
research papers

J. Synchrotron Rad. (2007). 14, 471–476 doi:10.1107/S0909049507040228 471

Journal of

Synchrotron
Radiation

ISSN 0909-0495

Received 5 April 2007

Accepted 13 August 2007

# 2007 International Union of Crystallography

Printed in Singapore – all rights reserved

Observation of interference effects in coherent
diffraction of nanocrystals under X-ray standing-
wave illumination

Piotr Gryko,a Meng Liang,b Ross Hardera and Ian K. Robinsona*

aLondon Centre for Nanotechnology, Department of Physics and Astronomy, Gower Street, London

WC1E 6BT, UK, and bDepartment of Physics, University of Illinois, 1110 West Green Street,

Urbana, IL 61801, USA. E-mail: i.robinson@ucl.ac.uk

Coherent X-ray diffraction is a useful technique for understanding the structure

of compact objects including those which can be represented as phase objects.

X-rays are highly penetrating and have wavelengths very close to atomic

spacing. In this work, gold nanocrystals (on a reflecting substrate) were imaged

at the Advanced Photon Source and found to produce a novel double diffraction

pattern. Simulations were carried out to explain the experimental diffraction

pattern in terms of reflection of the incident beam from the substrate to produce

a standing wave. The experimental data were then phased to produce a two-

dimensional real-space image of the gold. It is expected that the standing-wave

illumination may be a useful tool to aid the convergence of the phasing

algorithms for nanocrystals.
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1. Introduction

Many problems in science involve developing and exploring

structures on the nanoscale, motivated by the interesting

physical properties exhibited by materials in this size regime.

Information regarding the size, density distribution, absolute

free energy and structure of materials at this scale yield

insights into the materials’ behaviour, promising a new class of

designer materials. However, obtaining a full three-dimen-

sional structure of such an object can be extremely challen-

ging.

X-rays are generally useful for looking at structure on the

atomic scale, having a wavelength close to typical atomic

spacings whilst also being very penetrating. While imaging

with X-rays is very appealing, there is a lack of suitable lenses

available to obtain the very high magnification needed. One

solution has been to abandon the use of a lens altogether and

employ computational methods instead, yielding a lensless

X-ray method called coherent X-ray diffraction (CXD). One

advantage is that diffraction from a crystal lattice acquires

additional phase whenever atoms are displaced from a lattice

site so that strain fields can be mapped, as demonstrated

recently by Pfeifer et al. (2006).

Illuminating a small object with a coherent X-ray beam

results in a far-field pattern which, when sampled in two

dimensions (2D), is related to the Fourier transform of the

projection of the density of the object onto a plane perpen-

dicular to the exiting diffracted wavevector (Robinson &

Miao, 2004; Livet, 2007). This simple relationship would allow

for an inverse transform to image the object if the lost phase

information could be recovered. This is the essence of

coherent X-ray diffractive imaging (CXDI).

If we consider a collection of electrons to be a continuous

charge density, �(r), illuminated by a wave ki, the scattered

radiation is the superposition of the radiated fields from each

volume element at the point of observation in direction kf. By

making the kinematical approximation, whereby we assume

that each photon only interacts once with the charge distri-

bution and the incident wave is a plane wave, the scattered

amplitude can be written as (Warren, 1990; Williams, 2004;

Als-Nielsen & McMorrow, 2001)

AðQÞ /
R

sðrÞ exp iQ � rð Þ d3r; ð1Þ

where Q = kf � ki is the momentum transfer. The shape

function s(r) can be a complex function, s(r) = |s(r)|exp(i’),

with the phase angle ’ containing information about the strain

within the crystal.

The CXD pattern is collected by means of a 2D charge-

coupled device (CCD) detector, with the detector plane

oriented perpendicular to the scattered wavevector kf. The x

and y axes are chosen to lie in the plane of the detector and the

z axis in the direction of kf. Therefore a 2D slice though a

CXD pattern is related to the Fourier transform of the

projection of the real-space density onto the xy plane. In this

paper we only consider the measurement of such 2D patterns

and the reconstruction of the corresponding 2D projections.

Since it is the intensity I(Q) = |A(Q)|2 that the CCD measures,

the phase of A(Q) is lost and must be recovered by compu-
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tation before the Fourier transform can be inverted to obtain

an image of the electron density �(r).

2. Experiment

The synthesis of gold nanocrystals involved the evaporation of

gold onto a silicon dioxide substrate, forming a 20 nm poly-

crystalline layer. This was then heated to the melting point of

gold (1337 K), causing it to de-wet from the surface of the

substrate and form small molten droplets. These were then

allowed to cool slowly to room temperature over a period of

12 h, giving plenty of time for gold nanocrystals to form. An

empirical ratio of 1 :10 exists for the deposition thickness to

nanocrystal size. Hence nanocrystals in the range 100–200 nm

were formed, with a random crystallographic orientation with

respect to the substrate. The separa-

tion between the nanoparticles is

approximately d
ffiffiffiffiffi
10
p

, where d is the

diameter of the nanocrystals. Hence

for a deposition of 20 nm, the nearest-

neighbour distance for 200 nm nano-

crystals is approximately 600 nm.

The � = 1.38 Å beam was prepared

with a double-crystal Si(111) mono-

chromator, focused to a probe of

about 1 mm diameter by Kirkpatrick–

Baez mirrors. The incidence angle of

the beam onto the substrate was

carefully controlled below the critical

angle of the substrate (�C ’ 0.2�).

Multiple accumulations of the

diffraction pattern were taken to

reduce the saturation of the CCD.

Unlike forward small-angle X-ray

scattering experiments, CXD does not

require a beamstop as the CCD is

never exposed to the beam directly;

only the diffracted and reflected-then-

diffracted parts of the beam are

measured.

Placing the gold-nanocrystal-coated

substrate (described above) in the

grazing-incidence X-ray beam, finding

a crystal and moving the detector to a

111 Bragg point yielded the diffraction

patterns shown in Fig. 1. A striking

doubled peak intensity distribution

was found under these conditions, the

explanation of which is the main

purpose of this paper. The beam

diameter was 1 mm, leaving an oval

optical footprint of approximately

100 mm � 1 mm on the sample. For

200 nm gold nanocrystals with a mean

spacing of 600 nm, the beam will

illuminate approximately 250 nano-

crystals. All the nanocrystals have

different crystallographic orientations with respect to the

substrate. The CCD detector subtends about 1� of the

diffraction cone and also about 1� of the rocking curve.

Therefore the probability of seeing a diffracting nanocrystal is

250/(360)2
� 1. This means that, despite the illumination of

many gold nanocrystals, it is relatively rare to obtain the

diffraction pattern of a single gold nanocrystal; two at the

same time, as might explain the doublet in Fig. 1, would be

highly unlikely. Indeed, imaging two nanocrystals with similar

crystallographic orientations at the same time would introduce

a strong speckle pattern caused by interference between their

corresponding diffraction patterns, which is not seen.

Fig. 1 shows measured 111 diffraction patterns, denoted

Au606_51, Au606_49 and Au606_62, the first two taken from

the same nanocrystal but with different angles of incidence, �i,
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Figure 1
CXD measurements of the paired diffraction peaks arising from the standing-wave illumination at
grazing incidence. Each series represents numbered frames taken from a rocking scan, passing
through the centre of the Bragg peak. The values of the rocking angle, �, are indicated below each
panel. The label refers to the data set as referenced in the text. The top two rows are on the same
crystal with different incidence angles �i, while the bottom row is a different crystal.



of the incident beam onto the SiO2 substrate. As �i was

increased up to the critical angle, the separation of the two

primary peaks was found to increase in proportion, suggesting

involvement of the totally reflected beam generated under

these circumstances. As �i was increased beyond �C, the

pattern generated by the reflected beam would vanish, leaving

only the diffraction pattern from the direct beam. Many

crystals were examined and were always found to show the

same magnitude and direction separation of their doubled

diffraction patterns, for a given �i.

Each diffraction image produced shows two central peaks

surrounded by circular fringes, which exhibit threefold

modulation. At each incidence angle the nanocrystal was

rocked about the surface normal, which causes the 111 peak to

pass through the Ewald sphere producing the series of frames

illustrated. However, there is a central area of cancellation

between the two central peaks in Au606_62 compared with a

maximum in Au606_49 and multiple fringes in Au606_51.

Since the intensity distribution is related to the square of the

Fourier transform of the crystal shape, we can identify the

prominent features of the patterns. The diffraction pattern

resembles two copies of the spherical Bessel function, which is

the Fourier transform of a sphere. File Au606_62 was chosen

for further analysis, owing to its unusual central cancellation,

the closeness of its Bragg peaks and its symmetry.

3. Standing-wave illumination

To support the experimental work, a theoretical model of the

system was created to simulate the diffraction pattern. Simu-

lations were written in C and called using Python scripts. A

real-space array of density pixels was created and the

diffraction pattern calculated using a fast Fourier transform

(FFT). The nanocrystal is illuminated with a beam of coher-

ence length greater than that of the object, allowing for the

beam to be treated as coherent. The incident beam reflects

from the substrate, at an angle below the critical angle of �C’

0.2� as shown in Fig. 2(a). The nanocrystal object is considered

to be illuminated by two incident waves, k1 and k2, which

interfere with each other to create a standing wave. Referring

to Fig. 2(b),

k1 ¼ k0x̂x��kŷy; ð2Þ

k2 ¼ k0x̂xþ�kŷy; ð3Þ

Atot ¼ A0 exp ik1 � rð Þ þ exp ik2 � rð Þ
� �

ð4Þ

¼ 2A0 exp ik0x̂x � rð Þ cosð�kŷy � rÞ ð5Þ

represents the amplitude of the superposition of the two

waves. Interference leads to a spatial modulation of the illu-

minating wavefield perpendicular to the reflecting surface with

a period 2�/�k. For incidence angles in the range 0 < �i < �C,

the minimum accessible period is 2�/�k = �/�C ’ 40 nm. This

conveniently matches the 200 nm size scale of the nanocrystals

under investigation here, in the sense that anywhere from zero

to five periods of the standing wave can be superimposed on

the crystal.

Diffraction patterns from a model nanocrystal were calcu-

lated assuming the standing wave form of the illumination

function above. To work in 2D, the projected density of the

crystal was modelled as the projection of a sphere, which is a

circle of radius r0 with a density proportional to ðr2
0 � r2Þ

1=2.

Soft edges were also included to diminish the Bessel-like

fringes in the diffraction pattern. The size of the model

particle r0 and the FFT size were adjusted to match the pixel

spacing of the experimental data of frame 23 of the selected

data file Au606_62. After careful fitting, it was determined that

the diameter of the nanocrystal was 170 � 20 nm.

The resulting simulations are shown in Fig. 3. The amplitude

of the illuminated object is striped by the presence of the

standing wave, while the phase of the stripes is alternately 0

and �. The phase is represented as a cyclic function going from

red, which represents a phase of zero, to green (�/2), to light

blue (�), to dark blue (3�/2) and then back to red. Hence for

the simulation in Fig. 3, which shows only red and light blue

colours for phase, the object is entirely real, although the

density does have positive and negative values. The value of

�k was found to determine the separation of the double

diffraction peak, as expected. The chosen data showed a clear

node of intensity along the bisector line of the two centres. The

simulation could be improved by adding an additional phase

shift, �, to the argument of the cosine term in (5). This phase

shift � is an interesting variable in the experiment. It corre-

sponds to the height of the nanocrystal above the reflecting

surface. While the height cannot easily be varied experimen-

tally, the wavelength of the standing wave, 2�/�k, can be

chosen using the incidence angle, �i. In this way the diffraction

pattern can be tuned through the entire range of phase shifts,

as long as there is sufficient separation between the crystal and

the substrate mirror. Two extremes of this variation are illu-

strated in Fig. 3, varying from an antinode at � = 0 in Fig. 3(a)

to a node at � = �/2 in Fig. 3(b). The latter case appears to
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Figure 2
(a) Schematic diagram of the experiment indicating how reflection from
the substrate surface at grazing incidence results in a second incident
beam reaching the sample. (b) Linear superposition of the two incident
beams results in a standing-wave illumination field.



agree better with experiment. This is also seen clearly in the

data at different incidence angles shown in Fig. 1. The

presence of a median node or antinode is readily seen in the

data and can be used as an alignment aid.

It is also clear from the two examples of Fig. 3 that the

choice of � allows control of the symmetry of the sample being

imaged. � = 0 results in illumination that is symmetric about

the centre of the sample, while � = �/2 is antisymmetric.

Values of 0 < � < �/2 would result in intermediate cases. This

is potentially important in the phasing of diffraction patterns

discussed in the next section. Fienup & Wackerman (1986)

showed that the phasing algorithms are prone to ‘stagnation’

whereby a real-space image becomes confused with a ‘twin’

image, related by inversion symmetry. Either the object or its

twin is a valid solution to the phasing problem, but a super-

position of both is not, yet can often resemble one. The

phasing algorithms can stagnate in a large number of possible

superposition states and not find either of the extreme

(untwinned) solutions. By using the standing-wave method

described here, data can be deliberately chosen to correspond

to the antisymmetric case, which is least likely to stagnate.

Moreover, an entire range of illumination symmetries could

be measured and employed to solve the phase problem self-

consistently.

4. Phasing and inversion to images

According to (1), illuminating a small object with a coherent

X-ray beam results in a far-field diffraction pattern, which is

related to the Fourier transform of the projection of the

density of the object onto a plane perpendicular to the exiting

diffracted wavevector. This simple relationship would allow

for an inverse transform to image the object in 2D. However, it

is only the amplitude of the complex quantity A(Q) that is

measured in the experiment, as its phase is lost. To recover the

phase requires a solution of this ‘phase problem’. According to

the theoretical work mentioned below, if the pattern is over-

sampled in 2D there is sufficient redundancy in the formalism

of the Fourier transform for a unique (beyond trivial

symmetry) solution to exist. Finding that solution with clever

algorithms is the essence of coherent X-ray diffractive imaging

as explained by Williams (2004). Methods have been devel-

oped for microscopy through the application of iterative

computational methods, which are the subject of this section.

The phasing algorithms used, function by successively

applying real- and reciprocal-space constraints to an iterate.

The earliest phasing algorithm was developed by Gerchberg &

Saxton (1972) for extracting the missing phases in both real

and reciprocal spaces when both amplitudes are known. Bates

(1982) is attributed with showing that iterative phase retrieval

works for reciprocal-space amplitudes only because generally

there are very few sets of phases that can be matched to the

measured amplitudes when a compact support is used for the

real-space function. Mathematical proofs by Bruck & Sodin

(1979), Sanz & Huang (1983) and the concept of factorisability

by Barakat & Newsam (1984) support this idea. Two algo-

rithms were used here, the error reduction (ER) based on the

work of Gerchberg & Saxton (1972), and the hybrid input

output (HIO), which was developed later by Fienup (1978).

The phasing methods depend on the data being over-

sampled relative to the spatial Nyquist frequency, because the

phase information is effectively encoded in the amplitude of

the diffraction fringes. Here we use data showing about 20

pixels per fringe, where the Nyquist frequency corresponds to

two pixels per fringe. The oversampling ratio is therefore

about ten, according to the definition of Miao et al. (1998).

Oversampling-based phasing methods have been applied to a

variety of systems, including arrays of gold balls by Marchesini

et al. (2003), cut-out graphics using a soft X-ray free-electron

laser by Chapman et al. (2006) and even freeze-dried whole

biological cells by Shapiro et al. (2005).

Our implementation of the phasing algorithm involves the

following steps. (i) Fourier transform an estimate of the real-

space density. (ii) Make the smallest change possible to the

Fourier transform, retaining its phase and overwriting its

amplitude with the measured value. This is called the Fourier

modulus constraint. (iii) Back transform the resulting estimate

of the diffracted amplitude. (iv) Make the smallest changes

possible to the calculated real-space density so that it obeys

the real-space constraint to arrive at a revised estimate of the

real-space density.

Most of the intelligence surrounding different algorithms

involves the implementation of step (iv). In our version of ER,
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Figure 3
(a) Simulation of the diffraction pattern obtained for the standing wave
symmetrically illuminating a circular object (� = 0). (b) Simulation of the
diffraction pattern obtained when the standing wave becomes antisym-
metric with respect to the diffracting object (� = �/2).



we set the density to zero outside a ‘support’ region, chosen to

estimate the expected shape of the sought object. Inside the

support, amplitude and phase are unchanged. In HIO, this

same procedure is applied, with the exception that points

outside the support are extrapolated by forming a linear

combination with the previous iterate. In our experience the

choice of the support is the most critical part of this procedure.

It should be slightly larger than the object, but not cut it in any

way. If it is too large, the convergence of the algorithm suffers

and uniqueness becomes a problem: multiple solutions result

from different choices of random numbers used to seed the

algorithm. If the support is too large by a factor of two, the

true object’s autocorrelation function, which is twice as large,

will form a solution, with all the diffraction phases the same.

We have verified that the doubled diffraction patterns can

be phased in 2D by the application of support-based iterative

algorithms. The result, shown in Fig. 4, compares images

obtained by inverting both the measured data and the best-fit

simulation described above. Inversion of the simulation yields

a striped circular image, similar to that used to simulate the

data in the first place. The asymmetry built into the phase is

accurately reproduced in well defined colours in the phase

map. The real data, which are expected to contain finer

features not considered in the simulation, produced a similar

image with some noteworthy differences: because the simu-

lation is close to the ideally antisymmetric case (� = �/2), the

two edge stripes in the amplitude of the simulated inversion

are almost equally strong; in the inverted-data image, one side

is suppressed. This is attributed to the fact that spherical

crystals growing on a substrate are indeed expected to have a

flat face of contact. Small undulations in the density distri-

bution along the stripes, by comparison with the simulation,

are considered to be due to projections of a slightly out-of-

round shape and small internal lattice distortions.

5. Conclusions and outlook

We have demonstrated that doubled X-ray diffraction

patterns of nanocrystals attached to a mirror surface can be

attributed to the formation of a standing-wave illumination

field. Simulations show that the standing wave can be

manipulated in a useful way by varying the grazing incidence

angle onto the mirror. The alternating sign of the illuminating

field shows up faithfully in the images of the object after

phasing and Fourier inversion by standard iterative methods.

The ability to manipulate the illumination at the time of

measurement by varying the angle of incidence could lead to

significant improvements in the imaging methods.

Firstly, an antisymmetric object can be artificially created,

which should greatly reduce the likelihood of stagnation of the

phasing algorithms. Secondly, the known sinusoidal density

distribution and phase alternation could be used as a powerful

real-space support constraint to assist the phasing. Fienup

(2006) has recently demonstrated coherent imaging by phase

retrieval with an illumination pattern constraint. Lastly, a

series of diffraction patterns can be collected as the standing

wave is swept across the nanocrystal, allowing piecewise

assembly of the structural density and possibly a self-consis-

tent overall solution of the phase problem. Rodenburg et al.

(2007) have demonstrated a working ‘ptychography’ algo-

rithm which cycles through diffraction patterns from a known

series of overlapping illumination apertures on an extended

object and solves for the phases using the redundancy of

information; a series of standing-wave positions or spacings

could be used with similar effect on a much finer length scale.

The images of a gold nanocrystal that we have obtained

are dominated by the standing-wave effects, which we have

explained, but also contain information about the structure

itself. Small modulations in the density can be seen in Fig. 4,

which may be density variations associated with defects. Pixels

with phases other than 0 and �/2 can be seen near the nodes of

the standing wave, but these may be affected by noise since the

phase is undefined when the amplitude is zero. The effects of

surface roughness of the reflector have not been investigated,

but it had been observed that the reflected diffraction pattern

fades out smoothly as the critical angle is crossed (for the

incident beam). A very rough surface with little or no specular

component would not be expected to show a double pattern,

while its diffuse scattering would superimpose multiple images

that would just tend to reduce the contrast. Finally, a curved or

macroscopically distorted substrate would probably work fine,
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Figure 4
Results from phasing and inversion of the diffraction patterns using 100
cycles of the ER algorithm, followed by 500 cycles of the HIO algorithm
and 100 more cycles of the ER algorithm. (a) Using the measured
diffraction pattern. (b) Using the simulated object that best explained
those data.



since a mirror is needed only in the immediate vicinity of the

nanocrystal sample.
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