an

accurate calibration; however, it is also important to consider the case

where our final assumption fails, and the instrument functions of the

dispersive and reference beamlines differ. When this happens, addi-

tional instrument compensation parameters are required, which are

discussed in more detail in x3.

2.2. Calibration algorithm

The DXAS Calibration code implements a Levenberg–Marquardt

algorithm for general non-linear least-squares fitting of an arbitrary

number of parameters (Adby & Dempster, 1974; Press et al., 1992).

For the purpose of creating a calibration algorithm within the

assumptions given above, we must state a priori that it is possible to

select some set of parameters, a, which when applied to a dispersive

spectrum, f (E, a), should in theory reduce any differences in

absorption structure between it and the reference spectrum, fref(E),

to a minimum. We therefore define some least-squares cost function

that measures the differences in structure for any potential solution,

and work to minimize it. Given also that the code is always supplied

with sets of spectral data, discretely sampled at energies Ei, the

differences may simply be evaluated at each data point as yi(a) =

f (Ei, a) � fref(Ei).

3. Advanced calibration techniques

3.1. Matching beamline instrument functions

In some cases, especially at higher X-ray energies or with thick

specimens where the absorption thickness product is greater than

e.g. 1.5, the instrument functions of dispersive beamlines differ

significantly from those of standard XAS beamlines. In these cases,

the stated calibration condition that the cost function can be reduced

to an acceptable minimum, simply by applying translations and

deformations to the uncalibrated spectrum of the polynomial form

(1) and (2), is no longer valid. It is therefore necessary to match the

instrument functions of the dispersive and reference beamlines so

that, idealistically, two spectra obtained from the same sample, under

the same environmental conditions, are identical.

This can be achieved by convolving the reference transmission

spectrum (which is of a higher resolution than the same spectrum

obtained from a dispersive beamline) with instrumental weight

functions that compensate for the differences in X-ray source and

optics between the two beamlines, the optimal characteristics of

which can again be obtained from a Levenberg–Marquardt algo-

rithm.

Klug & Alexander (1974) describe several types of instrument

corrections that are applicable to powder diffractometry, but which

are adaptable to our situation, and could be applied to the reference

spectrum in order to match its instrument function to that of the

dispersive beamline. However, in the specific case of dispersive

spectra from ID24 and reference spectra from a standard XAS

beamline such as BM29, we empirically find only two such functions

to be required.

The first is a normalized Lorentzian of the form

LðxÞ ¼
1

�

�=2

x� x0ð Þ
2
þ �=2ð Þ

2 ; ð3Þ

where � is found to be 2.35 eV at the Sr K edge (16.105 keV). This

function is applied to the transmission data (i.e. the data prior to

taking the log to convert to absorption) and compensates for the so-

called thickness effect where differences in the tails of the instrument

functions between the reference monochromator and dispersive

polychromator, as a function of angular deviation from the diffracting

Bragg angle, induce differences in the absorption spectra. The

Lorentzian form of the tails is predicted from perfect crystal theory.

These Lorentzian tails to the diffracted beam reduce its mono-

chromacity, and hence are clearly undesirable. As a consequence,

XAS beamlines commonly utilize a two-crystal Si(111) or Si(311)

monochromator, arranged in the parallel configuration, so that the

twice diffracted beam suppresses these tails. Dispersive beamlines,

however, implement only a single Si(111) or Si(311) crystal to select

X-ray wavelengths. As a result, the tails on the angular reflectivity

profile are unattenuated, distorting the fine structure. For calibration

purposes, convolving the reference transmission spectrum with the

Lorentzian (3) will reintroduce the broadening effects eliminated by

the two-crystal monochromator, matching its characteristic reflec-

tivity profile to that of the dispersive spectrum. The second instru-

ment weighting function is asymmetric and is a normalized

exponential of the form

expðxÞ ¼
ð1=�Þ expðx=�Þ for x > 0

0 for x � 0

�
; ð4Þ

where � is found to be 1.25 eV at the Sr K edge. This term arises due

to differences in X-ray penetration into the monochromator crystals

on the two beamlines. For a perfect crystal of Si(111), diffracting in

the dynamical regime, X-ray penetration into the crystal is calculated

from the extinction length to be of the order of 1 mm. However, a

dispersive beamline has a bent crystal polychromator, which in turn

has bent lattice planes that break the conditions necessary for purely

dynamical diffraction. Equally, the crystal is not deformed sufficiently

for purely kinematical diffraction to occur. Therefore, the X-ray

penetration depth lies somewhere between the extinction and

absorption lengths, the values predicted for each regime, respectively.

This penetration can be increased further in the presence of damage

to the surface of the crystal that may have resulted from its

preparation process.

The result is that, on the dispersive beamline, X-rays of a given

energy diffract from many more lattice planes of greater depth, which

in turn spatially smears the diffracted beam perpendicular to the

planes. These X-rays are therefore detected in several pixels along

the length of the CCD, broadening the spectrum. Given also that the

beam intensity decays exponentially as it penetrates the crystal, with

a sharp discontinuity at the crystal surface, the smeared intensity of a

single wavelength component of the diffracted radiation will decay

exponentially in space as shown in equation (4). This introduces an

erroneous asymmetrical energy shift in the observed structure. On

ID24, the geometry dictates that this shift is towards higher energies.

The observed penetration depth as a function of the radius of

curvature of the polychromator, p(R), may be calculated from

pðRÞ ¼
�

�EðRÞ
Px; ð5Þ
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where �E(R) is the CCD energy resolution and Px is the horizontal

size of each CCD pixel. On ID24, Px = 25.0 mm, and, at the Sr K edge,

�E(R) = 1.26 eV, giving p(R) = 24.6 mm.

Other effects, such as from samples themselves, may also degrade

dispersive measurements with respect to those from reference

beamlines. One such example is a reduction in resolution and white-

line intensity owing to small-angle scatter by BN-based powder

samples (Hagelstein et al., 1998). However, these effects are

neglected here for two reasons. Firstly, they generally represent only

a small change in the XAFS spectrum as a whole, and are found not

to affect the overall quality of calibration fits; and, secondly, such

effects may be avoided by selecting suitable samples for calibration

measurements; for instance, by making such measurements through

reference foils rather than powder specimens.

3.2. Implementation of convolutions

Convolution theorem dictates that the convolution of two func-

tions, e.g. f and g, is given by

f 0ðEÞ ¼
R1
�1

f ðE0Þ gðE� E0Þ dE0: ð6Þ

This may be evaluated by taking the Fourier transforms of f and g,

multiplying them together, and back-transforming the resulting

function. Therefore, computational problems involving convolutions

are commonly tackled using a fast Fourier transform code. The result

is very rapid evaluation of the convolution, which is ideal for iterative

applications as implemented here, but comes at the expense of

potentially introducing transform artefacts to the spectrum.

It is also possible, however, to take the discretely sampled spec-

trum data, f, and perform the convolution numerically at each data

point as long as the function with which it is being convolved, g, goes

to zero as E 0 goes to infinity. Fortunately, this is the case with

equations (3) and (4). Evaluating the convolution this way will

guarantee the absence of any Fourier transform artefacts, but at the

expense of speed. Given the importance of an accurately calibrated

spectrum, DXAS Calibration evaluates any required convolutions

using this latter numerical technique.

The speed penalty resulting from this choice of algorithm is not too

severe in practice. Given that a typical sampling interval for an XAS

beamline is between 0.1 and 1.0 eV, and that the characteristic widths

of both the Lorentzian and exponential convolution functions are of

the order of a few eV, the convolution may be accurately evaluated

by summing contributions from only a few tens of data points. As a

result, evaluating the convolution, and Marquardt difference and

derivative matrices of a spectrum spanning 1000 eV (sampled every

0.5 eV) with a Lorentzian of � = 3.40 eV and an exponential of � =

1.25 eV, takes approximately 2 s on a Pentium IV 3.0 GHz processor.

3.3. Instrument parameter integration

Without instrument function compensation, the output parameters

from the coordinate transformation algorithm may be considered

optimal after just one execution. However, if the instrument functions

between dispersive and reference beamlines differ enough to require

additional instrument function calibration, the optimal parameters

for coordinate transformation are dependent on the convolution

functions that have been applied to the reference spectrum. The

instrument parameters must therefore be optimized first. Unfortu-

nately the reverse is also true. In order to optimize the instrument

parameters on the reference spectrum, a dispersive spectrum with

calibrated axes is required. This circular argument means that neither

the coordinate transforms nor instrument corrections may be opti-

mized with just one execution of their respective fitting algorithms.

The solution must therefore be obtained by executing each algorithm

in turn, allowing it to improve its solution with respect to the other,

and iterating until self-consistency is reached; that is, when neither

algorithm is capable of reducing the differences in absorption struc-

ture any further.

4. Calibration of XAS spectra from Fe and SrF2

4.1. Calibration at the Fe K edge

DXAS Calibration has been successfully tested on data obtained

from ID24 at the Fe K edge (7.112 keV) of a polycrystalline Fe foil.

At this energy the instrument function mismatch between ID24 and

BM29, the chosen reference beamline, was minimal, and therefore

calibration could be achieved without the implementation of any

instrument corrections. The fit parameters are therefore only repre-

sented by coordinate transformations and background corrections. A

cubic polynomial (four parameters) was fitted to the energy axis, and

a linear polynomial (two parameters) was fitted to the absorption

axis. Background correction was performed by fitting a six-coefficient

Chebyshev polynomial to the residual differences between the two

spectra and subtracting it.

The reference spectrum used in this calibration was obtained from

a similar Fe foil, but from one of a thickness such that the jump at the

edge, ��x, was approximately 1.0.

An initial estimate of the parameter values was passed to the

calibration algorithm, along with an initial Marquardt scale factor of

1.0 � 10�3. Calibration then optimized the parameters, aborting after

seven failed attempts to reduce the spectral differences, and resulted

in a solution with residual differences at each point of less than 0.4%

of the average absorption. These final parameter values, and also the

initial estimate values, are given in Table 1. The calibration solution is

shown in Fig. 2.

4.2. Calibration at the Sr K edge

At the Sr K edge (16.105 keV), best results are obtained from a

Laue diffracting crystal, since many distortions become present at

such high energies in Bragg geometry (Hagelstein et al., 1995).

However, for the purpose of testing this code, measurements were

made using Bragg geometry, where the instrument functions of ID24

and BM29 differ significantly. As such, successful energy-scale cali-

bration required use of instrument correction parameters. Both the

Lorentzian correction for diffraction monochromacity, and expo-

nential correction for polychromator transparency, were utilized.

computer programs
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Table 1
Estimated and optimized parameter values for calibration at the Fe K edge.

Parameter Estimate Calibrated value

a0 7.027 � 103 7.032 � 103

a1 3.038 � 10�1 2.951 � 10�1

a2 0 �7.356 � 10�6

a3 0 1.178 � 10�8

b0 7.929 � 10�1 7.185 � 10�1

b1 5.854 � 10�1 9.324 � 10�1

Background Parameter value

x0 9.120 � 10�2

x1 6.384 � 10�2

x2 1.599 � 10�2

x3
�6.710 � 10�3

x4 6.368 � 10�3

x5 8.137 � 10�3



Polynomial coordinate transformations again consisted of a cubic

polynomial for energy calibration, and a linear polynomial for

absorption normalization. Background correction again consisted of

a six-coefficient Chebyshev polynomial. The BM29 reference spec-

trum was obtained from a similar SrF2 pellet as that used on ID24,

which again had an edge jump of approximately 1.0.

The initial estimate and calibrated parameter values are shown in

Table 2, with the calibrated solution shown in Fig. 3. The BM29

reference spectrum is shown in Fig. 4 before and after the application

of the instrument correction functions. The overall product of the two

correction functions is shown as an insert. Some systematic differ-

ences between the ID24 and BM29 spectra persist after calibration,

which most likely originate from inhomogeneities in the powdered

pellets. Despite these, residual spectral differences at each point are

approximately 0.7% of the average absorption, with fine-structure

oscillations in calibrated and reference spectra coincident.

5. Conclusions

DXAS Calibration provides a quantitative and automated approach

to the problem of calibration of dispersive XAS spectra. While

providing a solution to the primary problem of coordinate transfor-

mation, it also moves beyond current techniques to consider cali-

bration of spectra against references obtained from beamlines with

significantly different instrument response functions. This not only

computer programs
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Table 2
Estimated and optimized parameter values for calibration at the Sr K edge.

Parameter Estimate Calibrated value

a0 1.571 � 104 1.569 � 104

a1 1.228 � 100 1.220 � 100

a2 0 3.147 � 10�4

a3 0 �4.3507 � 10�7

b0 6.190 � 10�1 7.185 � 10�1

b1 9.205 � 10�1 9.324 � 10�1

� 1.00 eV 2.35 eV
� 1.00 eV 1.25 eV

Background Parameter value

x0
�1.092 � 10�2

x1 1.231 � 10�1

x2 5.224 � 10�2

x3
�4.072 � 10�3

x4
�1.915 � 10�3

x5 8.419 � 10�3

Figure 3
Calibration of an ID24 Sr K-edge spectrum with respect to a similar one obtained
from BM29. Both spectra were obtained from BN-based pellets of powdered SrF2.
At the Sr K edge, there is significant deviation in instrument functions between
ID24 and BM29, so, in addition to coordinate calibration and background
correction, convolution-based instrument corrections have also been applied to
the BM29 reference spectrum in order that its instrument function matches that
of ID24.

Figure 4
The Sr K edge acquired from BM29, shown before (grey) and after (black) the
application of instrument corrections necessary to match its overall instrument
function to that of ID24. The product of the two correction functions, Lorentzian
and exponential, is shown as an insert.

Figure 2
Calibration of an ID24 Fe K-edge spectrum with respect to a similar one obtained
from BM29. Both spectra were obtained from samples of polycrystalline iron foil.
At the Fe K edge, the mismatch in instrument functions between ID24 and BM29 is
negligible, and so this calibration consists only of polynomial-based coordinate
transformations and a background correction.



allows for calibration of spectra within a more general framework,

but also provides quantitative information on how dispersive beam-

lines perform with respect to others.

The core of DXAS Calibration is coded in cross-platform compa-

tible C++ with a Visual Basic graphical user interface for Windows

users. The source code, a windows executable file, the examples given

here and comprehensive instructions are included in the package. All

components of the code are freeware, and are released under the

conditions of the GNU General Public License.

The authors would like to thank the beamline staff of ID24 and

BM29, particularly S. Pascarelli, O. Mathon and A. Trapananti, for

their ongoing help and support for this project.
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