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Differential extended X-ray absorption fine structure (DiffEXAFS) is a novel

technique for the study of small atomic strains. Here the development of this

technique to the measurement of thermally induced strain is presented. Thermal

DiffEXAFS measurements have been performed on �-Fe and SrF2, yielding � =

(11.6 � 0.4) � 10�6 K�1 and (19 � 2) � 10�6 K�1, respectively. These are in

good agreement with accepted values, proving the viability of the technique.

Analysis has revealed sensitivity to mean atomic displacements of 0.3 fm.
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1. Introduction

Differential extended X-ray absorption fine structure

(DiffEXAFS) is a novel technique for the study of small

atomic strains that has recently been developed by Pettifer et

al. (2005). Taking a sample where the fundamental structure is

known, the technique employs a dispersive-geometry X-ray

spectrometer to measure subtle changes in absorption fine

structure induced by the modulation of a given sample prop-

erty. This allows changes in photoelectron scattering path

length to be found, and thus any atomic perturbations in the

local area of the absorbing atom (Ruffoni et al., 2007).

In this work we present the results of thermal expansion

measurements conducted using thermal DiffEXAFS, where

samples undergo temperature modulation of the order of 1 K.

For the first such measurements of this nature, we chose to

study iron and strontium fluoride under ambient conditions

given that their thermal characteristics are well understood,

and thus would serve to assess the viability and accuracy of the

technique. Previous DiffEXAFS measurements (focusing

exclusively on magnetostrictive phenomena) have directly

resolved mean atomic displacements of the order of 1 fm

(Pettifer et al., 2005), 100 times more sensitive than is typically

possible with standard EXAFS techniques (Dalba et al., 1999).

Here we report sensitivity to mean atomic displacements of

0.3 fm.

2. Theory

Since DiffEXAFS is concerned with small changes in the

sample material, the anticipated signal may be found from a

first-order Taylor expansion of the EXAFS fine-structure

function with respect to the modulated sample property. For

thermal studies the signal has two components, one from net

expansion of the sample, and another from changes to the

disorder of each atom.

The spherically averaged thermally dependent EXAFS

fine-structure function

�ðk;TÞ ¼
P

j

AjðkÞ exp �2k2�2
j ðTÞ

� �
sin sjðTÞkþ ’jðkÞ
� �

ð1Þ

thus yields

�� ¼
P
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Aj exp �2k2�2
j
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k cos ksj þ ’j

� �
�sj

�

� 2k2 sin ksj þ ’j
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��2

j

�
; ð2Þ

where j covers all scattering paths of length sj , including

multiple scattering, Aj(k) is an amplitude function, �2
j (T) is the

Debye–Waller factor for structural disorder, and sj(T)k + ’j(k)

is the scattering phase. Strictly speaking, Aj(k) and ’j(k) are

also thermally dependent, but their variations are negligible

compared with �2
j (T) and sj(T), respectively. �sj describes

thermally induced net changes in scattering path length. In the

absence of any non-linear phenomena such as phase transi-

tions, this just arises from thermal expansion in the sample.

��2
j represents changes to the Debye–Waller factor and thus

thermal disorder.

Both equations (1) and (2) model thermal expansion, and

thus asymmetry of the atomic pair-potential, within the quasi-

harmonic approximation of Leibfried & Ludwig (1961). In this

sense, given that �T is small for DiffEXAFS, the harmonic

Gaussian pair-potential typically used in EXAFS is retained,

but its centroid displaced to model anharmonicity arising from

thermal expansion.

Given that the fundamental structure of the sample is

known beforehand, fitting (2) to experimental data deals with

a strictly limited number of parameters; positions of atoms are

fixed, and thus shell radii and coordination numbers. Conse-

quently, Aj(k) and ’j(k) may be determined from first princi-
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ples, and �2
j from a conventional EXAFS fit, leaving only the

perturbations �sj and ��2
j to be determined from the

DiffEXAFS.

Examining (2), it is clear that the disorder term retains the

sine phase dependency of the original fine-structure function

(1), whereas the expansion term has changed to a cosine

dependency. Contributions from thermal disorder are there-

fore in phase with the conventional EXAFS, whilst those from

thermal expansion are in quadrature. This difference is key in

allowing each term to be resolved in an experimental

DiffEXAFS spectrum.

It can also be seen that both terms scale with photoelectron

wavevector: expansion by k and disorder by k2. This indicates

that both terms are amplified relative to the conventional

EXAFS as X-ray energy increases, resulting in more high-k

oscillations being present in the DiffEXAFS compared with

the conventional fine structure, in turn allowing DiffEXAFS

data to be acquired further from the edge.

Inserting the thermal expansion coefficient for each path �j,

and considering the possibility of non-unit-temperature

modulation, (2) becomes

��=�T ¼
P

j

AjðkÞ exp �2k2�2
j

� �
ksj cos ksj þ ’jðkÞ

� �
�j=�T

�

� 2k2 sin ksj þ ’jðkÞ
� �

��2
j =�T

�
: ð3Þ

Each coefficient is assumed to be temperature independent

since �T is only of the order of one 1 K.

The �j may be analysed in the context of the geometry of

path j in order to obtain the second-rank thermal expansion

tensor �mn. Each tensor coefficient is determined by the

analysis of a scattering path with geometry sensitive to strains

along the same direction described by the coefficient. Some

paths, particularly multiple-scattering paths, may be sensitive

to strains described by two or more coefficients.

However, the point-group crystal symmetry of a chosen

sample material can be exploited through von Neumann’s

principle to reduce the number of independent coefficients

(Nye, 1985). For crystals of cubic symmetry as used here, the

tensor is isotropic. Thus �j is the same for every scattering

path.

Note also that in inserting �j into (2) an additional factor, sj,

is introduced. This reveals the last key property of the

differential fine-structure function: thermal expansion in

larger scattering paths is amplified relative to shorter ones.

High-order paths therefore hold comparatively greater

significance than they would do in conventional EXAFS.

Critically, the thermal-disorder term does not scale with sj, so

when sj is large the thermal expansion component of the

differential fine structure becomes a greater fraction of the

total observed signal.

Given that typical values of ��2
j are roughly an order of

magnitude greater than �j, thermal DiffEXAFS signals will be

largely in phase with the conventional EXAFS, thermal

expansion being manifest as a small phase-shift.

3. Experimental

DiffEXAFS experiments were performed on ID24, the

Dispersive-EXAFS beamline of the ESRF (Pascarelli et al.,

2006). Mounted on a third-generation undulator source and

producing a wavelength-dispersive beam corresponding to an

energy range of several hundred eV, ID24 allows an entire

EXAFS spectrum to be acquired simultaneously. Averaging

pairs of 200 ms acquisition measurements over a few hours

according to Mathon et al. (2004) yields fractional errors in ��
of about 10�5. Temperature modulation was performed by

passing one of two jets of heated N2 gas over samples with a

small thermal mass, contained within a thermally isolated

environment as shown schematically in Fig. 1.

Gas from a dry nitrogen source was passed into a fast-

switching two-way fluidic valve mounted at the rear of the

apparatus. Simply by passing a high or low voltage signal to

the valve, gas was switched to flow down separate channels

and into one of two identical aluminium heat sinks.

The temperature of each heat sink was set by a Peltier effect

heater (PEH) mounted on top of it. Also mounted on the heat

sink was a silicon band-gap temperature sensor, which, along

with PEH, were connected to a proportional integral deriva-

tive (PID) controller that then actively regulated the power in

the PEH so as to maintain a constant temperature in the heat

sink. The desired temperature was selected on the PID

controller to a precision of 0.1 K and then maintained elec-

tronically to an accuracy of �0.2 K.

With this arrangement, temperature modulation was

achieved by setting the two heat-sink PID controllers to

slightly different temperatures and then switching the two-way

valve back and forth so as to cycle the gas flow through each

heat sink alternately. Since the temperature of the heat sinks

themselves did not require modulation between each XAS

measurement, the thermal stability of the gas jets was high.

Given also that the two heat sinks were totally independent,

the output gas jet temperature could be cycled in a repro-

ducible fashion upon switching of the valve.

The temperature of the sample material itself was recorded

for each spectrum acquisition using a small copper-constantan

thermocouple attached to it. The time required for the sample
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Figure 1
A schematic representation of the gas jet apparatus used for this thermal
DiffEXAFS experiment.



to reach equilibrium with a changed gas temperature was

approximately 1–2 s depending on the sample and the degree

of temperature change.

4. Results and discussion

Fig. 2 shows a plot of both the Fe K- and Sr K-edge EXAFS

(scaled in amplitude) and the associated thermal DiffEXAFS

for modulation of the order of 1 K at room temperature. The

time between measurements at T+ and T� was 1.5 s for the Fe

measurements and 3 s for the Sr measurements, with each pair

of measurements repeated 600 times and averaged to mini-

mize statistical noise. Each complete difference measurement

was repeated with the initial gas jet phase reversed, causing all

observed structure to invert about �� = 0, proving its thermal

origin. These spectra have themselves been inverted and

plotted as the grey lines on Fig. 2. Additional control

measurements with �T = 0.0 K yielded no structure larger

than that anticipated from our 0.2 K error in setting the gas jet

temperatures, further demonstrating that the signals are

thermally generated.

A strong dominance of the DiffEXAFS disorder compo-

nent is clearly observed given the signals are largely in phase

with the EXAFS. However, the vertical dashed-grey lines,

which are centred on the three largest EXAFS peaks, reveal

that the DiffEXAFS spectra are phase shifted, indicating that

the thermal expansion component has also been detected. As

�T increases, so does the amplitude of the difference signal.

Normalizing each to a 1 K unit-temperature modulation yields

the differential EXAFS, which shows that the amplitude

follows a linear scaling relationship with temperature as

predicted by (3).

The absence of any sharp features at the edge energy, where

the XAFS derivative is maximal, is testament to energy

stability between T+ and T� measurements of better than

10 meV as required (Pettifer et al., 2005). Also noticeable,

especially in the Fe data, is the k and k2 dependency of the

DiffEXAFS expansion and disorder terms, respectively.

Whereas the three marked peaks in the EXAFS plot become

progressively smaller with increasing energy, the same peaks

in the DiffEXAFS plots are all of similar amplitude. Addi-

tionally, the sj dependency of the thermal expansion term is

visible by virtue of the additional high-frequency structure,

seen between the primary peaks of the DiffEXAFS data, but

which are absent from the conventional EXAFS.

For analysis of the Fe data, the fine-structure phase, sj(T)k +

’j(k), and amplitude, Aj(k), components in (1) were calculated

from ab initio theory in the range 0 � k � 20 Å�1 using the

FEFF code (version 8.28) (Rehr & Albers, 2000). The �-Fe

body-centred cubic (b.c.c.) crystal structure supplied to FEFF

was generated using the lattice parameter at room tempera-

ture, a = 2.8665 Å (Pearson, 1958). Atomic potentials were

modelled according to Hedin & Lundqvist (1969). Calculated

scattering paths (which included multiple-scattering paths)

were filtered, limiting the minimum path amplitude to 4% of

the largest path amplitude and the maximum half path length,

R, to 5.0 Å. This left 12 significant paths out to and including

the fifth coordination shell.

Using this information, the absolute �2
j for each of these

paths were then obtained from a fit to a normal Fe K-edge

EXAFS spectrum, acquired on BM29, the conventional step-

scanning XAS beamline of the ESRF. For the first three single

scattering paths, these were �1 = (6.5 � 0.2) � 10�3 Å2, �2 =

(5.8 � 0.2) � 10�3 Å2 and �3 = (7.2 � 0.4) � 10�3 Å2,

respectively. This spectrum was Fourier filtered to limit R to

5.0 Å, matching the path length filter used in FEFF. The

structure was again fixed to a b.c.c. structure with a = 2.8665 Å.

This fit also served to establish the fine-structure amplitude

reduction factor, S2
0, and a correction to the calculated edge

energy, �E0. Once this fit was complete, all absolute structural

parameters in (3) were known. Fixing these parameters then

provided a reference point from which to measure the

perturbations observed in the DiffEXAFS.

The experimental DiffEXAFS spectra were Fourier filtered,

again to the region 0.0 � R � 5.0 Å. Theory DiffEXAFS

spectra, generated from the paths calculated by FEFF, and

with the information obtained from the conventional EXAFS

fit, were then fitted to these experimental spectra in order to

determine � and ��2
j /�T. The subscript j is dropped on �

through von Neumann’s Principle, and the same coefficient

fitted to each path. Although 12 paths were considered, only
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Figure 2
Experimental EXAFS and DiffEXAFS for the Fe and Sr K-edges of �-Fe
(top graph) and SrF2 (bottom graph) at room temperature. �T for each
difference spectrum is shown on the right, and is set to an accuracy of
�0.2 K. The grey plots are the inverted gas jet phase-reversed signals,
which are essentially identical to the black plots, proving the thermal
origin of the signal. The dashed vertical lines, which are centred on peaks
in the EXAFS plots, highlight the phase shift of the difference signals with
respect to the EXAFS.



the first four single-scattering paths were found to contribute

significantly to the DiffEXAFS signal.

The noise in the data was estimated by assuming that it was

white, and was purely statistical for Fourier components

corresponding to R � 30 Å. No low-R filter was imposed to

remove the absorption background. Instead, background

features were subtracted using a six-coefficient Chebyshev

polynomial incorporated into the fit.

Rather than filtering the noise in R-space, the Fourier

transform relation R = �/2�k was used to fit smoothed

piecewise-continuous natural cubic splines, with knots posi-

tioned such that �k corresponded to R = 30 Å, to the spectra

to define the EXAFS components. The fit residuals then

defined the noise. This approach is more favourable to Fourier

filtering since it allows us to preserve the k-dependence of the

noise.

The analysis process for the SrF2 data was very similar.

Given the SrF2 lattice parameter a = 5.7996 Å (Swanson et al.,

1955), FEFF generated the scattering phase and amplitude

information. Filtering limited paths to no more than 7.5 Å in

length, and required their amplitude to be at least 1.5% of the

amplitude of the largest path.

�2
j (T), S2

0 and �E0 were obtained from a fit to the

conventional Sr K-edge structure [giving �1 = (9.6 � 0.1) �

10�3 Å2, �2 = (7 � 3) � 10�3 Å2 and �3 = (10.4 � 0.4) �

10�3 Å2, respectively, for the first three single-scattering

paths]. The DiffEXAFS were Fourier filtered to 0 � R �

4.57 Å, leaving three significant paths: the first three single-

scattering paths. Theory was again fitted to the experimental

DiffEXAFS to obtain � and ��2
j /�T. The noise was extracted

based on a maximum EXAFS scattering radius of 15 Å.

Fig. 3 shows the theory fit to experiment for the filtered Fe

and SrF2 DiffEXAFS data based on (3). The corresponding

parameters are shown in Table 1. The non-monotonic trend in

��2
j /�T with increasing j in Fe, although not in agreement

with harmonic models of atomic vibrations, are consistent with

recent Born–von Karman lattice dynamics calculations

performed by Jeong et al. (2003).

Averaging the thermal expansion coefficient for each

sample material over all its DiffEXAFS measurements yields

� = (11.6 � 0.4) � 10�6 K�1 for Fe and � = (19 � 2) �

10�6 K�1 for SrF2, which agree with the accepted values of

� = 11.8 � 10�6 K�1 and � = 18.1 � 10�6 K�1, respectively

(Nix & MacNair, 1941; Roberts & White, 1986). Given the

error of 5 � 10�7 K�1 in the Fe thermal expansion coefficient

over an average �T of 2.6 K, we claim to be able to resolve

thermally induced atomic displacements to an accuracy of

about 0.3 fm.

5. Conclusions

DiffEXAFS is a viable technique for the measurement of

thermally induced strains. Here we have demonstrated the

measurement of thermal expansion in some simple materials,

and have shown that the microscopic expansion coefficient is

the same as its macroscopic counterpart. However, the tech-

nique presented may be applied to more complex crystalline

systems or even amorphous systems with minimal changes.

The potential for studying amorphous systems presents

numerous opportunities where other techniques struggle. The

true power of thermal DiffEXAFS, however, will lie in the

measurement of non-linear phenomena such as phase transi-

tions. With displacements detectable over temperature
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Figure 3
Fourier-filtered experimental DiffEXAFS spectra (solid line) for �-Fe
(top graph) and SrF2 (bottom graph), which have been fitted to the
DiffEXAFS fine-structure function (3) (dashed line). �T for each
spectrum is given on the right. The associated fit parameters are shown in
Table 1.

Table 1
DiffEXAFS parameters for �-Fe and SrF2.

� is in units of 10�6 K�1 and ��2
j /�T in 10�5 Å2 K�1. Note that errors for �

and ��2
j are based on the fit errors only and do not include possible errors

from �T.

Fe DiffEXAFS �T (K)

1.7 � 0.2 2.7 � 0.2 3.6 � 0.2

� 11.1 � 0.9 12.1 � 0.6 11.5 � 0.5

��2
1/�T 1.48 � 0.04 1.38 � 0.03 1.33 � 0.02

��2
2/�T 1.34 � 0.08 1.04 � 0.06 1.09 � 0.04

��2
3/�T 2.2 � 0.1 1.60 � 0.07 1.47 � 0.06

��2
4/�T 2.0 � 0.1 1.5 � 0.1 1.38 � 0.08

SrF2 DiffEXAFS �T (K)

1.5 � 0.2 4.7 � 0.2

� 20 � 3 18 � 1

��2
1/�T 2.04 � 0.09 1.85 � 0.05

��2
2/�T 3.1 � 0.4 2.0 � 0.2

��2
3/�T 2.2 � 0.5 3.4 � 0.2



changes of about 1 K, high-resolution measurements of atomic

motion may be made through transition regions, which until

now has not been possible by any other X-ray spectroscopic

technique.
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