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The correlated Einstein model for EXAFS parallel and perpendicular mean-

square relative displacements (MSRDs) is discussed. By means of dynamical

simulations on different crystalline structures, the error owing to the Einstein-fit

model on the EXAFS MSRDs is estimated as a function of the standard

deviation of the density of vibrational states. This error should be taken into

account to improve the accuracy of the MSRDs.
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1. Introduction

Extended X-ray absorption fine structure (EXAFS) is known

as a powerful probe for investigating disordered systems and,

thanks to accurate temperature-dependent measurements, for

obtaining original information on the local dynamics of crys-

tals, such as the parallel and perpendicular mean-square

relative displacements (Brewe et al., 1997; Fornasini et al.,

2004). Indicating by �uu0 and �uu1 the thermal displacement of

the absorber and backscatterer atoms of EXAFS, respectively,

the parallel mean-square relative displacement (MSRDk) is

defined as

MSRDk ¼ hjð �uu1 � �uu0Þ � R̂Rj
2
i; ð1Þ

and the perpendicular mean-square relative displacement

(MSRD?) as

MSRD? ¼ hj �uu1 � �uu0j
2
i � hjð �uu1 � �uu0Þ � R̂Rj

2
i; ð2Þ

where R̂R is the unit vector of the equilibrium distance between

the two atoms. The EXAFS Debye–Waller factor directly

gives information on MSRDk (Beni & Platzman, 1976). The

difference between the interatomic distance hri = hj �RRþ �uu1 �

�uu0ji probed by EXAFS and the crystallographic distance R =

jh �RRþ �uu1 � �uu0ij between average positions allows measure-

ment of the temperature dependence of MSRD? (Dalba et al.,

1999).

The EXAFS MSRDs represent a test bench for lattice

dynamical theories; their comparison with the absolute mean-

square displacements (MSDs) obtained from X-ray diffraction

allows evaluation of the correlation of atomic motions, which

plays a key role in the study of some physical phenomena such

as phase transitions and negative thermal expansion (Sanson

et al., 2006).

To find accurate values of MSRDk and MSRD? by EXAFS,

an accurate knowledge of the EXAFS scattering amplitudes,

phase shifts and inelastic terms is required (Teo, 1986). These

parameters can be determined by theoretical calculations, for

example using FEFF8 code (Ankudinov et al., 1998). However,

the uncertainties on these calculations affect the accuracy on

the absolute value of MSRDk and MSRD?. An alternative

procedure consists of a separate analysis of phase and

amplitude of the filtered EXAFS signal via the ratio method

(Bunker, 1983; Tranquada & Ingalls, 1983) taking the lowest-

temperature spectra as reference for backscattering ampli-

tudes, phase shifts and inelastic terms. However, only the

relative differences �MSRDk(T) = MSRDk(T) � MSRDk(T0)

and �MSRD?(T) = MSRD?(T) � MSRD?(T0) with respect

to the reference temperature T0 can be obtained from this

second procedure. In both procedures it is customary to fit the

temperature dependence of �MSRDk(T) and �MSRD?(T) to

a correlated Einstein model in order to obtain with reasonable

accuracy the absolute value of MSRDk(T) and MSRD?(T)

(Dalba & Fornasini, 1997).

In the correlated Einstein model, which consists of substi-

tuting the phonon density of states �(�) with a delta function

centred at �E, one obtains the following expressions for

MSRDk(T) and MSRD?(T) (Sevillano et al., 1979; Vaccari &

Fornasini, 2006),

MSRDein
k ðTÞ ¼ h= 8�2��k

� �
coth h�k=2kBT

� �
; ð3Þ

MSRDein
? ðTÞ ¼ h= 4�2��?

� �
coth h�?=2kBTð Þ: ð4Þ

To obtain the absolute values of MSRDk(T) and MSRD?(T)

from the experimental temperature-dependence of

�MSRDk(T) and �MSRD?(T), one uses the following fit

expressions,

�MSRDkðTÞ ¼ h= 8�2��k
� �

coth h�k=2kBT
� �

� ak; ð5Þ

�MSRD?ðTÞ ¼ h= 4�2��?
� �

coth h�?=2kBTð Þ � a?; ð6Þ

where ak, a? and the Einstein frequencies �k, �? are the only

fitting parameters. The absolute values of MSRDk(T) and

MSRD?(T) are obtained, respectively, by shift
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MSRDkðTÞ ¼ �MSRDkðTÞ þ ak; ð7Þ

MSRD?ðTÞ ¼ �MSRD?ðTÞ þ a?: ð8Þ

Although the Einstein model is based on a strong assumption

(phonon spectrum approximated to a single frequency), it is a

matter of experience that the temperature dependence of the

experimental MSRDs can be reasonably fitted by this model.

However, the error deriving from this procedure has never

been estimated. This is the aim of this work: to estimate, for

the first time, the error on the absolute value of the EXAFS

MSRDs owing to the use of the Einstein-fit model.

The paper is organized as follows: in x2 the procedure of

estimating the EXAFS MSRDs error is briefly described;

in x3 the results are reported and discussed; a remark on the

connection between Einstein-model and crystal dynamics is

made in x4; x5 is dedicated to conclusions.

2. Procedure

As a first step, the temperature dependences of MSRDk(T)

and MSRD?(T) have been calculated (between 0 and 1000 K)

in different crystals by means of dynamical simulations. The

dynamical calculations have been performed within the Born–

Von Karman approximation (Maradudin et al., 1971) on the

following crystalline structures: face-centered cubic, diamond

structure, wurtzite and cuprite (one, two, four and six atoms

in the elementary cell, respectively) with arbitrary force

constants and atomic masses, in all 27 crystals. The parallel and

the perpendicular MSRD(T) are calculated in terms of

eigenfrequencies �(�, �qq) and eigenvectors �wwið�; �qqÞ of the

dynamical matrix (for more details see Maradudin et al., 1971;

Vaccari & Fornasini, 2006) as

MSRDkðTÞ ¼ ð1=NÞ
P

�; �qq

h= 8�2�ð�; �qqÞ
� �

coth½h�ð�; �qqÞ=2kBT�

�
��½ �ww2ð�; �qqÞ expði �qq � �RRÞ=M

1=2
1

� �ww1ð�; �qqÞ=M
1=2
0 � � R̂R

��2; ð9Þ

and

MSRD?ðTÞ ¼ ð1=NÞ
P

�; �qq

h=½8�2�ð�; �qqÞ� coth½h�ð�; �qqÞ=2kBT�

�
�� �ww2ð�; �qqÞ expði �qq � R̂RÞ=M

1=2
1

� �ww1ð�; �qqÞ=M
1=2
0

��2 �MSRDkðTÞ: ð10Þ

As a second step, the relative differences with respect to 0 K,

i.e. �MSRDk(T) = MSRDk(T) � MSRDk(0) and �MSRD?(T)

= MSRD?(T) � MSRD?(0), have been fitted with the

correlated Einstein model in agreement with equations (5)

and (6), respectively. As a result, the fitting parameters ak and

a? (as well as �k and �?) have been obtained for each crystal.

For the third step, if the Einstein-fit error is zero, then ak =

MSRDk(0) and a? = MSRD?(0), and so �MSRDk(T) + ak and

�MSRD?(T) + a? must give MSRDk(T) and MSRD?(T),

respectively. As a consequence, the percentage errors on

MSRDk and MSRD? at temperature T have been estimated,

respectively, as

%ErrkðTÞ ¼
ak �MSRDkð0Þ

MSRDkðTÞ
� 100; ð11Þ

%Err?ðTÞ ¼
a? �MSRD?ð0Þ

MSRD?ðTÞ
� 100: ð12Þ

Fig. 1 shows an example of calculated MSRDk(T), the relative

difference �MSRDk(T) with respect to 0 K, and the corre-

sponding Einstein fit by equation (5). The resulting shift

between MSRDk(T) and �MSRDk(T) + ak (open and full

circles, respectively) is the error on the absolute MSRDk(T)

owing to the Einstein fit.

It can be expected that the error owing to the Einstein fit

increases with an increase in the standard deviation of the

density of vibrational states (DOS) of the crystal. In a ‘perfect

Einstein crystal’, where DOS is a � function and the DOS

standard deviation is zero, the Einstein-fit error is zero. As a

consequence, in x3, for each crystal the Einstein-fit error has

been plotted against the DOS standard deviation. Fig. 2 shows

three examples of the calculated DOS with different standard

deviations.

3. Results and discussion

According to equations (5)–(6) and (9)–(12), the percentage

errors on MSRDk(T) and MSRD?(T) at 0, 300 and 600 K have

been calculated and plotted against the DOS standard

deviation of the crystal (Figs. 3 and 4). The Einstein fit has

been performed over a typical experimental range, between 0

and 500 K. To first approximation, the correlation between the

Einstein error and the DOS standard deviation is independent

of the crystal structure.

From Figs. 3 and 4 it can be observed that (i) the Einstein fit

gives an overestimation of both MSRDk(T) and MSRD?(T)

(%Errk and %Err? are always greater than zero); (ii) the

error on MSRD?(T) is about two times the error on
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Figure 1
Example of the Einstein fit on the parallel mean-square relative
displacement: MSRDk(T) calculated by dynamical simulation (open
circles), relative differences �MSRDk(T) with respect to 0 K (open
squares) and corresponding Einstein fit (line). The resulting MSRDk(T)
from the Einstein fit (full circles) is shifted with respect to the correct
MSRDk(T) (open circles).



MSRDk(T) (%Err? ’ 2%Errk); (iii) on average, the error is

within 5% on MSRDk(T) and within 10% on MSRD?(T), at

least if 0–500 K is considered as the fitting interval.

It is obvious that the error owing to the Einstein fit depends

on the fitting interval. Since at high temperatures equations

(5)–(6) are approximated by a classical linear behaviour,

problems are mainly expected at low temperatures. Fig. 5

reports the percentage error in the diamond structure

obtained with four different fitting intervals: 0–300 K, 0–

500 K, 0–1000 K and 200–1000 K. The error is reduced when

the high-temperature range prevails against the low-

temperature range in the fitting procedure. Analogous results

have been obtained for the other three crystalline structures.

From this result one finds that it is more convenient to

fit the experimental �MSRDk(T) and �MSRD?(T) neglecting

the low-temperature intervals. However, this is true only in

ideal situations. In real situations, where �MSRDk(T) and

�MSRD?(T) are affected by experimental uncertainties,

it is probably more convenient to fit the whole available

temperature range in order to maximize the experimental

information. In any case, the high-temperature ranges reduce

the Einstein error on the absolute MSRDs.

Only recently expression (4) for perpendicular MSRD has

been derived by Vaccari & Fornasini (2006). In previous works

(for example, Dalba et al., 1999; Fornasini et al., 2004) the
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Figure 4
Percentage error given by the Einstein fit on the absolute MSRD?(T) at
0, 300 and 600 K. Symbols are the same as in Fig. 3.

Figure 2
Examples of calculated phonon DOS with different standard deviations:
1.3 THz (gray), 3.0 THz (white) and 4.8 THz (black).

Figure 3
Percentage error given by the Einstein fit on the absolute MSRDk(T) at 0,
300 and 600 K, calculated in different crystalline structures: face-centered
cubic (full-down triangles), diamond (open-down triangles), wurtzite
(full-up triangles) and cuprite (open-up triangles). Lines are a guide for
the eyes.



absolute MSRD?(T) was estimated from the correlated

Einstein model for parallel MSRD, i.e. using equation (5)

instead of equation (6). The use of equation (5), which differs

by a factor of two from equation (6), is equivalent to inserting

an incorrect value of the reduced mass � (twice the real value)

in the fitting procedure of MSRD?(T). I have estimated the

error owing to the utilization of equation (5) instead of

equation (6): as shown in Fig. 6, equation (5) gives an

underestimation (%Err? < 0) on the absolute value of

MSRD?(T), and the error is about twice that resulting from

equation (6). As a consequence, equation (6) is fundamental

in the fitting of perpendicular MSRD. For the first time it has

been used by Vaccari et al. (2007) on cuprous chloride.

In the practical EXAFS analysis the present results allow a

first estimation to be given of the error on the absolute

MSRDs, simply from the DOS standard deviation of the

crystal. Typical values of the DOS standard deviation are of

the order of a few THz. As an example, let us consider the case

of crystalline germanium, which displays a DOS standard

deviation of about 3 THz (Bruesch, 1982). From Figs. 3 and 4,

the Einstein fit between 0 and 500 K overestimates MSRDk by

about 2% at 300 K, and MSRD? by about 3%. In the case of

the Einstein fit performed between 0 and 300 K, the error

increases by about 1.5 times (as evident by Fig. 5), and the

overestimation on MSRDk and MSRD? increases by about

3% and 5%, respectively. Accordingly, the resulting EXAFS

MSRDs should be properly corrected to improve their accu-

racy.

4. Einstein model and crystal dynamics

Before the conclusion, let us make a final consideration on the

Einstein model and on the corresponding crystal dynamics.

Let us indicate by �(T) the ratio

�ðTÞ ¼ MSRD?ðTÞ=MSRDkðTÞ; ð13Þ

which measures the anisotropy of relative thermal vibrations.

If MSRDk(T) and MSRD?(T) can be described by a corre-

lated Einstein model, then by inserting equations (3) and (4)

into equation (13) one obtains

�ðT ! 0Þ ¼ 2�k=�?; ð14Þ

and

�ðT !þ1Þ ¼ 2�2
k=�

2
?; ð15Þ

and, by comparing the last two equations,

�ðT ! 0Þ ¼ 2�ðT !þ1Þ½ �
1=2: ð16Þ

As a result, in the correlated Einstein model the temperature

dependence of �(T) follows the condition expressed by

equation (16). This is the case, for example, of perfect isotropy,

where �(T) = 2 at all temperatures.
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Figure 6
Percentage error on the absolute MSRD?(T) at 300 K: with �MSRD?(T)
fitted by equation (5) (negative values) and by equation (6) (positive
values). The fit was made between 0 and 500 K. Symbols are the same as
in Fig. 3.

Figure 5
Percentage error given by the Einstein fit on the absolute MSRDk(T) and
MSRD?(T) (top and bottom panel, respectively) in diamond structure at
300 K for different fitting intervals: 0–300 K (diamonds), 0–500 K
(triangles), 0–1000 K (squares) and 200–1000 K (circles). The error
reduces when the high temperatures prevail in the fitting range.

Figure 7
Calculated ratio [2�(T! +1)]1/2/�(T! 0). Symbols are the same as in
Fig. 3.



Fig. 7 shows the ratio [2�(T! +1)]1/2/�(T! 0) calculated

in the 27 crystals of this work [with �(T! +1) approximated

to � at 1000 K]: in most cases this ratio is closer to unity.

However, this does not mean that the Einstein model works

well: equation (16) is a necessary but not sufficient condition

of the crystal dynamics to describe MSRDk(T) and

MSRD?(T) by the correlated Einstein model.

5. Conclusions

In this work the error owing to the Einstein fit on the absolute

value of EXAFS MSRDs has been estimated by means of

dynamical simulations. On average the error is less than �5%

for the parallel MSRD, less than 10% for the perpendicular

MSRD, but it should be taken into account to improve the

MSRDs accuracy. The fitting error depends on the fitting

range and, in principle, decreases neglecting the low

temperatures. Finally, in the fitting of perpendicular MSRD,

the importance of equation (6) has been demonstrated.

I would like to thank P. Fornasini and M. Vaccari for helpful

discussions.
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