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The technique of coherent X-ray diffraction imaging (CXDI) has recently

shown great promise for the study of inorganic nanocrystals. In this work the

CXDI method has been applied to the study of micrometer-size protein crystals.

Finely sampled diffraction patterns of single crystals were measured and

iterative phase-retrieval algorithms were used to reconstruct the two-dimen-

sional shape of the crystal. The density maps have limited reproducibility

because of radiation damage, but show clear evidence for crystal facets.

Qualitative analysis of a number of single-crystal diffraction peaks indicates the

presence of inward surface contraction on 2 mm size crystals. A survey of several

hundred diffraction patterns yielded a number of examples with dramatic single-

sided streaks, for which a plausible model is constructed.

Keywords: coherent X-ray diffractive imaging; protein crystals; ferritin; phase retrieval;
surface contraction.

1. Acronyms, abbreviations and conventions

f.c.c.: face-centered cubic.

CXD: coherent X-ray diffraction.

CXDI: coherent X-ray diffraction imaging.

(111): Miller indices corresponding to the body diagonal

direction in the reciprocal cubic lattice.

{111}: family of all (111) Bragg peaks.

Gy: unit of absorbed dose (Gray = J kg�1), deposited energy

per kg.

2. Introduction

One of the great promises of present and future third-

generation sources of synchrotron radiation is their thousand-

fold increase in coherent flux provided by the strategic use of

undulator technology. CXD is a new branch of science that has

been opened up by this source development, with important

applications in X-ray photon correlation spectroscopy as well

as imaging. The prospect of CXDI being applied to a wide

range of sample materials has motivated planning of new

imaging beamlines at the latest sources.

It is important to establish how far the method of CXDI can

be developed for more radiation-sensitive materials, such as

biological samples. There are well established limits of radia-

tion dose and the corresponding image resolution that would

be expected (Howells et al., 2005) as well as widespread

speculation that the limits can be overcome by using (fourth-

generation) short-pulse single-shot diffraction methods

(Neutze et al., 2000).

The preparation of protein crystals represents an important

technological step along the way to solving the atomic struc-

tures of protein molecules. The limitations of radiation dose

have been studied extensively (Nave & Garman, 2005; Nave &

Hill, 2005; Ravelli et al., 2002). In one earlier example the

radiation was shown to cause an outward ‘explosion’ of the

Bragg peaks that was thought to correspond to dehydration of

the solvent channels within the crystal, which would explain

why the lattice contracts (Boutet & Robinson, 2006). Crys-

tallization of proteins still remains as one of the biggest

limitations to the future advance of the field of macro-

molecular crystallography. Imaging of crystals during the

initial nucleation phase would be an excellent way of learning

about how to control them and prepare them better. Since the

submicrometer sizes involved are beyond the limit of visible-

light microscopy, shorter wavelengths are needed. In this

paper we show that CXDI can indeed be used to image small

protein crystals, but is subject to all the limitations of sample

handling and radiation damage that arise along the way.

3. Coherent X-ray diffraction

In a typical X-ray diffraction experiment the size of the X-ray

beam is often smaller than the sample. Also, the phase of the

wavefield is generally not well defined over the entire wave-

front. We define the coherence length of the beam as the

distance in a certain direction over which the relative phase of

the ensemble of electric fields varies by a value of �. There are

three coherence lengths to consider, two of which are trans-

verse and the other being longitudinal to the direction of
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propagation of the X-rays. The transverse coherence lengths

depend on the source size and the distance from the source

while the longitudinal coherence length depends on the level

of monochromaticity of the beam (Als-Nielsen & McMorrow,

2001). For the undulator beamline used at the Advanced

Photon Source the typical coherence lengths are of the order

of a few micrometers horizontally and a few tens of micro-

meters vertically. The longitudinal coherence length using a

Si(111) double-crystal monochromator is roughly 1 mm.

The three orthogonal lengths define a coherence volume of

the X-ray beam no more than a few micrometers across. This is

much smaller than a typical protein crystal used in diffraction

experiments and also much smaller than a typical X-ray beam.

This implies that the diffraction pattern measured on a large

crystal is representative of a structure averaged over multiple

incoherently scattering volumes. The scattered intensity from

a single coherence volume is given by

IðqÞ /
R
�infðrÞ exp i q � rð Þ dr

�
�

�
�2; ð1Þ

where �inf(r) is the electron density of the infinite crystal, q =

2�/� is the momentum transfer vector, � is the wavelength of

the radiation, r is the real-space position vector and the inte-

gral is performed over the coherence volume. If multiple

coherence volumes are present in the beam, the intensities

from each of these adds incoherently since the phases of the

beams being scattered by different coherence volumes are

uncorrelated.

In the case of a crystal smaller than the coherence volume

of the beam the situation is quite different. The electron

density of the small crystal is no longer an infinite sum of sharp

localized functions as in the case of a large crystal. The elec-

tron density can be written as

�ðrÞ ¼ sðrÞ�infðrÞ; ð2Þ

where s(r) is the shape function of the small crystal with a

value of 1 inside and 0 outside the crystal. Recognizing that

the scattered amplitude is a Fourier transform of the electron

density, we can use the convolution theorem to calculate the

intensity,
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R
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In (3) the Fourier transform of s(r) was written as S(q) while

the Fourier transform of the infinite crystal �inf(r) was written

as F(q) and is known as the scattering form factor.

The physical implication of (3) is that the scattered intensity

from a coherently illuminated small crystal is not simply a

collection of delta-function-like Bragg peaks but contains

information about the entire shape of the crystal. By

measuring the function S(q), which is repeating around each

Bragg peak, one can in theory deduce the three-dimensional

shape of the crystal.

Equation (3) was derived for a perfect crystal. A small

protein crystal is unlikely to be perfect. In this situation it is

possible to show that the density of a crystal can be written in

terms of a complex function where the phase is related to the

distortions of the local lattice while the amplitude can be

interpreted as the density (Vartanyants & Robinson, 2001).

Therefore, by allowing the shape function in (3) to be

complex, one can use the technique to map the strain fields

inside a nanocrystal (Pfeifer et al., 2006).

The phase of the scattered waves is lost during the

measurement because only the intensity is measured. Phase-

retrieval algorithms based on the Gershberg–Saxton algo-

rithm can be used to recover the phases (Gerchberg & Saxton,

1972; Robinson et al., 2001; Fienup, 1982; Sayre et al., 1998;

Miao et al., 1999; Marchesini, 2007). These algorithms rely on

the assumption that the diffraction pattern is sufficiently

oversampled so that all the spatial frequencies present in the

object, from the size of the object down to the highest spatial

resolution measured, are sampled at least at twice the Nyquist

frequency. The oversampling by at least a factor of two implies

that there are a sufficient number of data points to over-

determine the unknown variables, i.e. the phases (Sayre, 1952;

Miao et al., 1999). With the phases known, calculating the

inverse Fourier transform of S(q) directly yields the complete

structure of the crystal. The theoretical resolution limit of this

technique is half the wavelength of the radiation, roughly

0.5 Å for hard X-rays. In practice, however, the resolution

currently achievable is of the order of tens of nanometers and

is limited by signal level and detector size. Nevertheless, this

technique can be very useful in that it allows imaging in three

dimensions of submicrometer crystals which cannot be imaged

by optical methods.

4. Sample and experimental set-up

The coherent diffraction beamline at sector 34-ID-C at the

Advanced Photon Source at Argonne National Laboratory

was used to perform the measurements described here. The

9 keV radiation produced by the undulator was unfocused and

a narrow energy band was selected using a double-crystal

Si(111) monochromator. Two sets of slits at 3 m and 1 m

upstream of the sample were used to collimate the beam and

reduce it to a size of 200 mm � 200 mm.

Small crystals of the protein holoferritin from horse spleen

were studied. The protein molecules in solution were

purchased from the Sigma-Aldrich Company at a concentra-

tion of 100 mg ml�1 in 150 mM NaCl. The holoferritin mole-

cule consists of a roughly spherical shell with inner diameter

�80 Å and outer diameter �130 Å. The inside of this shell is

filled with as many as 4500 iron atoms. In vivo, the iron atoms

are stored inside the molecules until they are needed by

another part of the host organism (Harrison & Arosio, 1996).

Holoferritin was chosen for two primary reasons. First, it

crystallizes very easily and it was therefore relatively easy to

produce a shower of micrometer-sized crystals. The second

reason is that the presence of the iron cores increases the

diffracted intensity from the small nanocrystals.

Crystals were grown in solution containing 50 mg ml�1 of

the protein in 150 mM NaCl and 22.5 mM CdCl2. The intro-
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duction of Cd2+ ions in solutions of ferritin has previously

been found to lead to crystallization, the most common form

being f.c.c. (Granier et al., 1997). The large amount of

cadmium added in this current case leads to rapid nucleation

and therefore a very large number of small crystals in a short

amount of time. It was necessary to produce a large amount of

crystals owing to the inability to select and orient a single

micrometer-size crystal in the X-ray beam. By increasing the

density of the crystals, the probability of measuring a single

Bragg peak from a single crystal was increased so the

experiment could be performed in a reasonable amount

of time.

The crystals in solution were illuminated by the beam and a

direct-illumination CCD camera from Princeton Instruments

with 1340 � 1300 pixels of 20 mm � 20 mm was placed 2.2 m

away from the sample at an angle corresponding to the (111)

Bragg peak of the ferritin crystal at the X-ray energy used. The

(111) Bragg peak is the lowest angle reflection from an f.c.c.

crystal. This angle is small (�0.7�) and therefore the small

camera chip (2.5 cm � 2.5 cm) still covers a fairly wide range

of azimuthal angles. The scattering from a sample with crystals

freely diffusing in solution illuminated for a long period of

time or alternatively a sample containing a very large amount

of crystals was a continuous ring of intensity or a powder

pattern. The amount of cadmium was adjusted so that the

number of crystals diffracting at any given time was small

enough that these peaks were generally well separated and not

overlapping.

5. Data

There are multiple technical difficulties in performing

coherent diffractive imaging measurements on micrometer-

size crystals of proteins which are suspended in solution. The

thermal motions in the sample as well as the damage to the

sample caused by the X-ray beam limit the accumulation time

for a single crystal. Long exposures are required to measure

the weak fine features near the intense Bragg peak. However,

it was found that after a short period of time, which is

generally shorter than the time that would be required to

adequately perform the measurement, the sample had

changed significantly and often to the point that a Bragg peak

was no longer observed (Boutet & Robinson, 2006). Also,

rapid tumbling or angular motions of the crystal led to an

averaging of many orientations which would smear the

coherent diffraction features. Despite all the technical diffi-

culties limiting the effectiveness of the technique, some CXD

patterns displaying expected features such as intensity fringes

were measured and they are presented here.

A sample was prepared with 4 ml of holoferritin at

100 mg ml�1 into which 4 ml of 45 mM CdCl2 were added.

Crystals were formed immediately (faster than the time

required to exit and close the experimental hutch) and data

were collected immediately after the experimental hutch

could be closed. Bragg peaks coming from individual small

crystals were observed and the diffraction pattern of a single

(111) peak was selected. These Bragg peaks were seen for a

few exposures of 60 s each, became progressively weaker and

eventually disappeared completely. The first four diffraction

images obtained from a particular crystal are shown in Fig. 1.

Intensity flares with modulations, which are expected for

faceted crystals, can be seen. The patterns are seen to change

in time which is expected from the thermal motions of the

crystal in solution and the radiation damage from the X-ray

beam. These CXD patterns are not particularly well resolved

when compared with the ones obtained on gold or lead

nanocrystals (Robinson et al., 2001; Williams et al., 2003;

Pfeifer et al., 2006) due to the fact that the protein crystals

were in solution and suffered from radiation damage.

However, these patterns do represent, to our knowledge, the

first coherent X-ray diffraction patterns from single nano-

crystals of proteins.

The CXD pattern, which corresponds to the Fourier

transform of the shape of the crystal, should be centrosym-

metric if we assume the particle has a real electron density and

to be a perfect crystal with exact translational symmetry. The

patterns measured are clearly not centrosymmetric. There are

two possible reasons for this. The first one is that the three-

dimensional pattern is centrosymmetric but a random two-

dimensional slice through the pattern does not necessarily

have to be symmetric; only a slice through the exact center of

the pattern would be symmetric. There is no reason here to

expect the slice seen in a given exposure to pass through the

center since the crystal has a random orientation. This is

because the two-dimensional slice seen is where the diffrac-

tion pattern intersects the Ewald sphere. The random orien-

tation of the Ewald sphere means that the center of any given

Bragg peak does not necessarily lie on the surface of it.
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Figure 1
Intensity on a logarithmic scale of a single Bragg peak from a ferritin
crystal over time. Each image corresponds to an exposure of 60 s.



Therefore, each of these slices is the Fourier transform of a

complex projection of the electron density onto the detector

plane.

Another possible reason for the absence of centrosymmetry

could be the presence of strain in the crystal. Strain would

show up as an imaginary part to the electron density in a

reconstruction (Pfeifer et al., 2006). The quality of the data

does not allow us to accurately reconstruct a strain field for the

crystal. This was attempted but to reconstruct the phase as

well as the amplitude of the electron density requires twice the

number of undetermined variables and led to unstable phase

retrieval and multiple solutions that were not reproducible.

Whichever origin of the asymmetry applies, to obtain a

reconstruction of the projection of the shape of the crystal the

patterns were symmetrized about the center. This assumes

that the diffraction pattern does not represent a slice through

the middle of the Bragg peak and that the measured fringes on

one side are missing from the other side only due to mis-

alignment. This assumption is questionable in this present case

since the asymmetries appear to be real as will be discussed

below. The symmetrization was carried out by determining

the most symmetric point in the diffraction pattern in the

following manner. We picked a center point in the pattern

and then inverted the pattern around this point. We then

compared the original pattern with the inverted one and

repeated the operation for many center points. The ideal

center of the pattern was selected by maximizing the corre-

lation between the two patterns. This has the effect of

removing the imaginary part of the electron density and it

allowed the algorithms to converge to a reproducible solution.

This is shown in Fig. 2 where the same four images have been

symmetrized. The subject of strain will be revisited in x7.

The symmetrized patterns were then put through a series of

algorithms to retrieve the phases of the scattered waves in

order to reconstruct the real two-dimensional projection of

the shape of the crystal.

6. Reconstruction

A series of programs to treat the data obtained with the CCD

detector has been developed and was used directly to convert

the data into a format that the phase-retrieval routines could

handle.

The scattered amplitude is calculated by taking the square

root of the intensity. A background is subtracted from the

array. The data are then padded to avoid aliasing and to

decrease the real-space steps of the reconstruction. This is

done by embedding the array at the center of a larger array of

zeroes. This only makes the real-space pixels smaller but does

not increase the resolution of the reconstructed image since

this is determined by the highest angle at which signal is

observed higher than the noise.

The phase-retrieval program is based on the iterative

method of Gershberg & Saxton (1972). The method iterates

between real and reciprocal space using fast Fourier trans-

forms. On every iteration in real space the object is cut off to a

well defined rectangular area, called the support. Along with

the reciprocal-space data, the program requires a real-space

starting array. This array needs to be of the same size and

contains the real-space support. The size and shape of the

support is determined beforehand by looking at the spacing of

the fringes in the data or at the autocorrelation of the object

obtained by a Fourier transform of the intensity. The support

has a value of 1 where the electron density can be non-zero

and 0 everywhere else. For these data, owing to the orientation

of the flares, the support used was a square of 60 � 60 pixels

rotated by 45�. In the present case we used a combination of

hybrid input–output and error reduction. Both of these

represent different kinds of real-space constraints (Marche-

sini, 2007). A total of 50 different fits were performed with

different random starting phases for each of the images. The

very best fit, determined to be the fit where the recovered

diffracted intensity most accurately matched the symmetrized

intensity, is shown for two images in Fig. 3.

Both of the reconstructions obtained in Fig. 3 are quite

good considering all the difficulties of the experiment and the

low quality of the data. The reconstructed projection of the

crystal shape displays a compact object with some well defined

facets on both reconstructions shown on Fig. 3. Even though

the same object is illuminated in both cases, the changes in

time owing to sample rotation and radiation damage explain

why the two reconstructions look different. The rotation of the

crystal means a projection of the crystal shape on two different

planes is measured. In the second reconstruction a slightly

more elongated object is recovered with again fairly sharp

interfaces. The size of the objects reconstructed is around

2 mm as shown. Given the source properties and the Si(111)

monochromator used, this object was at the very limit and
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Figure 2
Symmetrized intensity on a logarithmic scale of CXD patterns from a
single crystal. The patterns of Fig. 1 were symmetrized about the center of
the pattern.



even beyond the limit for coherent illumination. This was

reflected in the difficulty to observe any fringes around the

Bragg peaks for these experiments. Most crystals could not be

considered to be coherently illuminated for the entire expo-

sure and it made it very difficult to observe coherent diffrac-

tion features.

The left side of Fig. 3 shows the

reconstructed scattered amplitude

obtained from the reconstructed

crystal shape. Comparing the fitted

amplitude with the data, we obtain a

value of �2 of 0.021 for the first image

and 0.027 for the second. This means

the fitted amplitude is on average 14%

and 16%, respectively, different from

the measured amplitude.

We can estimate the reproducibility

of the reconstructed crystal shape

using the multiple reconstructions

performed on a single diffraction

pattern. A computer program calcu-

lates a value similar to �2, that is

the sum of the squared differences

between the two solutions, normalized

by the sum of the squared density of

one of the two solutions (Williams et

al., 2003). A comparison of the two

best fits yields an average 40% differ-

ence per pixel for the first image

shown in Fig. 3(b) and a 30% differ-

ence for the second slice shown in Fig. 3(d). Comparing the

other reconstructions reveals that the other solutions found

with higher �2 rapidly become very different. The low quality

of the data leads to a low reproducibility of the reconstruc-

tions and limits the resolution at which one can be confident in

the image obtained. Nevertheless, the overall shape of the

images and the facets are reproducible while the internal

structure of the particle is not reliably imaged.

7. Lattice distortions

The single slices of available data make it impossible to obtain

more than a two-dimensional projection of the crystal shape of

micrometer-sized protein crystals. However, sense of the third

dimension can be deduced from the overall characteristics of

the many time series that were measured. Every so often in a

time series some of the Bragg peaks are seen to display sharp

streaks of intensity in a direction which is not radial, i.e. not in

the (111) direction for the (111) Bragg peak measured. Some

examples of streaks are shown in Fig. 4.

These streaks appear and disappear with a corresponding

Bragg peak owing to the tumbling motions discussed above.

The streaks are therefore part of the same Bragg peak.

Furthermore, in some cases the streak and the central part of

the peak can be seen to change over a few images. Sometimes

the streaks are seen first as the crystal rotates into the Bragg

condition and the Bragg peak then appears with a corre-

sponding change in the intensity of the streak. This is the

signature of a rotating crystal with facets. Intensity streaks

which are not radial can only come from a facet of the crystal

in a direction different from the q vector (Robinson, 1986;

Boutet et al., 2002). These are known as crystal truncation rods
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Figure 4
Multiple examples of single Bragg peaks with intensity streaks. The measurement q vector is pointing
up the page. The direction of these streaks is neither radial nor in the direction of the CCD readout
and is always consistent with either a (111) or (200) direction.

Figure 3
Reconstructed diffraction patterns and real-space images. (a) Recon-
structed scattered amplitude of image 1 of Fig. 2. Note this is not on the
same scale as the measurement. (b) Reconstructed crystal shape of image
1. (c) and (d) Same for image 2.



(Robinson, 1986). The presence of these streaks is not

surprising since faceting of the crystal is already seen in the

images of Fig. 3. What is unexpected is that most of the

streaking is towards a higher q value than that of the Bragg

peak. The streaks are almost always on the high q side of the

Bragg ring. Two of the eight {111} directions in the f.c.c. crystal

are radial on the CCD detector. Any rotation around this

vector is allowed. There is no preferred orientation of the

sample since the crystals are free to rotate in solution and

therefore there is no reason to expect facets to be only

pointing in directions leading to streaking to higher q. As

explained above, for a real object, the diffraction pattern is

supposed to be centrosymmetric and streaks should be seen

on both sides with equal probability but this is not found to be

the case here.

The expected shape of a f.c.c. crystal is an octahedron with

the eight facets corresponding to the {111} directions. This is

expected because the {111} directions are the close-packed

directions in the crystal, i.e. the directions where the fewest

nearest-neighbor contacts are left dangling in order to expose

the surface. Even though the {111} facets are the most stable,

they are not expected to be the only surface present. However,

any large facet on the crystal giving rise to a strong streak in

intensity is expected to be a low-order surface with fairly tight

packing.

The angles between all eight {111} directions and all six

{200} directions are fixed by the lattice. The angle between two

{111} facets has to be either 71�, 109� or 180�, while the angle

between two (200) directions is always a multiple of 90�. The

angle between a {111} facet and a {200} facet can take on a

value of 35�, 55�, 126� or 144�. Therefore, by measuring the

angle between the q vector of the Bragg peak, which is always

the (111) direction (except for some cases where Bragg peaks

were observed on the {200} ring since the detector was large

enough to cover both Bragg rings), and the direction of the

streak in intensity, we can determine whether the facets

producing the streaks are {111}, {200} or some other direction.

These angles are shown in Fig. 5 and they are found to always

correspond, within the accuracy of the measurement, to one of

the allowed angles between the (111) and either another {111}

or a {200} direction. We can therefore conclude that the small

crystals observed possess primarily {111} and {200} facets.

We propose a model to explain why the streaks almost

always point towards higher q. We first assume that the crystal

has an octahedral shape with {111} facets, as observed for

macroscopic crystals of the same protein (Boutet et al., 2002).

The Fourier transform of this shape produces streaks of

intensity perpendicular to each facet and intensity modula-

tions along these fringes owing to the interference between

two parallel facets. There are eight streaks and choosing one

of them as the radial direction determines that four of them

point toward a lower q value while the remaining four point

towards higher q.

A simulated cut through the reciprocal space is shown in

Fig. 6(a). The cut is along the plane spanned by the (110) and

the (002) vectors, showing only the left half of the plane. For

an infinite crystal the Bragg peaks would be � functions.

However, the reciprocal space is shown for a finite crystal of

octahedral shape. The scattered amplitude is shown as an

isosurface for each Bragg peak. The CXD patterns shown

correspond to a crystal size of 0.16 mm. The different size of

the simulated crystal and the measured ones does not affect

the conclusions below. The size for the simulation here was

chosen to facilitate and speed up the computation and also

because the smaller aspect ratio between the crystal size and

the lattice spacing allows the fringes of the diffraction pattern

to be more visible. The fringe spacing is 15 times smaller than

the reciprocal-lattice spacing in the (111) direction. Therefore
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Figure 5
Measured angles (symbols) between the (111) Bragg peak and the crystal
truncation rods. The lines indicate the allowed values between the (111)
and the other {111} and {200} directions. The measured angles are
consistent with the expected angles within the accuracy of the
measurement.

Figure 6
(a) Reciprocal space of a perfect micrometer-sized f.c.c. crystal with
octahedral habit. The reciprocal space is shown as a cut in the plane
spanned by the (110) and (002) vectors. Only the left half of the plane is
shown. The streaks of intensity and fringes are perpendicular to the facets
of the crystal and are what CXD aims to measure. The coherent pattern is
identically reproduced at each Bragg peak, including the origin. (b) Cut
through reciprocal space of an octahedral f.c.c. crystal with a 16%
contraction of the spacing of the top layer in the crystal. This surface
strain causes the Bragg peaks to be asymmetric around their center. The
surface contraction leads to stronger intensities on the high q side of the
Bragg peak.



the size of the crystal is 15 times larger than the direct lattice

spacing in the (111) direction, which is 106 Å.

If the crystal lattice was distorted it would introduce

asymmetry in the intensity. The distortion is modeled as an

imaginary part of the shape function and the Fourier trans-

form of a complex object is generally not centrosymmetric

(Pfeifer et al., 2006). The intensity flares from the presence of

facets are still present but the intensity of the flare on one side

of the peak is no longer the same as the corresponding flare on

the other side.

The question is then what kind of lattice distortion will lead

to enhancement of the intensity on the high q side with strong

cancellation on the low side. One possible answer is a surface

contraction. If the top layer of the crystal is shifted inward

from the bulk value, the asymmetry to the Bragg peak will

be towards higher q. This is simulated in Fig. 6(b) with 16%

contraction of the top crystal layer. The bulk spacing of the

(111) direction in ferritin is 106 Å and the strained spacing in

the simulation is 89 Å. The actual amount of surface strain

cannot be determined accurately with the available experi-

mental data. The presence of the surface strain has the effect

of distorting the diffraction pattern radially from the origin.

The zeroth-order peak at the origin is unchanged by the

presence of strain and the entire reciprocal space is still

centrosymmetric about the origin but no longer locally

symmetric around each Bragg peak.

The presence of lattice contraction near the surface giving

rise to the observed asymmetry towards higher q is a

reasonable explanation in light of previous published work

(Boutet et al., 2002). Such a surface contraction was previously

measured on large millimeter-size ferritin crystals. The crystal

truncation rod was measured and also showed a strong

asymmetry toward the high q side. This was fitted to a 4%

contraction of the top layer of the crystal. From general

considerations it is expected that a small crystal will have

bigger effects of strain than a large one, because of the

contribution of its edges and corners.

It is worth pointing out that it is possible that the lattice

contraction of the crystal layers near the surface is not an

intrinsic property of holoferritin nanocrystals. The presence of

the iron core with the molecule which helped the feasibility of

these experiments could also be the cause of the observed

effect via an enhancement of radiation damage. The photo-

ionization of the iron in the core at the photon energy used is

very high and leads to highly charged iron species which

interact with the protein shells and lead to an accelerated

breakdown of the molecule. This could lead to a more rapid

destruction of the protein shell via Fenton reactions, leaving

behind a mostly intact iron core. Then one would expect the

lattice spacing to shrink until enough of the protein shell was

destroyed and the crystal would break down completely,

leading to no observed Bragg peaks. Radiation damage is

expected to be seen at some level during the exposure of 60 s

depositing a total dose of roughly 106 Gy, but this dose is not

expected to fully destroy the features at the level of the

resolution observed here, which was roughly 100 nm. The

classical damage limit beyond which imaging of biological

materials is not possible for a time-integrating measurement is

of the order of 10 nm (Howells et al., 2005).

While this provides an explanation for the shrinking lattice

spacing, it does not explain in itself the asymmetry in the

Bragg peaks. It is possible that the surface layers of the crystals

are more sensitive to radiation damage but this would be

unexpected at the photon energy used here where the X-rays

penetrate through the entire crystal and one would expect all

proteins within the crystals to become damaged the same way,

regardless of their position within the crystal. The penetration

depth of 9 keV photons through iron is larger than 5 mm.

We clearly do not observe here a collapse of the lattice

spacing throughout the crystal. That would lead to a change in

the position of the Bragg peak but not to asymmetric Bragg

peaks. If radiation damage is the source of the surface

contraction observed, by destroying the crystal contacts and

removal of the water separating neighboring proteins, then the

data presented here indicate that the outer layers of the

nanocrystal collapse more rapidly than the inner layers.

8. Conclusion

The study of nanocrystals of proteins is expected to be an

important field of research at the soon to be available hard

X-ray free-electron lasers (FELs), i.e. the Linac Coherent

Light Source (LCLS), the European X-ray FEL (XFEL) and

the SPring-8 Compact SASE Source (SCSS) in California,

Germany and Japan, respectively. The short pulse duration

and extremely high peak power of these sources will allow

instantaneous snapshots of nanocrystals to be taken with

limited damage during the pulse (Neutze et al., 2000). All the

experimental difficulties encountered during the measure-

ments described here can be avoided by performing the

measurements in a few femtoseconds. On this time scale no

tumbling of the sample would be observed and the damage to

the sample would be minimal during the pulse. Results in the

VUV energy range at the free-electon laser in Hamburg

(FLASH) recently supported the concept of flash imaging in

which the sample is completely destroyed but not before the

diffraction pattern of the undamaged sample is recorded

(Chapman et al., 2006, 2007; Hau-Riege et al., 2007). The new

hard X-ray FEL sources could make it possible to image

crystal nuclei as they form since a single FEL shot would

provide sufficient signal for imaging with nanometer or better

resolution in two dimensions.

Nanocrystals of biological macromolecules could also be

used directly for structure determination using hard X-ray

FELs. Single nanocrystalline particles can be delivered to the

X-ray beam and a two-dimensional diffraction pattern can be

collected before the onset of radiation damage using new

advances in single-particle delivery techniques (Bogan et al.,

2008; Weierstall et al., 2008). Each two-dimensional diffraction

pattern of these particles would show Bragg peaks owing to

the crystalline structure of the nanoparticles. Assuming all the

particles have the same crystal structure, it would be possible

to build the three-dimensional diffraction pattern using the

Bragg peaks to determine the relative orientation of each
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crystalline nanoparticle. A good signal-to-noise ratio could

be achieved by adding the diffraction patterns from many

nanocrystals once their orientations have been classified. The

coherent illumination of the particle would cause each Bragg

peak to have structure representative of the shape of the

particle as discussed in the results shown above. Since every

nanocrystal would be expected to have a different shape, all of

the fine structure around its Bragg peaks would be different.

This would make it impossible to reconstruct in three-

dimensions the entire shape of a nanocrystal. However, the

common lattice structure of all the nanocrystals would make it

possible to sum all the intensities at the Bragg peaks and a

data set identical to standard macromolecular crystallography

could be obtained with a large collection of nanocrystals. The

atomic structure could then be recovered using the standard

crystallography techniques.

The results presented in this paper demonstrate that it is

possible to measure the coherent diffraction pattern from a

single micrometer-sized crystal of protein. While such a

measurement is difficult and the resolution of the images that

can be obtained is limited by radiation damage and the

thermal motions of the small crystals, it is expected that both

of these problems can be overcome using hard X-ray free-

electron lasers. The study of nanocrystals to understand better

the crystal formation process as well as for macromolecular

structure determination could become a very important field

of research at the new fourth-generation X-ray sources in the

future.
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