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The resolution of X-ray diffraction microscopy is limited by the maximum dose

that can be delivered prior to sample damage. In the proposed serial

crystallography method, the damage problem is addressed by distributing the

total dose over many identical hydrated macromolecules running continuously

in a single-file train across a continuous X-ray beam, and resolution is then

limited only by the available molecular and X-ray fluxes and molecular

alignment. Orientation of the diffracting molecules is achieved by laser

alignment. The incident X-ray fluence (energy/area) is evaluated that is

required to obtain a given resolution from (i) an analytical model, giving the

count rate at the maximum scattering angle for a model protein, (ii) explicit

simulation of diffraction patterns for a GroEL–GroES protein complex, and (iii)

the spatial frequency cut-off of the transfer function following iterative solution

of the phase problem, and reconstruction of an electron density map in the

projection approximation. These calculations include counting shot noise and

multiple starts of the phasing algorithm. The results indicate counting time and

the number of proteins needed within the beam at any instant for a given

resolution and X-ray flux. An inverse fourth-power dependence of exposure

time on resolution is confirmed, with important implications for all coherent

X-ray imaging. It is found that multiple single-file protein beams will be needed

for sub-nanometer resolution on current third-generation synchrotrons, but

not on fourth-generation designs, where reconstruction of secondary protein

structure at a resolution of 7 Å should be possible with relatively short

exposures.
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1. Introduction

In order to solve the structure of proteins which are difficult

to crystallize, we have proposed spraying them across a

synchrotron X-ray beam and aligning them using the dipole

moment induced by a near-infrared polarized laser (Spence

& Doak, 2004; Starodub et al., 2005). All three orthogonal

intersecting beams (the single-file protein beam, the alignment

laser and the X-ray beam) operate quasi-continuously

(without synchronization) until an adequate signal-to-noise

ratio is achieved in the diffraction pattern, which is then read

out. By rotating the polarization of an elliptically polarized

laser, this process may then be repeated for many orientations

to fill the three-dimensional volume in reciprocal space with

diffraction data. Other alignment methods, such as static

electric or magnetic fields, or flow alignment have been

considered and demonstrated (Bras et al., 1998; Koch et al.,

1988), as well as employed in the field of birefringence

measurements (Fredericq & Houssier, 1973). These alignment

techniques may also be helpful to avoid the problem of

orientation classification of diffraction patterns from single

molecules in random orientations, which is the main difficulty

arising for single molecule imaging using pulsed X-ray free-

electron lasers (Chapman et al., 2006a; Huldt et al., 2003). The

motion of the molecules does not affect the diffraction pattern

if the illuminating wavefield is approximately planar, so that if

there is, for example, one molecule in the beam at any instant,

the method is equivalent to diffraction from a single stationary

molecule. The continuous replacement of this molecule by

others, however, allows an arbitrarily long exposure time

without radiation damage. For 20 mm-diameter X-ray and

laser beams, with a typical droplet beam velocity v = 50 m s�1,
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the transit time through the beam is t = 400 ns. The radiation

dose received by each protein during this time can be esti-

mated by applying Bragg’s rule of weighted summation of

monatomic photoabsorption cross sections for the elements

composing a protein. Using tabulated data on photoabsorp-

tion cross sections (Henke et al., 1993), for a generic protein

stoichiometry H50C30N9O10S1 and density 1.35 g cm�3, that

gives a mass absorption coefficient � of 9.6 cm2 g�1 at an

X-ray energy E = 8 keV, required a near-atomic resolution to

be obtained. The dose which sets the radiation damage limit at

atomic resolution is DL = 2 � 107 Gy (Henderson, 1995). That

assumes that an ejected photoelectron passes through

surrounding bulk material causing damage, and therefore

gives a lower limit on acceptable dose for the isolated

biomolecules in serial crystallography, where the photoelec-

trons deposit only a small fraction of their energy before

escaping into vacuum. Thus to damage the protein on the

atomic scale during its transit time one would need a flux for

8 keV X-rays of I0 = DL/�Et = 4.1 � 1010 photons s�1 nm�2.

Although at a lower X-ray energy the absorption coefficient

increases, the radiation damage dose at the increased scale of

resolution, feasible at this energy, increases as well. Therefore

the maximum tolerable flux does not increase dramatically

as X-ray energy decreases. This beam flux is far beyond the

capabilities of any existing or projected X-ray sources.

Therefore the resolution achievable in serial crystallography is

not limited by radiation damage, and depends chiefly on the

effectiveness of the alignment process (Spence et al., 2005) and

the time available for data collection.

If there is no interference between X-rays scattered from

different molecules then the scattered intensity from a single-

file train of macromolecules with separation L traveling across

an X-ray beam of diameter DB = 20 mm is proportional to the

number of molecules falling within the beam at any instant,

M = DB /L. We further assume that all M molecules are

perfectly aligned. For a monodispersed Rayleigh droplet

beam, the droplet diameter is about twice that of the column

of liquid from which they form by a necking instability

(Rayleigh, 1878), and the spacing between droplet centers is

about twice their diameter. Therefore, the 1 mm liquid column

produced by a Rayleigh droplet source gives L = 4 mm and M =

5, resulting in an 80% reduction in exposure time over single

molecule exposure at the same resolution. In order to increase

the scattering intensity, the design of ‘shower head’ aero-

dynamically formed multiple-jet nozzles is also under active

development (Weierstall et al., 2007). Experiments are

planned with an average of one protein per droplet, and also

with many proteins per droplet. Data will also be collected

using an average of one sub-micrometer protein crystallite in

each droplet. Even without alignment, the resulting ‘powder

protein data’ might be solved by molecular replacement

methods using the iterative flipping algorithm (Wu et al.,

2006). In this paper we treat mainly the case of one molecule

per droplet, and assume that all water except a few-monolayer

jacket of vitreous ice has been removed, as in recent research

on proteins using electrospray spectroscopy (Sobott et al.,

2005), so that the ice-jacket effects can be ignored. Inclusion

of the ice background may increase the required dose by

almost one order of magnitude; however, by choice of flight

distance the jacket thickness may be reduced to zero.

The purpose of this paper is to provide a realistic estimation

of the exposure time required for diffractive imaging of

biological macromolecules. We perform simulations of the

diffraction patterns for a sample object at various exposure

times, and then apply the iterative procedure to solve the

phase problem for charge density reconstruction in order to

determine the relationship between exposure time �t and

resolution d in the reconstructed image. The results are

compared with power-law estimates derived from simple

scattering models.

Our project grew out of earlier work on coherent diffractive

imaging (Marchesini, Chapman et al., 2003) based on a soft

X-ray undulator beam [beamline 9.0.1 at the Advanced Light

Source (ALS)], using a zone plate as a monochromator.

Diffraction from virus particles was intended, requiring

500 nm spatial coherence and high flux, made possible only

by an undulator operating in the soft X-ray region. For large

proteins or macromolecular assemblies at 20 Å resolution,

shorter wavelengths and less coherence are needed, so that

our simulations here are given for the new COSMIC beamline

at the ALS with an undulator optimized for producing soft

X-rays in the energy range 0.25–3 keV, for a new coherent

2–6 keV undulator beamline at the Advanced Photon Source

(APS) and for the energy-recovery linac (ERL) source

planned at Cornell.

2. Relationship between resolution and exposure time

Related treatments of the relationship between exposure,

dose, resolution and beam energy for X-ray microscopy have

been given previously (Howells et al., 2005; Marchesini,

Chapman et al., 2003; Shen et al., 2004). That work was based

on calculation of the imaging dose (energy absorbed per unit

mass) required to collect statistically significant data at a given

resolution. If this dose is smaller than that known to destroy

structural detail of a given size, this resolution is considered

feasible. Otherwise, the resolution limit is determined by the

dose that destroys detail of a given size. A statistically reliable

photon count P, required for resolution d, may be found in

either of two ways. The first approach is to calculate the total

number of photons scattered into the detector from a single

sample voxel with dimensions d/2 � d/2 � d/2. (These counts

will subsequently be phased and recombined computationally

into one resolution voxel in the real-space reconstruction or

image.) Alternatively, one may calculate the number of

photons scattered by the entire object of size D into one

detector pixel at a scattering angle corresponding to the

resolution of interest. The first method is independent of

sample size, the second is not. Both methods depend on the

structure of the object (in the first method the result depends

on which voxel is chosen), so that resolution is here a property

of the sample as well as the instrument. In the first approach

(Howells et al., 2005) one can simply integrate the signal,
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scattered by a spherical voxel of diameter d/2, to obtain

(Henke & DuMond, 1955)

P ¼ ð�=128Þ r2
e�

2d 4 �j j2I0�t ð1Þ

in the limit � � d, where re = 2.82 � 10�6 nm is the classical

radius of an electron, � = �inai( f1i + if2i) is the effective

complex electron density of matter with multiple atomic

concentrations nai and complex atomic scattering amplitudes

f1i + if2i for the ith type of atom, � is the X-ray wavelength, I0

is the incident X-ray flux and �t is the data acquisition time.

Then the dose, proportional to the incident X-ray beam

fluence, scales with resolution as d�4. The required exposure

does not depend on detector size. In the second approach an

incoherent sum over the object volume of the scattered

intensities from the resolution elements (voxels) of size d into

a detector pixel corresponding to resolution d is (Shen et al.,

2004)

P ¼ 3=4�3
� �

r2
e�

2d 3D �j j2I0�t: ð2Þ

This result depends on the object size and the shape of the

resolution element. Note that if the latter were cubic, the

scattered intensity at scattering vector q = 2�/d corresponding

to the resolution limit would be zero.

The generally accepted requirement for a statistically reli-

able measurement of signal P is that the signal exceeds the

background noise level by a factor of five (Rose, 1948). This

leads to the requirement for a minimum of P = 25 photons

pixel�1 for a recognizable image. But since the input to the

numerical phase-retrieval algorithms involves the modulus of

the scattered amplitude rather than intensity, for Poisson noise

this implies
ffiffiffiffi
P
p

=ð�
ffiffiffiffi
P
p
Þ = 2P/�P = 2

ffiffiffiffi
P
p

= 5, or P = 6.25.

Successful three-dimensional reconstruction from experi-

mental diffraction patterns has been reported at a photon

count of just 1 photon pixel�1 at the highest achieved resolu-

tion (Chapman et al., 2006b). To be consistent with previous

work (Shen et al., 2004), we therefore choose P = 5 for further

discussion.

Because the coherence patch of the synchrotron is larger

than our biomolecule, we assume that the statistical accuracy

of a diffraction pattern is defined by the coherent scattering

from the entire object at the angle that corresponds to the

required resolution. For convenience we start by considering

the scattering from a single organic spherical object of radius

R = D/2. The incident X-ray wavevector is k, the scattered

wavevector k0 and the scattering vector q. The vector q

connects the (000) point with other points on the momentum-

and energy-conserving Ewald sphere of radius k,

q ¼ k0 � k;

with the maximum value qmax defined by the maximum scat-

tering angle allowed by the detector geometry. To obtain a full

three-dimensional reconstruction, diffraction patterns from all

object orientations must be recorded, in order to fill a sphere

of radius qmax in reciprocal space. These intensities measured

on the Ewald sphere can then be redistributed onto a regular

Cartesian grid by interpolation. As our object is coherently

illuminated by X-rays, with incident electric field E0, the

electric field amplitude at a distance r in a direction specified

by q is

E0 qð Þ ¼ re=rð ÞE0 sin 
R
� rð Þ exp i q:rð Þ dr; ð3Þ

where �(r) is the charge density and  represents the angle

between the electric field and the scattered direction (a

polarization term). If the sphere had uniform charge density �,

then the Fourier transform in (3) could be evaluated as

A qð Þ ¼ 4��R3 sin qRð Þ � qRð Þ cos qRð Þ

qRð Þ
3

: ð4Þ

In terms of a differential cross section d�q/d� the scattering

intensity can be written as

IðqÞ ¼
d�q

d�
��I0 ¼ r2

e A qð Þ
�� ��2sin2  �� I0: ð5Þ

To solve the phase problem using the scattered intensity

pattern based on the iterative Fienup (1982) algorithm, the

object must be embedded in a known matrix of extent sD, with

sampling ratio s = 21/3 for three-dimensional reconstruction

and s = 21/2 for two-dimensional reconstruction. Then the pixel

size in reciprocal space is �q = �/sR. If we consider scattering

by relatively small angles, then the solid angle subtended by a

pixel is

�� ¼
�q

k

� �2

¼
�

2sR

� �2

: ð6Þ

As seen from (4), the shape function for a uniform charge

density falls as q3. Additionally, the atomic scattering factor

also decreases for a larger scattering vector. This means that

reconstructing an object to a given resolution d requires that

there be statistically significant counts in a pixel at qmax = 2�/d.

If the detector has N� N pixels and its center is on the axis of

the incident beam, then at the edge of the detector qmax =

N�q/2. Then the expression for resolution becomes

d ¼ 4sR=N: ð7Þ

From (4)–(6) we obtain for the scattered photon count P at the

pixel corresponding to the scattering vector q,

P ¼ IðqÞ�t ¼
4�2r2

e�
2 �j j2I0�t

s2R2

sin qRð Þ � qRð Þ cos qRð Þ

q3

� �2

:

ð8Þ

The oscillation period of the term in square brackets slightly

exceeds the pixel size, and becomes equal to that at s = 1.

Averaging of this term in a radial direction over the pixel size

gives for small s

sR

�

Zqþ�=2Rs

q��=2Rs

sin qRð Þ � qRð Þ cos qRð Þ

q3

� �2

dq ’
1

2

R2

q4
: ð9Þ

Combining (8) and (9) we obtain for the number of counts in

time �t at the pixel corresponding to resolution d,

P ¼
1

8�2s2
r2

e�
2d 4 �j j2I0�t: ð10Þ
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This expression has the same functional dependence as that

obtained by Howells et al. (2005) but with a different

numerical prefactor. We note in particular the power-law

scaling with d and �. A similar result is obtained in the phase-

grating approximation, applied to one voxel. Here the phase

shift ’ = re��d, which produces a cross section d2’2, as above.

It is also noteworthy that the cross section, which is propor-

tional to r2
e�

2d4|�|2, has now acquired a wavelength depen-

dence. This may be somewhat unexpected since the total

(Thomson) cross section is well known to be wavelength

independent. The reason is that equation (10) and similar

expressions have arisen by effectively integrating the differ-

ential cross section over a solid angular range (the detector

acceptance) that is determined by the resolution choice and

therefore does depend on the wavelength. This wavelength

factor is also present in the Born approximation and the

phase-grating approximation.

3. Scattering simulation

A more detailed analysis, extending to the important sub-

nanometer resolution range, is possible using a direct calcu-

lation of the X-ray diffraction pattern based on atomic X-ray

scattering factors. This allows the effects to be considered of

three-dimensional atomic structure, detector size, noise and

stability of our iterative algorithm for solution of the phase

problem. As the test object for our simulations we choose

the asymmetric E. coli chaperonin GroEL14–GroES7 –

(ADP�AlFx)7 protein complex, constituted of 59276 non-

hydrogen atoms. GroEL contains 14 identical subunits of

molecular mass 58 kDa, and GroES contains seven subunits of

molecular mass 10 kDa. They form a structure consisting of

three distinctive rings. The length of the complex is 20 nm,

with diameter 14.5 nm. The three-dimensional structure of the

complex at 2.8 Å resolution has been reconstructed by X-ray

crystallography (Chaudhry et al., 2004) and was obtained from

the Protein Data Bank (entry 1SVT). A sketch of the scat-

tering geometry is shown in Fig. 1. The detector is a two-

dimensional 512� 512 array of equidistant pixels of linear size

a, located at a distance l00 from the sample, which limits the

scattering angle at its edges to a resolution of a few angstroms.

The position of a pixel with indices i and j relative to the

sample is defined by the zenith angle �ij (which also deter-

mines the distance lij between this pixel and the sample) and

azimuth angle ’ij . Then the diffraction pattern is formed by

the polar gnomonic projection of the points lying on the Ewald

sphere onto the flat detector screen. According to (5), for an

incident plane wave of intensity I0 with wavelength � the

scattered photon count per unit time in the given pixel is given

in the single-scattering (Born) approximation as

Iij ¼ r2
eAðqijÞA

�ðqijÞ sin2
ð ijÞ��ijI0; ð11Þ

with a sample scattering amplitude

AðqijÞ ¼
P

k

fkðqijÞ exp i qijrk

� �
; ð12Þ

where qij = 4�sin(�ij /2)/� is the scattering vector corre-

sponding to detector pixel (i, j), which subtends solid angle

��ij = a2 cos(�ij)/lij
2 at the angle �ij . rk is the position vector of

the kth atom in the sample, and the summation is performed

over all the atoms of the sample. For the undulator odd

harmonics the X-ray beam is linearly polarized and the

polarization term is

sin2
ð ijÞ ¼ 1� sin2

ð�ijÞ cos2
ð’ijÞ:

The scattering amplitude for the kth atom is (Henke et al.,

1993)

fkðqÞ ¼ f 0k þ if 00k ��fkðqÞ;

where the last term describes the angular dependence of the

atomic form factor,

�fkðqÞ ¼ Z � ~ff kðqÞ;

and ~ff kðqÞ is the empirical approximation of tabulated data by

four-Gaussian fitting (Doyle & Turner, 1968), satisfying the

condition ~ff kð0Þ = Z. We note that if absorption is neglected so

that fk(q) is real, then A(�q) = A�(q), and the charge density

obtained by Fourier transform of the sample scattering

amplitude is real.

To satisfy the Shannon sampling requirement, the maximum

allowed beam angular spread at the sample should be equal to

�c = �/2sD (Spence et al., 2004). For s = 21/2, D = 200 Å and the

X-ray energies of 3, 5.4 and 8 keV used below, the angular

spreads that can be accepted are 7.3, 4.1 and 2.7 mrad,

respectively. The requirement that wavetrains from opposite

sides of the sample interfering at the edge of the detector

should have at least 50% overlap leads to a condition on the

coherence length of the illuminating beam which can be

expressed as ��/� < 2/N (Chapman et al., 2006b; Spence et al.,

2004), where N is the number of pixels along one Cartesian

axis. According to (7) with a sampling ratio s = 21/2, and D =

200 Å, a resolution of 7 Å requires 81 pixels. Then the desired

energy bandwidth is 2.5%. The above values for the beam

angular spread and the size of the interaction region (20 mm�

20 mm) define the volume of the beam transverse phase space
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Figure 1
Scattering geometry for simulation of diffraction pattern.



that can be accepted by the scattering experiment. Since the

undulator cannot fill this phase space (nor the 2.5% band-

width), we assume that all phase space of the actual X-ray

beam can be used. This situation is typical of a ‘flux experi-

ment’ in synchrotron parlance.

We perform simulations of the diffraction patterns from the

GroEL–GroES protein complex using the parameters of three

new X-ray beamlines that will become available in the near

future. The first one is the recently proposed COSMIC

beamline at section 7 of the ALS, which will provide bright-

ness B larger than 107 photons s�1 nm�2 mrad�2 (0.1%

bandwidth)�1 in the energy range 0.25–3 keV. It will be

advantageous for flux to operate at the minimum possible

energy that is capable of (a) penetrating the sample and (b)

achieving the desired resolution at a reasonable Bragg angle.

On this basis the best choice for the case at hand is 3.0 keV.

The width and angular spread of the X-ray beam are deter-

mined by a convolution of the one-electron undulator pattern

with the spread functions of the electron beam in width and

angle (Spence & Howells, 2002). Using parameters for the

COSMIC undulator at 3 keV, we find the X-ray root mean

square (r.m.s.) horizontal width �Tx = 0.293 mm and vertical

width �Ty = 8.53 mm, r.m.s. angular spread �Tx0 = 25.9 mrad and

�Ty0 = 14.9 mrad in the horizontal and vertical directions,

respectively. Then the X-ray intensity at the sample is I0 =

(2�)2B�Tx�Ty�Tx0�Ty0/A = 0.95 � 106 photons s�1 nm�2 at

0.1% energy bandwidth. Taking into account the estimated

76% loss in the presumed optical system (multilayer mono-

chromator and focusing system) and adjusting for the

maximum bandwidth ��/� = 1/151 possible at 3 keV, we

finally obtain I0 = 1.5� 106 photons s�1 nm�2. Since the phase-

space volume in one dimension of a single mode beam is �/4�,

the total number of modes in the beam is 231 � 3.87 = 894.

The second example considers the projected undulator

source at APS, which will operate in the energy range between

2 and 6 keV. A recent measurement of the similar undulator

beam at sector 7 of the APS, focused into a 10 mm spot, gave

6 � 1012 incident photons s�1 with a beam divergence of

1.4 mrad at 0.01% energy bandwidth at 14.3 keV (Young et al.,

2006). The same analysis as for the COSMIC beamline gives

an optimized beam intensity of 1.8 � 106 photons s�1 nm�2 at

5.4 keV. For the harder X-rays, suitable for higher resolution,

we use a flux of 3 � 108 photons s�1 nm�2 at 8 keV, corre-

sponding to the proposed ERL beamline at Cornell University

(Shen et al., 2004).

The secondary structure of proteins (�-helices) can be

resolved at a resolution of d = 7 Å, which sets the lower limit

for the largest measured scattering vector as 0.9 Å�1. The

sampling ratio can be found from (7) as s = Nd/2D. Several

definitions of ‘oversampling ratio’ have appeared in the

literature; here we define oversampling as the ratio of the

actual sampling ratio s to the minimum acceptable one. Then,

for a two-dimensional projection, oversampling is Nd/23/2D.

Thus, for a detector whose linear size is N = 512 pixels and D =

200 Å the diffraction pattern is oversampled by a factor of

6.3, if the required resolution is 7 Å. A simulated diffraction

pattern, on the 512 � 512 grid for one molecule in the 8 keV

X-ray beam, is presented in Fig. 2(a), while Fig. 2(b) shows the

scattered intensity per pixel, averaged over the azimuth angle,

as a function of scattering vector for incident beam energies

of 3.0, 5.4 and 8.0 keV with intensities of 1.5 � 106, 1.8 � 106

and 3 � 108 photons s�1 nm�2, respectively. If normalized to

the same incident flux, the ratio of the integrated scattered

intensities (scattering cross sections) for 3.0, 5.4 and 8.0 keV is

7.3 :2.2 :1. This is close to the ratio 7.1 :2.2 :1 predicted by a �2

scaling of scattered coherent flux with X-ray wavelength,

according to equation (1). Lower X-ray energy can require a
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Figure 2
(a) Diffraction pattern for the GroEL complex at an X-ray energy of
8 keV. (b) Scattered intensity per pixel after angular averaging at: (1)
5.4 keV and 1.8 � 106 photons s�1 nm�2 (APS); (2) 3.0 keV and 1.5 �
106 photons s�1 nm�2 (ALS); (3) 8.0 keV and 3 � 108 photons s�1 nm�2

(ERL). The inset shows the scattered counts per pixel for the incident flux
(3) on the 256 � 256 grid, cut through the planes qx = 0 (solid line) and
qy = 0 (dash line), indicated in (a). This figure will appear in colour in the
online version of the paper.



closer distance between detector and sample in order to

collect the data at large scattering angles. In this case the pixel

size in reciprocal space near the center of the detector will be

larger than the average, and failure to interpolate the

diffraction pattern onto a regular grid of scattering wavevec-

tors would result in a ‘stretched’ reconstructed object. Addi-

tionally at large scattering angles the count rate is affected

owing to reduction of the solid angle subtended by a pixel near

the edge of the detector by a factor of cos(�). The dotted

horizontal line in Fig. 2(b) corresponds to five counts per pixel

after exposure of 100 s at minimum required sampling (N =

81) for one sample in the X-ray beam at any instant. Therefore

its intersections with the scattering curves at different X-ray

energies determine the resolution achievable under these

conditions. The sufficient statistics in a single two-dimensional

projection from the three-dimensional tomographic data set,

required for full reconstruction of the secondary protein

structure, can be predicted in a 30 s exposure at the future

ERL source, while the same result would require 1300 s at

ALS and 2500 s at APS. For M proteins in the beam at any

instant, the count rate is multiplied by M, since no interference

occurs between different molecules. Therefore, with a

reasonable assumption of M = 15–30, a resolution of 7 Å in

100 s is feasible at the APS and ALS as well. Object recon-

struction from these diffraction patterns (with noise added), as

described in the next section, shows that larger exposure times

than predicted here are actually required for the intended

resolution. Note that full three-dimensional reconstruction

requires that the collected data be assigned to points on the

Ewald sphere, which is swept through reciprocal space (by

rotating the sample) to fill a three-dimensional volume. Using

diffraction patterns from different protein orientations inde-

pendently would then increase tremendously the time

required for data acquisition. However, if the correlation

between various projections is taken into account for three-

dimensional reconstruction according to the dose fractiona-

tion theorem (Hegerl & Hoppe, 1976), the dose required for

each projection in the three-dimensional imaging will be

reduced. The Hegerl–Hoppe theorem states that the full

three-dimensional reconstruction of an object requires the

same total dose (distributed over many orientations) as the

reconstruction of a single two-dimensional projection at the

same resolution. It is important to note that the scattering

signal must be statistically reliable to resolve a single three-

dimensional pixel in the two-dimensional projection, rather

than a two-dimensional pixel formed by summation of three-

dimensional pixels along the projector line (McEwen et al.,

1995). Thus the dose required for resolution d can be deter-

mined by considering scattering from an object slice of

thickness d/2. The 3.5 Å-thick slice of the GroEL contains

about 1/40 of all atoms in the complex. Then the average count

rate for that slice at the scattering angle corresponding to

resolution d is 1/40 of that calculated above for the whole

object. Correspondingly, the total dose required for the

GroEL three-dimensional reconstruction is 40 times larger

than the dose needed for the statistically accurate measure-

ment of one orientation.

In the inset of Fig. 2(b) the scattering curves for 8 keV

photons with an incident flux of 3 � 108 photons s�1 nm�2

(ERL) in the planes of qx = 0 (solid line) and qy = 0 (dash line)

are re-plotted using log–log coordinates. They are extracted

from the 256� 256 grid (sampling ratio s = 4.48). As expected

for an asymmetric object, at smaller scattering vectors the

scattering curves are feature-rich and highly inhomogeneous.

In particular, a pronounced peak at qy = 0.15 Å�1 corresponds

to the ring structure of the GroEL complex in the y direction

with a period of about 40 Å. It should be clear that in this

scattering vector region it would be difficult to rely upon the

general form of a power law (as derived in the previous

section) for the required flux estimation, since the scattering

curve in this region cannot be fitted by a power law. Owing to

the sharp peak at 0.15 Å�1, this feature will dominate even

in very noisy diffraction patterns, giving rise to a disc-like

structure. The scattering curves become relatively featureless

and independent of azimuth angle only at the highest scat-

tering vectors, and then they can be approximated using a

power law, resulting in the power scaling of the required

exposure time with resolution, described in the previous

section.

In the discussion above, we have defined resolution by the

highest scattering angle at which statistically accurate data

above background can be found in a detector pixel. This

treatment does not take into account the stability of the

reconstruction algorithm, used for phase retrieval, with

respect to statistical fluctuations. Therefore, it gives a lower

limit for the required exposure. In the next section we apply

the hybrid input output (HIO) algorithm to reconstruct the

high-resolution structure of the GroEL complex, and quanti-

tatively investigate resolution as a function of incident fluence.

4. Coherent transfer function for HIO reconstruction

Because the HIO algorithm is known to be more effective for

real-valued objects, where a strong positivity constraint can

be applied, we limit our consideration to a real object. In the

general case the Fourier transform of the scattering amplitude

A(q), collected on a two-dimensional grid, would not be real

because one measurement cuts reciprocal space along the

curved Ewald sphere, which does not contain points with

inverted coordinates, and therefore the condition for object

reality A(�q) = A�(q), while satisfied by a tomographic data

set collected in three dimensions, is not met on a two-

dimensional grid. For simplicity, we do not consider such a full

three-dimensional reconstruction, and to be consistent with

the requirement of object reality we use the diffraction pattern

from a two-dimensional projection of the GroEL–GroES

electronic density, calculated by setting coordinate z = 0 in

(12). This also avoids the de-focusing effects in the projection

approximation for three-dimensional objects owing to the

curvature of the Ewald sphere. We assume that the atomic

scattering amplitude is equal to the number of electrons in

atom Z, thus neglecting absorption and any angular depen-

dence of scattering amplitude, which is justified for high-

energy photons (here 8 keV) and scattering at small angles.
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The projection of the object electronic density is given in the

inset to Fig. 3 (left panel). The scaling bar length corresponds

to 35 Å. The diffraction pattern was calculated on a 256 � 256

grid with a maximum wavevector transfer of qmax = 0.9 Å�1

(sampling ratio s = 4.48). We found that application of the

HIO algorithm to a 128 � 128 grid (s = 2.23) decreases the

percentage of successful reconstructions by a factor of 1.8.

The HIO iterative algorithm (Fienup, 1982) with reality and

positivity constraints is described by a recursion relationship

gnþ1ðrÞ ¼
P̂PM gnðrÞ; if r 2 S ^ <½P̂PM gnðrÞ� � 0;
ð1� �P̂PMÞgnðrÞ; otherwise;

	
ð13Þ

where gn(r) is the reconstructed object in real space after the

nth iteration, S defines a support such that gðr =2 SÞ = 0, < is

the real part of the complex number, and the feedback para-

meter is � = 0.9. The projector operator P̂PM determines the

projection of the Fourier transform of the reconstructed object

on the reciprocal space subset satisfying the modulus constrain

defined by the measured scattered intensities,

P̂PM gn ¼ F�1 FðgnÞ

FðgnÞ
�� �� ½IðqÞ�1=2

( )
: ð14Þ

Here F(gn) denotes the Fourier transform operation. We use

1000 cycles of the HIO iterations followed by five cycles of the

error-reduction (ER) algorithm gn+1(r) = P̂PS P̂PM gnðrÞ, where

the support projector is

P̂PS gnðrÞ ¼
gnðrÞ; if r 2 S ^ <½gnðrÞ� � 0;
0; otherwise:

	
ð15Þ

The quantitative measure of the iterative process convergence

is the error metric in real space (equal to the normalized

amount of charge density remaining outside the support),

ES
n ¼

P
r =2 S

gnðrÞ
�� ��2

P
r2 S

gnðrÞ
�� ��2

2
64

3
75

1=2

; ð16Þ

and, in reciprocal space,

EM
n ¼

P
q

FðgnÞ
�� ��� IðqÞ½ �

1=2
�� ��2

P
q

IðqÞ

8><
>:

9>=
>;

1=2

: ð17Þ

We determined the support by convolution of the known

object, used for the calculation of the diffraction pattern, with

a Gaussian whose half width at half-maximum was 3 pixels

(10.5 Å), and a subsequent cut-off at 5% of the maximum

object charge density. The area outside the support is marked

by the gray color in the right-hand panel of the inset of Fig. 3.

Because the support is relatively loose, the actual sampling

ratio s (which should be more correctly defined relative to

the support size rather than the object size, as we do here)

is somewhat smaller than indicated. Even without using the

support, the HIO algorithm provides the low-resolution

sample structure and external boundary. This implies that the

Shrinkwrap algorithm (Marchesini, He et al., 2003) could be

applied if the support were unknown. That algorithm dyna-

mically refines an initially loose support using intermediate

reconstructions after a series of iterative steps.

The first object estimation was determined by applying the

support projector given by equation (15) to the Fourier

transform of the measured modulus of the scattered amplitude

[I(q)]1/2 with random phases ’(q). To ensure the reality of this

Fourier transform, the condition ’(�q) =�’(q) was enforced.

In spite of the support asymmetry, sometimes the recon-

structed image appeared in the inverse orientation. Although

usually it rotates to the correct position after a sufficiently

large number of iterations, in order to facilitate the conver-

gence rate the first 100 iterations are performed additionally

using the same set of random phases, but with reversed signs.

Then the reconstructed object with the larger error, which has

an incorrect orientation, is rejected, and the rest of the

iterations are performed using the remaining object with the

correct orientation.

Fig. 3 shows the behavior of the r.m.s. error, defined by (16),

in a single reconstruction procedure for three reconstructions

with different initial phases. In all cases, after a few iterations

the error drops to ES
	 0.1. The successful reconstructions

(solid lines, rate of success
85%) are characterized by a step-

like decrease of the error by about a factor of two at some

point (in Fig. 3, after around 400 and 800 iterations), which is

accompanied by a decreasing of the error standard deviation.

Reconstructions that do not converge to the correct solution

have a persistently high and noisy error (open circles). Before

averaging over successful reconstructions, the images must

be re-positioned to accommodate for the origin ambiguity

research papers

68 D. Starodub et al. � Serial X-ray crystallography J. Synchrotron Rad. (2008). 15, 62–73

Figure 3
Real-space error for the HIO algorithm as a function of iteration cycle
number. Solid lines show the error behavior for two successful runs, while
circles correspond to the reconstruction, which did not converge to the
solution. The arrow indicates the step where the error-reduction (ER)
algorithm was applied. Inset: the charge density projection of the protein
complex used to calculate the diffraction pattern (left panel) and
averaged reconstruction (right panel). The area outside the support is
filled with gray color. The bar length is 35 Å (ten pixels).



produced by different random starting phases. This was done

in two ways: by adjusting the image position in real space and

the phases in reciprocal space. The reconstructed image with

the smallest r.m.s. error was chosen as a reference. Then, in

real space, each remaining image was translated to the posi-

tion where its cross-correlation with the reference image has a

maximum, in order to minimize the r.m.s. error between this

and the reference images (Fienup, 1997). In reciprocal space,

the linear shift of the reconstructed object is given by the slope

of the difference map �’(q) between the diffraction ampli-

tude phases of this and the reference images. We compute the

slopes �’x = @�’/@qx and �’y = @�’/@qy using the least-

square linear fit in the qx and qy directions of the central part

of the phase difference map, where the noise of the recovered

phases has a lowest value. In most cases we define the central

data segments for the linear fit by the condition that the

correlation coefficient for these segments, reflecting their

linearity, is set equal to 0.9. Then the image translation along

the x axis in real space (in pixels) is determined as X = �’xN/

2�, and similarly for the y direction. The image averaged over

171 successful reconstructions (out of 200), adjusted using the

cross-correlation function, is shown in the right-hand inset of

Fig. 3. It clearly repeats the original image structure. In

particular, the details of the top trans GroEL ring, medium cis

GroEL ring, and bottom GroES cap can be observed.

To test the stability of the HIO algorithm convergence with

respect to the noise level, we introduced shot noise for the

number of photons collected by a detector, described by a

Poisson distribution of counts in each pixel,

pijðkÞ ¼ expð�sijÞs
k
ij=k!;

where k is the integer number of counts in the (i, j) pixel, and

sij = I(qij)M�t is the expected number of counts in this pixel

after exposure time �t, determined from the calculated

diffraction pattern. We assume an incident photon flux of 3 �

108 photons s�1 nm�2 (ERL) and one sample in the beam at a

time M = 1. Then the phase-retrieval algorithm was applied as

described above. For each exposure time, 200 independent

reconstructions have been run, and 15% of the reconstructions

with the highest error have been rejected. The real-space r.m.s.

error after the final iteration step, calculated according to

equation (16) and averaged over successful reconstructions, is

shown in Fig. 4(a) as a function of exposure time. The mean

error steadily increases as the input diffraction patterns

become noisier, roughly following the power dependence on

the counting time with an exponent of �0.28, as indicated by

the fitting line. The images have been adjusted by either their

positions or phases, as described above, and then averaged.

The result is shown in Fig. 5 for both methods of image

adjustment. Using the cross-correlation function in real space

gives somewhat better images at low exposures. The details of

the ring structure remain consistent at exposures as low as

10 s, but eventually they become completely smeared out at an

exposure of 1 s, which is attributed to the fast growth of the

HIO process instability at this counting time. The failure of the

reconstruction algorithm is also reflected in the behavior of

the error distribution, shown in Fig. 4(b). In a large range of

the longer exposure times, the errors of independent recon-

structions have a very narrow and asymmetric distribution,

which suddenly broadens as exposure decreases from 10 s to

1 s, indicating stagnation of the algorithm.

Visual examination of Fig. 5 allows one to follow the change

of resolution in response to exposure time. Quantitative

measure of resolution can be provided by the analysis of the

transfer function (TF). If the Fourier transform of the

reconstructed object G(q) is considered as the output of the

phase-retrieval algorithm, then its TF for diffraction ampli-

tude modulus can be defined as the ratio of the modulus of

the output averaged over independent reconstructions to the

modulus of the ideal scattered amplitude (Shapiro et al., 2005),

TFðqÞ ¼
GðqÞ

 ��� ��
 �

’

IðqÞ½ �
1=2


 �
’

: ð18aÞ
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Figure 4
(a) Reconstruction r.m.s. error in real space, averaged over many
independent reconstructions, as a function of counting time. The solid line
shows the best fit to the data points by a power law. (b) Distribution of the
r.m.s. error in two sets of independent reconstructions for counting times
of 10 s and 1 s.



Here the Fourier transform moduli have been averaged over

azimuth angle prior to the TF calculation. Averaging over

reconstructions is denoted by . . .h i, and . . .h i’ corresponds to

the averaging over azimuth angle. Alternatively, one can use

the phase transfer function (Marchesini et al., 2005), which

does not require knowledge of the ideal scattering amplitude,

PTFðqÞ ¼
GðqÞ

GðqÞ
�� ��
* +�����

�����
* +

’

: ð18bÞ

Then the resolution can be evaluated from the TF scattering

wavevector cut-off. The plots of the TF, corresponding to

different data acquisition times and therefore different signal-

to-noise ratios, are shown in Fig. 6. The top row of images in

Fig. 5 was used to obtain the curves in Fig. 6. Averaging of the

reconstructed objects using phase information produces

similar curves. The thick line (1) corresponds to the ideal

diffraction intensity, being the input for the HIO procedure. It

reflects the effects of imperfect phasing by the iterative algo-

rithm itself, and exhibits a flat plateau at lower scattering

vectors with a rather abrupt cut-off, characteristic of a

coherent imaging system. Other curves demonstrate the TF

response to the introduction of shot noise. We determined the

resolution limit for a given exposure time from the width q1/2

of the corresponding TF at half-maximum (TF = 0.5) as d =

2�/q1/2. The results are shown in Fig. 7 in the form of a plot of

data acquisition time as a function of resolution, for images

averaged in reciprocal (solid squares) and real (open circles)

space. Both sets of data points follow the power law at high

resolution, but experience a sharp decrease at about 30 Å.

This is especially obvious for the images averaged in real

space, where apparent resolution becomes virtually indepen-

dent of exposure. This effect is related to the specific features

of the object structure, dominated by the well defined rings

with average periodicity of 40 Å. Therefore, at lower exposure

time only the strong scattering due to these rings would be

reliably detectable, even at very short counting times. In this

case the phasing algorithm does not properly retrieve the

phases of the scattering amplitude, as demonstrated in Fig. 5

by the blurring of the images averaged in reciprocal space. But

it still produces the distinctive strips, which do not vanish upon

real-space averaging. The overall object shape is recovered

better when averaging is performed in reciprocal space. For

the linear fit of the data we used only the five points giving the

highest (best) resolution, where the required time obeys the

power scaling with d. For the images averaged in reciprocal

space, the exponent of the power law is �3.7 (�3.6 for the

real-space averaging), in good agreement with equation (10).

For a quantitative comparison with the analytical results

of x2, we assume an empirical protein composition of
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Figure 6
HIO transfer function for different signal-to-noise ratios (exposure
times).

Figure 5
The series of averaged reconstructed charge density maps for the indicated exposure times. Before averaging, the images are positioned by translation
in real space (top row) or by phase adjustment in reciprocal space (bottom row). The incident flux is 3 � 108 photons s�1 nm�2 and the X-ray energy
is 8 keV.



H50C30N9O10S1 and density 1.35 g cm�3, which gives an

average electron density of 434 nm�3. We also take into

account that equation (2) is derived for critical sampling, and

rescale it to the sampling ratio of the 256 � 256 grid according

to �t / s2. The resolution predicted by equation (10) at a

given time (dash-dotted line) is better by a factor of 1.5 than

that derived from simulated images. This discrepancy may be

due partially to the additional effect of shot noise on the

phasing algorithm stability, and to the arbitrarily setting of the

number of counts required for the data statistical accuracy

in the analytical solution, that appears to be too low. The

possible reason is that the variation in scattered intensity

rather than absolute count rate must be accurately measured,

which would require a better signal-to-noise ratio. Consid-

ering the count rate P in the pixel at the resolution limit as a

free parameter in our analytical model, the resolution, deter-

mined from the TF calculation and shown in the Fig. 7 by solid

squares, can be exactly fitted by equation (10). However, the

actual count rate, required for a given resolution, is higher

than that expected from Fig. 2(b) and the Rose criterion. Fig. 7

also shows the required time dependencies on resolution

described by equation (1) owing to Howells et al. (2005)

(dashed line) and equation (2) by Shen et al. (2004) (dotted

line). These curves give too optimistic results for the expected

resolution as compared with the explicit TF calculation;

however, we note that the fit would be improved by taking P =

25. The resolution definition via TF is still uncertain owing

to its complicated shape and absence of a sharp cut-off,

emphasizing that, for phase-contrast imaging, resolution

cannot be specified by a single parameter, and depends on the

sample itself. In Fig. 5 we observe that details of the shape

envelope distort at counting times of less than 100 s. Collecting

data at the critical sampling ratio would reduce the required

exposure by a factor of 12.6. However, we found that

decreasing the sampling ratio reduces the stability of the HIO

algorithm convergence to a valid solution, though resolution is

improved for a smaller sampling ratio (larger detector pixel

size), if only successful reconstructions are taken for aver-

aging. The addition of more constraints to the phasing algo-

rithm owing to a priori information may be possible, such as

the widely used histogram constraint. This may allow reduced

oversampling.

Note that all calculations have been carried out for one

sample in the beam. Application of a ‘shower head’ multiple-

nozzle aerojet array, which is currently under development,

has the potential to increase the number of molecules simul-

taneously present in the beam to about 100. This would

substantially reduce the time required for diffraction

measurement.

In summary, when full account is taken of Poisson noise and

the performance of the phasing algorithm, we find using

equation (10) that the exposure time for serial crystallography

is given by

�t ¼
1:3� 109 s2

MI0d4�2
; ð19Þ

where we use units of nm and s, and the scaling constant is

derived from Fig. 7. The severe dependence on the poorly

defined resolution d is noted. (d is poorly defined because it

depends on the structure of the sample. Our resolution defi-

nition using MTF = 0.5 is highly conservative.) This power law

has serious implications for all attempts at coherent imaging

with X-rays. Table 1 shows estimates of the expected counting

times at the planned ALS, APS and ERL X-ray beamlines

from equation (19), which demonstrate a severe punishment

in terms of the required exposure time for a very small reso-

lution improvement. We note that, under the dose fractiona-

tion theorem of Hegerl & Hoppe (1976), these times are

increased by a factor of 40 for three-dimensional image data

collection.

5. Summary

The simple way to estimate the diffraction experiment

counting time required for a given resolution is to calculate

the number of photons scattered at the angle corresponding to

this resolution and to set this number to a fixed value, which

would provide the statistically accurate measurement. We

performed this calculation analytically for a globular uniform

object and numerically by simulating the diffraction pattern

for the chaperonin GroEL–GroES protein complex. This

approach gives the lower limit of the required exposure. For a
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Figure 7
Exposure time requirement for a given resolution, deduced from the
width of the TF for the HIO algorithm with output averaged using phase
adjustment in reciprocal space (solid squares) and cross-correlation in
real space (open circles). The solid line is the least-squares linear fit to the
former data set for resolution higher than 30 Å. Other lines are given for
comparison with simple analytical predictions from Howells et al. (2005)
(dashed line), Shen et al. (2004) (dotted line) and this paper (dash-dotted
line) with parameter P = 5.

Table 1
Exposure time (s) required to achieve a given resolution at different
X-ray beamlines with parameters, discussed in the text, calculated from
equation (19) for s = 21/2 and M = 10.

d = 0.7 nm d = 1 nm d = 2 nm

ALS 4.2 � 103 1.0 � 103 63
APS 1.1 � 104 2.7 � 103 171
ERL 150 36 2.3



more elaborate evaluation, which also accounts for the

convergence stability of the phase-retrieval algorithm and its

effect on resolution, we have used the HIO procedure to

reconstruct charge density maps in real space from simulated

diffraction patterns with different noise levels. Visual exam-

ination of the reconstructed images shows that at the

projected ERL X-ray beam source even a short exposure

of 10–100 s can produce valuable information on the bio-

complex envelope shape. Using the transfer function spatial

frequency cut-off as a quantitative measure of resolution, we

determined the functional dependence of the exposure time

on required resolution. It scales as the inverse fourth power of

d. Using the count rate, required for a statistically accurate

measurement, as a free parameter, we obtain an exact

agreement with the analytical solution. However, the

prefactor obtained by fitting to the calculated resolution is

higher than that expected from the Rose criterion.

The times predicted by the simple analytical models given

here and by Henke & DuMond (1955), Howells et al. (2005)

and Shen et al. (2004) can be up to two orders of magnitude

shorter than those following from the TF calculation, since

they do not include the effects of the phasing algorithm on

resolution. These three analytical model treatments may be

distinguished as follows.

(i) In Henke & DuMond (1955) and Howells et al. (2005),

a coherent sum of scattering from one voxel (resolution

element) inside the sample is used. The result depends on

which voxel is chosen.

(ii) In Shen et al. (2004), an incoherent sum over all voxels

is used at the maximum (resolution limiting) scattering angle.

Interference between waves scattered by different voxels is

eliminated by averaging, and the result depends on molecular

size. We note a d�3 scaling of exposure time in this approach.

(iii) In our treatment, a coherent shape scattering at the

maximum (resolution limiting) scattering angle is used. The

result again depends on the size of the molecule.

The reported results have important implications for the

design of droplet beam systems for serial crystallography,

suggesting that the use of multiple nozzles will be essential for

third-generation synchrotrons but not for fourth-generation

machines.

Possibilities for decreasing the exposure time required to

achieve a desired resolution include use of lower X-ray energy,

optimization of coherence conditions, increasing the number

M of proteins present in the X-ray beam at any instant, use of

a more efficient phasing algorithm (Marchesini, 2007) and use

of additional constraints, such as the histogram constraint

(which drives the density map towards the known gray-level

histogram for protein density maps), allowing a smaller

sampling ratio s. Additional a priori information may also be

available, such as bond lengths and sequence. The method of

molecular replacement may also be useful, and has now

succeeded in solving a protein structure from powder

diffraction data (Von Dreele et al., 2000). Taken together,

these improvements would reduce the required exposure at

the ERL down to a value of a few tens of seconds.
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