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Clessidra (hourglass) lenses, i.e. two large prisms each composed of smaller

identical prisms or prism-like objects, can focus X-rays. As these lenses have a

periodic structure perpendicular to the incident radiation, they will diffract

the beam like a diffraction grating. Refraction in the prisms is responsible for

blazing, i.e. for the concentration of the diffracted intensity into only a few

diffraction peaks. It is found that the diffraction of coherent radiation in

clessidra lenses needs to be treated in the Fresnel, or near-field, regime. Here,

diffraction theory is applied appropriately to the clessidra structure in order to

show that blazing in a perfect structure with partly curved prisms can indeed

concentrate the diffracted intensity into only one peak. When the lens is entirely

composed of identical perfect prisms, small secondary peaks are found.

Nevertheless, the loss in intensity in the central peak will not lead to any

significant widening of this peak. Clessidras with perfect prisms illuminated by

full coherent X-ray radiation can then provide spatial resolutions, which are

consistent with the increased aperture, and which are far below the height of the

single small prisms.
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1. Introduction

Only very recently have transmission lenses become a tool for

focusing X-rays (Snigirev et al., 1996). Today they are already

commercially available objects, which can easily be procured

and are thus in use in an increasing number of experiments.

The focal length of transmission lenses with two identically

curved surfaces is given by (Born & Wolf, 1980)

f ¼ R= 2ðn� 1Þ½ �; ð1Þ

where R is the radius of curvature of the lens surface on the

optical axis (see Fig. 1a) and n is the refractive index of the

lens material. In the X-ray range the refractive index is just

slightly smaller than unity and is thus

more conveniently written using the

unit decrement � as n = 1 � � + i�.

The latter term is related to the beam

attenuation. Then the focal length for

X-rays becomes (Snigirev et al., 1996)

f ¼ �R=ð2�Þ; ð2Þ

and the sign indicates that concave lens

surfaces will focus an incident plane

wave at the focal distance f downstream

of the lens. In case the focal distance

remains inconveniently long, one can

shorten it in a stack of lenses for which

1=f ¼
P

i

1=fi;

or f = �R/(2N�) if we use N identical lenses. The ideal lens

shape is elliptical (Evans-Lutterodt et al., 2003; Suzuki, 2004)

but this is approximated quite well by a parabola (Lengeler et

al., 1999), which is the shape of the external lens surfaces

in Figs. 1(a)–1(c). If we restrict the discussion to only one

dimension, such a profile results in a Gaussian transmission

function (Lengeler et al., 1999; Cederström et al., 2000), so

obviously parabolic X-ray lenses have limited apertures. The

latter vary with the square root of the focal length (Ceder-

ström et al., 2000), so larger apertures are provided at longer

Figure 1
Cross section of transmission lenses for X-rays. (a) Bi-concave lens with parabolic surfaces. The lens
in (b) is obtained from (a) by removing as many blocks of material as possible, which shifts the
phase of the transmitted radiation by integer multiples of 2�. In the lens in (c) the same strategy is
applied; however, now also the height of the blocks is kept constant. The cross section in (d) shows
three prism pairs, obtained by inclining two dented plates with respect to each other. All objects are
drawn to scale with the same focal length.

http://crossmark.crossref.org/dialog/?doi=10.1107/S090904950800068X&domain=pdf&date_stamp=2008-02-19


focal length. An increase in numerical aperture, i.e. in the ratio

between the lens half-aperture and focal length, which will

permit smaller diffraction-limited resolution (Schroer et al.,

2003), requires shorter focal lengths to be used. Commercially

available lenses have apertures that are smaller than 1 mm,

and they are almost always arranged in stacks of identical

lenses. With these parameters the use of such lenses is

essentially limited to state-of-the-art synchrotron radiation

sources, where even a small aperture at a large source distance

can still intercept a large fraction of the available photon flux.

Now the aperture can be increased if all optical inactive

material is removed with the strategy invented by Fresnel to

reduce the weight of lighthouse lenses. Optical inactive are

blocks of material, which shift the phase of the passing

radiation beam, compared with travel in air, by integer

multiples of 2�. This removal can be optimized and two

solutions have been tested up to now. In the first case,

proposed by Suehiro et al. (1991) and first realised by Aristov

et al. (2000), the amount of removed material is maximized for

minimizing the absorption. This removal strategy is shown in

Fig. 1(b) and results in segments of continuously changing

height. Note that the remaining segments can also be arranged

differently (Snigireva et al., 2001; Nöhammer et al., 2003;

Evans-Lutterodt et al., 2003; Nazmov et al., 2004). The second

solution was presented by Jark et al. (2004) and its functioning

scheme is shown in Fig. 1(c). In this case the removal of the

optically inactive blocks is made with blocks of constant

height. This latter Fresnel lens was compacted to a highly

regular structure (Jark et al., 2004), with mostly identical

prisms or prism-like segments arranged in rows, as shown in

Fig. 2. In this structure all internal segments are connected to

their neighbors at all three tips. This adds to the rigidity of the

structure, which right now can only be produced as a one-

dimensionally focusing object by deep X-ray lithography (Jark

et al., 2004; Pérennès et al., 2005). The number of prisms per

row increases with increasing distance from the optical axis,

which gives the whole assembly an hourglass (in Italian:

clessidra) shape. This clessidra lens is usually used either as a

single lens or a lens tandem in orthogonal configuration for

focusing in two dimensions (Jark et al., 2004, 2006). With

clessidras, one can keep the parabolic curvature either in the

outermost or in the innermost segment sidewalls, as shown in

Figs. 2(a) and 2(b), respectively. One of the principal questions

is whether a clessidra with perfect and identical prisms will

perform similarly to the other aberration-corrected clessidras

in terms of obtainable spatial resolution. The natural solution

for this concept is shown in Fig. 2(c). The object in Fig. 2(d) is a

further modification, in which additional rigidity is obtained

by adding a thin bar on the vertical axis of all prisms. The

simple and highly regular shape of these latter objects facil-

itates very significantly the quality control and quality assur-

ance in all critical steps of their production. This process

involves an original mask, a replicated X-ray mask and the

lens production by replicating the latter mask (Pérennès et al.,

2005). The micrograph in Fig. 2(e) shows a prototype lens of

the type shown in Fig. 2(b). The inset in Fig. 2(e) shows the

detail in the center of a perfect prism lens of the type shown in

Fig. 2(d) (Pérennès et al., 2005).

Originally the clessidra lens was derived by Jark et al. (2004)

from the long-playing record lens presented by Cederström et

al. (2000). The concept of this latter lens, also called the alli-

gator lens owing to its appearance as an assembly of inclined

dented plates (Dufresne et al., 2001; Jark, 2004), is thus also

shown in Fig. 1(d). This alligator lens approximates stepwise

the required ideal parabolic profile (Cederström et al., 2000).

This can be seen in Fig. 3(c), where the amount of material

to traverse is plotted with respect to the off-axis position.
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Figure 2
Lenses based on the material removal strategy presented in Fig. 1(c) obtained by re-arranging the remaining material. While in (a) and (b) the parabolic
curvature is maintained in the outermost and in the innermost segment surfaces of any row, the lens in (c) is composed of perfect prisms. In the lens in (d)
the lens from (c) was made more rigid by adding stiffening bars on the prism symmetry axis. (e) Micrograph of a Fresnel lens realised according to the
scheme in (b). The inset shows details in the center of a lens of type (d). The prisms have a height of 25.67 mm and a width of 73.33 mm. The overall lens
height is 1.5 mm and contains 58 prism rows.

Figure 3
Total amount of material present in the clessidra lenses from Figs. 2(a)
and 2(c) and in the Cederström lens from Fig. 1(d), depending on distance
from the optical axis.



Figs. 3(a) and 3(b) show the amount of material in the

different rows of aberration-corrected and perfect-prism

clessidra lenses, respectively. At any off-axis distance the

inclinations of the surface profiles are identical in Figs. 3(b)

and 3(c). Compared with Fig. 3(c), in Fig. 3(b) a block of

optically inactive material is removed, making Fig. 3(b) the

Fresnel version of Fig. 3(c). Therefore, while the focal length

of the Cederström lens from Fig. 1(d) is zoomable by changing

the inclination angle, this is not possible with the clessidra lens,

nor with the Fresnel lens in Fig. 1(b). These Fresnel lenses are

to be used with sufficiently spatially coherent radiation at

those photon energies for which the phase shift in the

removed blocks is an integer multiple of 2�.

2. Theoretical considerations

2.1. Basic remarks

Up to now the functioning of these special X-ray Fresnel

lenses has been discussed regarding them mostly as refractive

objects (Jark et al., 2004). In that case the focusing is imme-

diately understood when it is recognized that the X-ray beam

is refracted in a symmetric prism by an angle (Cederström et

al., 2000)

�ref ¼ �2�= tan �: ð3Þ

Here � is the angle of grazing incidence onto the prism side-

wall and the exit angle is approximately identical to it. The

sign indicates a refraction towards the prism tip. For prisms of

height h the refractive focal length is then

fref ¼
h tan �

2�
: ð4Þ

If we now compare the material distributions in Fig. 3 with

a perfect parabolic profile, we see that clessidras as well as

the alligator lens will introduce periodic disturbances in

the transmitted wavefield in the direction perpendicular to

trajectories of the incident beams. These disturbances are

either only phase discontinuities (Fig. 3a) or only small

distortions (Fig. 3c) or both (Fig. 3b). These field distortions

are periodic and thus these lenses become diffracting objects,

i.e. linear transmission gratings. Optimally the trajectory of

one of the diffraction directions for a particular row should

coincide with the trajectory of the rays refracted in this row.

Then we should find an intense peak on the optical axis of

the lens.

The diffractive focal length has already been derived by

Jark et al. (2006) as

fdiff ¼ h2=m�: ð5Þ

Here m is the number of 2� phase shifts in the prism bases.

The refractive and the diffractive focal length will obviously

coincide for

� ¼ h 2�=m tan�: ð6Þ

We see that for a proposed lens we need to accept a relative

error in the operation wavelength, which is identical to the

relative error in the knowledge of �.

In a practical lens we would always illuminate coherently

more then one prism row. From (5) we then see that the

illuminated area A (A > h) fulfills for small m the condition

A2 > �q, where q is the distance of the observation plane from

the lens, i.e. a number similar to f. The indicated condition

requests the diffraction in or close to the focal plane of a

clessidra to be considered in the near-field or Fresnel regime

(Born & Wolf, 1980). In this regime simple linear binary

diffraction gratings will produce periodic line structures at the

so-called Talbot distances (Talbot, 1836), which are given by

DTal;k=l ¼ kh2=l�; ð7Þ

with both k and l being integers. Obviously the principal

clessidra focal distance coincides with the Talbot distance for

k = 1 and l = m. At these positions the period in the image

would be h/l, i.e. an integer fraction 1/l = 1/m of the grating

periodicity h. For l > 1 we would also speak of the fractional

Talbot effect (Arrizón & Ojeda-Castaneda, 1994). As we are

in the regime of near-field diffraction and as we deal with a

rather small finite number of structures, we have to ask the

question of how far the ‘imperfections’ in the structure can

affect the lens performance with special concern on the

achievable spatial resolution. Here we will thus treat theore-

tically the following problems. Will the periodic clessidra

structure with curved prisms really focus like a lens with

parabolic surfaces? Will clessidra with perfect prisms still

focus identically, i.e. can the resolution be much smaller than

the prism height? What happens if the lens is operated off the

optimum photon energy? And what will happen if the prism

tips have a finite size? The answers to the second and the last

question are also very interesting for operation of the alligator

lens (Shastri et al., 2007).

Jark et al. (2006) have already discussed the fact that the

focus broadening owing to chromatic aberrations in larger-

aperture clessidras will eventually require their operation with

a monochromator bandwidth below the intrinsic spectral

resolution limit of standard Si(111) double-crystal mono-

chromators. Instead the bandwidth requirement for sufficient

longitudinal coherence is less severe (Jark et al., 2006). Here

we will assume a sufficiently monochromatic incident beam.

2.2. Detailed discussion of diffraction in clessidra lenses

As clessidras and alligator lenses are one-dimensionally

focusing objects, we will treat the diffraction in only one

dimension. The extension to two-dimensional focusing is then

easily possible for all objects in which the transmission func-

tion is factorisable with respect to two orthogonal axes.

As we deal with an optical component for synchrotron

radiation, we can assume its aperture to be significantly

smaller than its distance p from the source and than its focal

distance f. For the moment we will also assume that the overall

object extension in beam direction is significantly smaller than

its focal length and that the incident radiation is fully coherent.

The beam will travel in the y direction and is focused in the x

direction. x = 0 refers to the optical axis of the set-up. Then we

can use the paraxial approximation for the Fresnel propaga-
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tors, which allows us to calculate the complex field amplitude

in the detector plane using the Fresnel–Kirchoff integral

(Born & Wolf, 1980) in the form

A xq

� �
¼

1

i�ðpqÞ
1=2

Z Z
dxpdx � xp

� �
exp i� x� xp

� �2
=p�

h i
� exp i� xq � x

� �2
=q�

h i
Plens xð Þ; ð8Þ

where �(xp) is the complex amplitude emitted by the coherent

source. The integration in dxp is performed over the source

linear dimension. The two exponential factors, i.e. the Fresnel

propagators, describe the wavefield propagation in free space

from the source to the front of the lens at distance p, and from

the back of the lens to the detector at distance q. The last term

in (8) is the lens propagator1, which can be written as (Snigirev

et al., 1998; Kohn et al., 2003)

Plens xð Þ ¼ exp �i2� �� i�ð Þt xð Þ=�½ �; ð9Þ

where t(x) is the lens transmission function. This expression

for the lens propagator corresponds to a local approximation

of the modification of the incident wavefield caused by the

lens. At this point the latter is thus assumed to be a planar

object. This is possible as long as the ratio of the lens extent

in beam direction L to focal length (L/f) is much less than

10�1. Otherwise the corrections discussed by Kohn et al.

(2003) will have to be taken into account. In the latter case,

clessidras will also have to be designed with curved rows in

which the prism bases follow adiabatically the curved beam

trajectories as discussed by Schroer & Lengeler (2005).

If we are at the optimum wavelength, ignore the absorption

and assume incident plane waves, we can simplify the discus-

sion significantly. We will introduce here the unitless off-axis

distance �xx = x/h; then the propagator of a parabolic profile lens

is

PPara �xxð Þ ¼ exp �i
2�

�
�

h2 �xx2

2f

� �
: ð10Þ

Now in the j th row of a clessidra the parameter �xx varies from

j� 1/2 to j + 1/2, and the difference in phase shift in a clessidra

compared with a parabolic profile lens is periodic with

constant amplitude, if we ignore phase shifts, which are

modulus 2�. This periodic correction is shown in Fig. 4 for

m = 1 (note that the amplitude increases linearly with m).

We can now very conveniently write the propagator of the

clessidra profile in row j as

PCles j; �xxð Þ ¼ PPara �xxð Þ exp i2�m �xx� jð Þ
2=2

� �
� exp i2�m j 2 � j j j

� �
=2

� �
; ð11Þ

with

m ¼ b�=�; ð12Þ

where b is the prism base length. Equation (11) holds for the

perfect prism lens of Fig. 2(c). The last phase factor of equa-

tion (11) is due to blocks of optically inactive material

removed, which makes Fig. 3(b) the Fresnel version of

Fig. 3(c). At the optimum wavelength (m integer) and

neglecting absorption, this last phase factor can be neglected

and clessidra and alligator lenses become equivalent. In the

last part of this section we will discuss the cases m 6¼ integer

and w > 0, i.e. a clessidra lens as shown in Fig. 2(d) operated

away from the optimum wavelength. If the whole number

NT = (2N + 1) of rows is sufficiently high one can expand the

periodic part of the phase shift of equation (11) into a Fourier

series obtaining

PCles �xxð Þ ¼ PPara �xxð Þ
PN

j¼�N

cj exp �2�ji�xxð Þ; ð13Þ

where the Fourier coefficients cj are given by

cj ¼
R1=2

�1=2

exp �im�xx2
� �

exp 2�ij�xxð Þ d�xx

¼
�1ð Þ1=4exp ��ij2=mð Þ

2m1=2

� Erf
ð�1Þ3=4�1=2ð2j�mÞ

2m1=2

� �	

� Erf
ð�1Þ3=4�1=2ð2jþmÞ

2m1=2

� �

: ð14Þ

When we make the observation distance unitless, i.e. a = q/f,

then the solutions for both profiles are given by equations (26)

and (27) of Appendix A. Let us recall for the following

discussion, where mostly only the clessidra lens is mentioned,

that without absorption the clessidra lens with perfect prisms

and the alligator lens are equivalent.

For a = 1, i.e. in the focal plane, the maxima of IPara and ICles

are NT
2 and NT

2|co|2, respectively. Thus, the periodic phase-

shift in (11) leads to a smaller maximum intensity of the

clessidra with respect to the parabola, and to the presence of

small secondary maxima for x = �nh/m, with n integer. For

m = 1, since |co|2 = |Erf[�1/2(�1)3/4/2]|2 = 0.946, the zero-order

maximum is slightly smaller than NT
2, and only the two first-
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Figure 4
Difference in phase shift in a clessidra compared with a parabolic profile
lens, modulo 2�, for m = 1.

1 Actually the lens propagator would be given by the phase factor given by
equation (9) multiplied by a delta-function �(x � xin) with xin on the front of
the lens and x on the back of the lens. For the properties of the delta-function,
integrating on the coordinate xin, one would obtain the simplified phase factor
of equation (9).



order secondary maxima at x = �h have a non-negligible

intensity. These findings can be seen in Fig. 5(a), where we

show a comparison of the profiles in the focus (a = 1) for a

parabolic lens (dotted curve) and clessidra without prism

curvature (continuous curve), for NT = 31, m = 1, energy =

8 keV, h = 25.67 mm, �= 4� 10�6 and b = m�/�. In Fig. 5(b) the

continuous and dashed curves show the difference between

the profiles obtained for the clessidra with curved and with

perfect prisms with respect to a parabola (see Appendix A for

equations). As expected, the lacking intensity in the central

peak, amounting to �5%, is divided equally onto the first

secondary peaks at �xx=�1. We see that, as far as the obtainable

spatial resolution is concerned, the decrease in the maximum

intensity has almost no reduction effect on the width of the

central peak in the full width at half-maximum (FWHM)

sense. In fact, the peak width in a clessidra with perfect prisms

is identical to the resolution obtainable with an absorptionless

parabolic profile of the same aperture. Now in diffraction

optics (Born & Wolf, 1980) the resolution is given by

d ¼ c�=2NA: ð15Þ

Here, c is a numerical coefficient close to unity; NA is the

numerical aperture, which is given by half of the lens aperture

divided by the focal distance. Applying (5) one obtains NA =

0.5NT h/fdiff = 0.5NTm�/h, and, therefore, d = ch/mNT. The

simulations obtained by equation (26) indicate that the

FWHM width of the main peak for the clessidra lens is given

by 0.88h/mNT. Here the coefficient c = 0.88 is characteristic of

the particular profile of the diffracting object (Born & Wolf,

1980). Taking into account absorption, NT should be substi-

tuted by the effective number of rows, which will then form the

corresponding effective lens aperture. We see that in any case

the spatial resolution d obtainable in clessidra lenses can be

significantly smaller than the height of the perfect prisms. The

same holds true for the alligator lens. It is interesting to see

that in lenses with given NT and h the resolution should

improve for numbers m > 1. This is due to the reduction in

focal length according to (5) for otherwise unchanged lens

aperture. In this case the first secondary diffraction peaks are

expected closer to the central peak at x = �h/2. We have to

recognize that, e.g. for m = 2, the periodic correction to the

phase shift in clessidras with perfect prisms compared with the

ideal parabolic profile is now increased to twice the amount

shown in Fig. 4. This more significant disturbance, which

arrives at a quarter of 2�, now reduces the prefactor in

equation (27) to |co|2 = 0.8. Most of the missing intensity goes

into the first-order peaks, but the second-order peaks are now

also present. Now the principal peak is more significantly

reduced in intensity. Nevertheless its FWHM width is almost

as expected at about 50% of the width for m = 1. These aspects

can be seen immediately in Fig. 5(c), in which the abscissa

range is reduced by a factor of two, such that the peak width

and the positions of the first-order peaks can be compared

directly with Fig. 5(a) for m = 1.

In Fig. 6 we show a contour plot of ICles as a function of the

unitless parameters �xx and a, for NT = 31, photon energy =

8 keV, h = 25.67 mm, � = 4 � 10�6 and b = m�/�, here with

m = 1. We note that all waves exiting from the lens rows

converge towards the focus at a = 1 and �xx = 0. As already

shown in Fig. 5(a), we find the first secondary maximum

caused by the wavefield distortion in the perfect prisms at a =

1, �xx = 1. The second-order peak at a = 1, �xx = 2 is missing

instead. But we also have to note that the regular line patterns

are no longer found at fractional Talbot distances. They also

do not show the expected periodicity.

In order to understand this point let us note that the pattern

that one would obtain considering only the periodic phase

shift component of equation (11) would be given by
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Figure 5
(a) Comparison of the intensity profiles in the focus (a = 1) for a parabolic
lens (dotted curve) and clessidra without prism curvature (continuous
curve), for NT = 31, m = 1, energy = 8 keV, h = 25.67 mm, � = 4� 10�6 and
b = m�/�. (b) Differences between the intensity profiles for a clessidra
with curved (continuous curve) and with perfect (dashed curve) prisms
with respect to the intensity profile for a parabola. (c) Same as in (a) but
for m = 2.



Aperiodic �xx; að Þ ¼
h

ði�qÞ
1=2

Z1
�1

exp
i� �xx� �xx0ð Þ

2

q�=h2

� �
PCles �xx0ð Þ

=PPara �xx0ð Þ d�xx0

¼ �
X

j

cj exp �i�j2a=m
� �

exp �i2�j�xxð Þ: ð16Þ

The above pattern would give periodic repetitions of the

diffraction grating just in correspondence of rational a values

predicted by (7), where exp(�i�j2a/m) = exp(�i2�l) with l

integer, but the period of the repetitions would always be h for

any a. Note that in this case without the parabolic profile the

focusing effect is absent. On the other hand, when the phase

shift is described by (11), we obtain a more complex intensity

pattern [equation (26)] presenting features of varying period

h(a) = |1 � a|h in correspondence with particular a ranges

which favour the constructive interference of the row waves.

These intervals of constructive interference are separated by

regions of destructive interference (see Fig. 6).

In the case of a periodic clessidra structure with curved

prisms characterized by parabolic profiles we can write the

propagator in the row j (for w = 0) as follows,

PCles�cur j; �xxð Þ ¼ PPara �xxð Þ

� exp i2� m
�xx� jð Þ

2

2
�mj

�xx� j� �xxcð Þ
2

2

� �	 


� exp i2�m
j 2 � j j j

2

� �
: ð17Þ

Here the parameter mj is related to the curvature of the lateral

sides of the prism in the j th row, and �xxc = xc /h defines the

symmetry centre of the prism parabolic profiles. Since in the

row j = 0, mj = 0 (there is no prism) and for any other j 6¼ 0 one

has mj 6¼ 0, the phase shift has a periodic term only in the two

half lenses, but not in the central gap. The lack of periodicity

on the whole lens means it is impossible to use the Fourier

series expansion [equation (13)]. Nevertheless, since the phase

shift [equation (17)] depends on the row index j, inserting (17)

into (25), after integration from j � 1/2 to j + 1/2, the final

result for the intensity would always be obtained by a sum

over all rows, and is reported in Appendix A [see equation

(28)]. For j 6¼ 0, mj = m and xc = 0, the parabolic profile

propagator PPara would be perfectly reproduced everywhere

except in the central gap.

The resultant difference between the simulations by use of

equation (28) for the clessidra, with the parameters of Fig. 5

and with curved prisms, and the perfect parabolic lens is

shown in Fig. 5(b). Now the secondary maximum at x = h is

missing in this aberration-corrected clessidra lens, while the

intensity in the central peak is decreasing by an insignificant

0.5%. This small difference is caused by the absence of a

focusing effect in the central gap. At all other unitless obser-

vation distances a = q/f the intensity patterns from both

profiles essentially coincide with a complete absence of

Talbot-like features. However, when �xxc 6¼ 0, even if mj = m for

any j 6¼ 0, Talbot-like features reappear owing to the displaced

periodic phase shift in each lens half. For �xxc = 1/2, a saw-tooth

phase-shift function would be obtained instead of that shown

in Fig. 4. For any other �xxc, the shape of the periodic function

would be a more complex quadratic function.

Finally, we generalize our model to take into account

detuning effects owing to erroneous photon energy settings

and to additional tips w in any prism. For prisms with linear

lateral sides, by summing all tips in the j th row we can write

the lens propagator as follows,

PCles�w j; �xxð Þ ¼ exp �i�m�xx2
� �

exp i�m �xx� jð Þ
2

� �
� exp i�m j 2

� j j j
� �� �

� exp �i�m �ww j j j þ 2j j� �xxð Þ½ �
� �

: ð18Þ

Here m = m0 + �m, where m0 is the integer value of 2� phase-

shift that would be obtained for the correct energy setting; the

real part of �m is related to the energy detuning; its imaginary

part is related to the absorption by equation (9); �ww = w/b is the

dimensionless tip size, normalized with the prism base b. The

four-phase terms of (18) are, respectively, due to: the parabolic

profile; the clessidra profile correction; blocks of optically

inactive material removed; finite size of the tips. Moreover, in

order to partially compensate the last phase shift of (18), one

could argue to do this by enlarging the central gap. If we

denote by 2�ss (�ss = s/h) the unitless increment of the central gap,

defining a = q/(h2/m0�), from (25) and (18) one has

ICles�w �xx; a; �ww; �ss;�mð Þ ¼ Agap �xx; að Þ þ Aleft �xx; að Þ þ Aright �xx; að Þ
 2;

ð19Þ

where the amplitudes of the central gap, the left and right

halves of the clessidra lens are reported in Appendix A. In

Fig. 7(a) we show the intensity on the optical axis given by a

clessidra lens for NT = 31, m = 1, energy = 8 keV, h = 25.67 mm,

� = 4 � 10�6, as a function of a: ideal case (continuous curve);

energy detuning by 3% (dashed curve); introduction of tips

with size w, which amount to 3% of b (short-dashed curve);
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Figure 6
Contour plot of ICles as a function of �xx and a, for NT = 31, m = 1, energy =
8 keV, h = 25.67 mm, � = 4 � 10�6 and b = m�/�.



compensation of the effect of a finite w by detuning (long-

dashed curve); compensation of the effect of a finite w with a

larger central gap (dotted curve). In Fig. 7(b) we show the

intensity at the focus distance as a function of x/h for the same

cases as in Fig. 7(a). The plotted curves have been obtained

using equations (19), (29) and (30). Note that both detuning

and the presence of tips reduce the constructive interference

and modify the focus distance. The detuning is not an efficient

means of compensating the effect of tips, as it deteriorates the

lens performance in terms of flux and spatial resolution. The

effect of the tips is then better compensated for by adjusting

the central gap without detuning the photon energy. Note that

no correction will be needed if we use only one half of the

clessidra structure. The simulations indicate that if we express

the detuning as �m such that m 6¼ integer, the permitted

detuning, also in a half lens, is proportional to 1/m0NT. For the

present numerical example with NT = 31 and m0 = 1, only a

detuning or a photon energy setting error corresponding to

�m < 0.02 can be tolerated. Moreover, simulations with

unitless variables indicate that the following condition

between the geometrical prism parameters has to be satisfied:

�ww ’ 2�ss, when �ww is of the order of a few percent. In terms of

absolute numbers, for w and s one has wh ’ 2bs. For �ww values

exceeding a few percent, the optimal central gap width can

only be obtained from detailed simulation. If we return to

perfect prism clessidras without tips, the results show that this

concept has the potential to be a further alternative approach

for obtaining particularly small focii. As shown by Schroer &

Lengeler (2005), this will need curved prism rows. On the

other hand, the prisms can remain rather large compared with

the desired focus size. Given a lower limit for the feasible

feature size, this will permit more prism rows than in a normal

kinoform lens. And the correspondingly larger aperture will

allow a desired focus size to be achieved at a larger focal

length and thus farther from the lens.

3. Discussion of experimental data

This present theoretical study was made for completely

spatially coherent illumination of the clessidra lens structure.

On the other hand, our state-of-the-art clessidra lenses have

rather large apertures in the mm range. Thus we succeeded to

operate them only with partially spatially coherent radiation

far above the diffraction-limited spatial resolution, as given

by their effective apertures. So the presented conclusions for

the obtainable resolution cannot be substantiated yet with

experimental data. Nevertheless even in only partially

spatially coherent illumination of clessidras could we already

verify that very little intensity is diffracted into higher orders,

when the lens is operated at the optimum photon energy. We

take as an example a lens with perfect prisms made of PMMA

with h = 25.67 mm and with m = 2 for a photon energy of about

8 keV. The performance of this lens in terms of refraction

efficiency has already been discussed earlier by Jark et al.

(2006, 2007). Now the optimum operation energy was found to

be 7.9 keV and the test covered NT = 20 and NT = 40.

Consistent with the expectation for clessidras with m = 2, the

intensity diffracted into each of the first higher-order peaks

amounted to less than 15% of the intensity in the central peak,

and it was significantly smaller in all other higher-orders peaks.

In agreement with Fig. 7, a small detuning of the photon

energy made the higher-order peaks grow rapidly in intensity.

After a detuning of only 2.5% the intensity in the first higher

order already dominated over the intensity in the central peak.

The case of partially spatially coherent illumination is more

likely to be found when operating kinoform lenses, which can

have particularly large apertures (Jark et al., 2006). We will

thus address this problem in our future work and discuss the

available experimental data in the framework of such a more

appropriate study (De Caro & Jark, 2008).

4. Conclusions

We see that a clessidra with curved prisms performs almost

identically to the parabolic profile as far as the achievable

diffraction-limited spatial resolution is concerned. Even if the

lens is composed throughout of identical non-curved prisms,

under suitable experimental conditions the resolution remains

unaffected; however, a small amount of intensity is diffracted

into a first side peak. This result is also applicable to the

alligator lens. Then for the clessidra and the alligator lens the
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Figure 7
(a) Intensity on the optical axis calculated for a clessidra lens for NT = 31,
m = 1, energy = 8 keV, h = 25.67 mm, � = 4� 10�6, m0 = 1 and b = m�/�, as
a function of a = q/f. Ideal case, continuous curve; energy detuning,
dashed curve; tips of size w, short-dashed curve; compensating w with
detuning, long-dashed curve; compensating w with a larger central gap,
dotted curve. (b) Intensity at the focus distance calculated for a clessidra
lens as a function of x/h. The parameters are the same as in (a).



obtainable spatial resolution does not depend on the size of

the prisms (or on the step height), but only on the total

aperture. In other words, if a certain numerical aperture NA in

(15) can be realised with different combinations of prism

height h, NT and m, then, as long as the apertures of these

lenses are always spatially coherently illuminated, it is not an

advantage for the obtainable spatial resolution to use the

smallest possible prism height. This latter prism height

reduction was pursued by Cederström et al. (2005). They kept

the columns of prisms with equal height independent and

allowed for steps between adjacent columns, which were

smaller than the prism height.

Prism tips do not deteriorate the focus size as long as one

can adjust the central gap in the lens accordingly. However,

one will unavoidably lose some intensity in the central peak.

This result is particularly interesting also for the operation of

alligator lenses, for which it was not recognized before. In fact,

also in these lenses the presence of flat tips of constant width

will not deteriorate the resolution, as long as we can appro-

priately adjust the separation between the two jaws. In these

lenses the photon energy tunibility can be maintained. Some

photon energy tuning is also possible in clessidras, though only

in a very small range, if we do not want to lose spatial reso-

lution. The relative tuning interval depends reciprocally on the

number of the present prism rows.

The presented equations provide the tools that allow us

to simulate the lens operation as a function of the physical

parameters involved in the diffraction process, such that

suitable experimental conditions for best lens performances

can be predicted. The case of partially spatially coherent

illumination will be easily encountered with large aperture

kinoform lenses and this problem will thus be addressed in a

future work.

APPENDIX A
If we take a polynomial of second order for the lens trans-

mission function, i.e. a parabolic profile with or without an

overlayed linear profile, we can find a general analytical

solution of equation (8). In fact, for

tj xð Þ ¼ a0;j þ a1;jxþ a2;jx
2; ð20Þ

and for a coherent Gaussian source with a root mean square

�s, we obtain

A xq

� �
¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

q �p� 2��2
s ið Þ

s

�
XN

j¼�N

exp �i
2�

�
�� i�ð Þa0;j

� �
exp i�

UWj � V2
j

�Wj

� �

�

Erf
�1ð Þ3=4 ffiffi�p Wjxj�Vjð Þffiffiffiffiffiffi

�Wj

p

� �
� Erf

�1ð Þ3=4 ffiffi�p Wjxjþ1�Vjð Þffiffiffiffiffiffi
�Wj

p

� �
2
ffiffiffiffiffiffi
Wj

p
8>><
>>:

9>>=
>>;
ð21Þ

where the standard function Erf is defined as follows,

Erf½z� ¼
2ffiffiffi
�
p

Zz

0

exp �y2
� �

dy; ð22Þ

and

U ¼
x2

q

q
;

Vj ¼
xq

q
þ �� i�ð Þa1;j;

Wj ¼
1

p� 2��2
s =�ð Þi

þ
1

q
� 2 �� i�ð Þa2;j:

ð23Þ

Here the index j runs over all the 2N + 1 rows constituting the

lens. The intensity of the beam after the lens in every point

(xq, q) is obtained from the square modulus of equation (21).

This solution is also valid in the specific case of the clessidra

lens. In fact, in this case the material distribution function for

perfect prisms in row j is given by a linear transmission

function,

tj xð Þ ¼ a0;j þ a1;jx ¼

j j jwþ j b�w
h ðx� xj�1Þ if x � 0;

j j jbþ j b�w
h ðx� xj�1Þ if x< 0;

8<
:

ð24Þ

where xj = h/2 + jh, with j 2 {�N, �N + 1, . . . , �2, �1, 0, 1,

2, . . . , N � 1, N }; h, b and w are the prism height, the width of

the prism at its base and the width of an eventually finite-size

tip, respectively.

For an incident plane wave the above equations can be

simplified. The complex field amplitude in the detector plane

placed at a distance q from a lens with propagator Plens is given

by

A xð Þ ¼
1ffiffiffiffiffiffiffi
i�q
p

Zh=2þNh

�h=2þNh

exp
i� x� x0ð Þ

2

q�

� �
Plens x0ð Þ dx0: ð25Þ

When w = 0, neglecting absorption, at the optimum wave-

length (m integer), the propagator of either a clessidra or a

parabolic lens can be defined as in (11). After a Fourier series

expansion of the periodic part of the lens propagator [equa-

tions (13) and (14)] by equation (25), one has

ICles �xx; að Þ ¼


XN

j¼�N

cj exp �i� aj2 þm�xx m�xxþ 2jð Þ
� �

=m a� 1ð Þ
� �

2i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m a� 1ð Þ

p
�

(
Erf k

aj

m
þ ð1� aÞ

NT

2
þ �xx

� �� �

� Erf k
aj

m
þ ða� 1Þ

NT

2
þ �xx

� �� �)
2

; ð26Þ
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IPara �xx; að Þ ¼

 exp � i�m�xx2

a�1

� �
2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m a� 1ð Þ

p
 

Erf k ð1� aÞ
NT

2
þ �xx

� �	 


� Erf k ða� 1Þ
NT

2
þ �xx

� �� �!
2

; ð27Þ

where Erf( . . . ) is the Erf-function defined in (22); k =

�½im�=ða2 � aÞ�1=2; cj are the Fourier series expansion coeffi-

cients.

In the case of the periodic clessidra structure with curved

prisms characterized by parabolic profiles we can write the

lens propagator in the row j (for w = 0) as given in (17). Thus,

starting from (17), the integration from j � 1/2 to j + 1/2 and

the summation over all rows lead to

ICles�cur �xx; að Þ ¼


XN

j¼�N

exp i�m j2 � j j jð Þ
� �

exp �
i� m j��xxð Þ

2
�mj j2þð1þaÞ�xx2

cþ2j �xx��xxcð Þ�2�xx�xxcþ�xx2ð Þ½ �
1þa 1�mj=mð Þ

� �

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ a m�mj

� �q

�

(
Erf

"
i
ffiffiffiffiffi
i�
p mj

m 1þ 2�xxcð Þ � 1� aþ 2j� 2�xx
� �

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=aþ 1�mj=m

� �q
#

� Erf

"
i
ffiffiffiffiffi
i�
p mj

m 2�xxc � 1ð Þ þ 1þ aþ 2j� 2�xx
� �

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=aþ 1�mj=m

� �q
#)

2

; ð28Þ

where the prism curvature parameters mj and xc are defined in

the main text.

When w 6¼ 0, m 6¼ integer, and the central gap is larger than

h, one has to generalize the lens propagator as in equation

(18), and integrate the two halves of the clessidra lens sepa-

rately. From (18) and (25) it follows that the amplitude of the

central gap is given by

Agap �xx; að Þ ¼
1

2
ffiffiffiffiffiffi
m0

p

(
Erf

i
ffiffiffiffiffiffiffiffiffiffi
im0�
p

�xx� �ss� 1=2ð Þffiffiffi
a
p

� �

� Erf
i
ffiffiffiffiffiffiffiffiffiffi
im0�
p

�xxþ �ssþ 1=2ð Þffiffiffi
a
p

� �)
; ð29Þ

where 2�ss = 2s/h is the unitless increment of the central gap.

The amplitude of the left-half lens is given by

Aleft �xx; að Þ ¼
1

2
ffiffiffiffiffiffi
m0

p

X�1

j¼�N

exp i�m j2 1� 2 �wwð Þ � jjj
� �

1þ �wwð Þ
� �

� exp �
i�jm amj �ww� 1ð Þ

2
�m0 jþ 2 �xxþ �ssð Þ �ww� 1ð Þ½ �

� �
m0

 !

�

(
Erf

i
ffiffiffiffiffi
i�
p

2a�mj �ww� 1ð Þ½ � þm0 �1þ 2j 1þ a �ww� að Þ � 2 �xxþ �ssð Þ½ �

2
ffiffiffiffiffiffiffiffi
am0

p

� �

� Erf
i
ffiffiffiffiffi
i�
p

2a�mj �ww� 1ð Þ½ � þm0 1þ 2j 1þ a �ww� að Þ � 2 �xxþ �ssð Þ½ �

2
ffiffiffiffiffiffiffiffi
am0

p

� �)
:

ð30Þ

The amplitude of the right-half lens can be obtained by

equation (30), changing �ss to ��ss and performing the summa-

tion from 1 to N.
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