High Temperature and High Pressure Research Beamline, BL04B1

The BL04B1, “High Temperature and High Pressure Research Beamline,” is a beamline for Earth and materials sciences equipped with large multianvil devices. The white X-rays in a high-energy range (~20 - 150 keV) are available for energy-dispersive X-ray diffraction experiments using a solid-state detector (SSD) and for X-ray radiography experiments using a CCD camera. This beamline is designed particularly for conducting researches on the precise in situ X-ray measurements of the crystal structures and physical properties of minerals under high pressure and high temperature conditions. High-pressure and high-temperature experiments are performed using two large multianvil devices: SPEED-1500 and SPEED-Mk.II (Fig. 1), both of which are installed in tandem at the experimental stations [1]. These devices operate double-stage (Kawai-type) high-pressure vessels with two types of the second-stage anvils: cubic tungsten carbide (WC) and sintered diamond (SD) anvils (Fig. 2). Pressures up to 30 GPa or 60 GPa have been achieved with the WC (26 x 26 x 26 mm³) or SD (14 x 14 x 14 mm³) anvils above 2500 K, respectively, which cover the depths of more than 1500 km in the Earth’s interior.

An example of high pressure studies with sintered diamond anvils: wurtzite-rocksalt transformation in GaN

The pressures produced in Kawai-type multianvil devices have been generally limited to ~30 GPa because of the plastic deformation of tungsten carbide (WC) anvils used for second-stage anvils. Thus, sintered diamond (SD) anvils, which are much harder than these conventional anvils, were introduced to overcome this limit. A Kawai-type multianvil device at SPRing-8, SPEED-Mk.II, was custom-designed for this purpose [2]. By developing the techniques using a combination of synchrotron radiation and the SD anvils (14 x 14 x 14 mm³ cube), pressures higher than 60 GPa have been successfully generated at room temperature (Fig. 3). An in situ X-ray diffraction study on the phase transitions in GaN was performed using this technique [3], and the onset of the wurtzite-rocksalt transformation in this material was observed at 54 GPa and 300 K and at 51.4 GPa and 750 K, suggesting a negative Clapeyron slope of -170 K/GPa (Fig. 4). A rocksalt-type GaN was found to be quenchable to the ambient conditions. It is suggested that a noticeable change in electric resistance may not be accompanied by the wurtzite-rocksalt transformation. Moreover, the sluggishness of the reaction observed in the present study also suggests that this phase transformation in GaN is unsuitable for being used as a pressure reference point.

Fig. 1
Photographs of large multianvil devices installed at BL04B1: (a) SPEED-1500, (b) SPEED-Mk.II.

Fig. 2
Second stage anvils: tungsten carbide (WC: 26 x 26 x 26 mm³) and sintered diamond (SD: 14 x 14 x 14 mm³) cubes.

Fig. 3
Examples of pressure generation using SD anvils (14 x 14 x 14 mm³ cube) with truncated edge length of 1.5 mm at room temperature. The generated pressures are determined from the MgO scale (Johnston et al., 1982).

Fig. 4
Phase transitions in GaN determined using in situ X-ray observations with SD anvils [3]. a and b denote the conditions of the onsets of wurtzite-rocksalt transformation at 300 and 750 K, respectively. The solid diamond, solid square, and gray square show the P, T conditions where wurtzite type, rocksalt type, and composite of wurtzite and rocksalt type are formed, respectively. The dashed line is a tentative phase boundary.


WIRMS2007
International Workshop on Infrared Microscopy and Spectroscopy with Accelerator Based Sources (WIRMS2007) will be held at Awaji Yumebutai, Awaji City, Hyogo, Japan, from September 25 to 29, 2007.

www.spring8.or.jp