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Finite-element analysis is frequently used by engineers at synchrotron beamlines

to calculate the elastic deformation of a single crystal undergoing mechanical

bending or thermal load. ANSYS1 Workbench2 software is widely used for

such simulations. However, although ANSYS1 Workbench2 software provides

useful information on the displacements, strains and stresses within the crystal, it

does not yield the local reciprocal lattice vectors that would be required for

X-ray diffraction calculations. To bridge this gap, a method based on the shape

functions and interpolation procedures of the software itself has been

developed. An application to the double-crystal bent Laue monochromator

being designed for the I12 (JEEP) wiggler beamline at the Diamond Light

Source is presented.
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1. Introduction

Nearly all synchrotron beamlines have monochromators used

to select a wavelength that is desirable for the experiment

being performed. Those beamlines built for hard X-rays

normally use Bragg-diffracting perfect crystals, usually of

silicon but sometimes of diamond or germanium. However,

the high radiation flux produced by synchrotrons, particularly

at beamlines that use insertion devices, adds considerable heat

to the first monochromator crystal struck by the beam. This

crystal is thus cooled with either water or liquid nitrogen to

keep it from overheating, but the temperature of the crystal

remains higher within the volume that absorbs the beam than

in the part of the crystal close to the coolant because the

crystal’s thermal conductivity is not infinite. Because the

warmer and cooler parts of the crystal undergo different

degrees of thermal expansion, the crystal is distorted, with

serious effects on the efficiency of the diffraction. This

problem has attracted much interest. The finite-element

method has proven to be one of the most effective tools for

predicting the distortion of a crystal caused by a given heat

load. This allows the designer to choose the best among

various proposed cooling schemes. Finite-element analysis

also allows mechanical benders to be simulated, thus ensuring

that a crystal is bent to a desired shape. In both cases, finite-

element analysis yields the displacements, strains and stresses

at the nodes of the small volumes into which the crystal is

divided for the calculation.

However, it is not trivial to determine the resulting effects

on a crystal’s ability to diffract X-rays, even if finite-element

analysis has provided the displacements and strains. This is

because the local deformations of the Bragg-diffracting atomic

planes, or in other words the spatial variation of the reciprocal

lattice vector, cannot be derived from these quantities alone.

Some, for example Hart (1990), avoided this problem by

choosing instead to derive analytical expressions for the local

Bragg angle, but these are not easily extended to other

designs. Others who did simulate the rocking curves of crystals

under heat load using displacements determined by finite-

element analysis (Chrzas et al., 1990; Freund et al., 1997; Zhang

et al., 2001; Mocella et al., 2001; Hoszowska et al., 2001; Tajiri et

al., 2001; Zhang et al., 2003) derived slope errors from the

given displacements, but only within the diffraction plane.

Moreover, they did not mention the lattice spacing variation,

which also affects the local Bragg angles. For those designs

that are run near room temperature where the thermal

expansion of silicon is significant, this is a serious issue whose

neglect may partly explain the discrepancies between theory

and experiment that some of these papers describe. This paper

will complement these previous works by providing a

systematic method for deriving all components of the spatial

variation of the reciprocal lattice vector from the displace-

ments determined by finite-element analysis.

We will apply our calculations to the I12 (JEEP) wiggler

beamline of Diamond, which will use high-energy (50–

150 keV) X-rays for imaging and diffraction experiments. The

low Bragg angles for X-rays at this energy make Bragg-case

monochromators unfeasible; therefore, a double-crystal Laue-

case monochromator (Fig. 1) is to be used instead. Both

crystals will be bent in order to increase their bandpass as

shown by Suortti & Thomlinson (1988). To keep the exit beam

fixed in position, the distance between the two crystals will
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need to be adjusted as the selected energy is varied. In addi-

tion, however, the radii of curvature of the crystals must be

made adjustable to keep the wiggler source on their Rowland

circles, and so a mechanical bender must be designed along

with the cooling system.

The Laue geometry spreads the absorption of the incident

beam throughout the crystal volume, rather than concen-

trating it in a thin layer near the surface as the Bragg geometry

does. Therefore, the thermal gradient may be gentler, but on

the other hand the crystal interacts with the beam throughout

its whole thickness. The main part of the heat load is imposed

by the low-energy background of the wiggler; therefore, an

effective upstream filter needs to be designed. Moreover, to

increase the field of view for imaging experiments, the size of

the beam, 45 mm � 13.5 mm, is to be larger than that used

in any other high-energy beamline using Laue-case mono-

chromators, such as at the ESRF. To reduce the thermal

distortion as much as possible, the crystals are to be cooled to

about 120 K, where the thermal expansion coefficient of

silicon is close to zero (Shah & Straumanis, 1972). Finally, as

mentioned above, adjustable benders will be required to

control the radii of curvature of the crystals. Because the

cooling system will need to cope with the greater heat load of

the larger beam, and because the benders must deform the

crystal as nearly cylindrically as possible, a simulation of the

beam diffraction of this monochromator is essential for

designing the filter, the cooling system and the mono-

chromator itself.

A diagram of the first crystal of the I12 monochromator, a

single perfect 3.0 mm-thick silicon crystal, is shown in Fig. 2. It

will use the (111) Bragg reflection at an asymmetry angle of

�44�, thus diffracting at grazing exit. For the following simple

trial the crystal was assumed to be influenced solely by the

heat load and the cooling system. Mechanical bending was not

taken into account; the effect of this on the diffraction will

be reserved for later. The heat load is determined by the

construction of the I12 wiggler (45 dipole magnets of alter-

nating polarity with 4.2 T field strength and 48 mm periodi-

city), by the storage-ring current and by the beamline windows

and filters. If the ring current is at its design maximum of

500 mA, then the total power emitted by the wiggler is 56 kW,

of which the front-end window takes a section of 1.0 mrad

horizontal � 0.3 mrad vertical divergence with a total power

of 9 kW. Two filters, the first of diamond and the second of

8 mm SiC, remove the low-energy background, thus reducing

the transmitted power to 1.6 kW, of which the first crystal of

the monochromator absorbs 443 W. In the finite-element

analysis of the crystal, this incident power is not assumed to be

uniform across the crystal, but instead the volume of the

crystal penetrated by the incident beam is divided into the

seven parallelepipeds shown in Fig. 2. Each of these is 2.73 mm

wide. From left to right the heat assumed to be generated

within each parallelepiped was 7.5 � 10�2, 0.115, 0.155, 0.35,

0.155, 0.115 and 7.5 � 10�2 W mm�3. The cooling system is

treated in a similarly simple way. The shaded surfaces of the

crystal in Fig. 2, and the corresponding surfaces at the bottom

that are not visible in the figure, are assumed to be in contact

with the liquid nitrogen flow at 77 K (�196�C), with a heat

transfer rate of 0.005 W mm�2 K�1). ANSYS1 Workbench2

(version 11.0) was then used to perform the finite-element

analysis. It was assumed for simplicity that the crystal was

elastically isotropic with Young’s modulus 1.558 � 105 MPa

and Poisson’s ratio 0.2152. This yielded the temperature

distribution (Fig. 3) and the displacements (Figs. 4, 5 and 6)

derived within the volume of the crystal that the beam is to

traverse. It should be noted that a proper accounting of the

elastic anisotropy will alter the values of the displacements,

but it will not affect the method discussed in the next section

for determining the local reciprocal lattice vectors at the

element nodes. The finite-element software is capable of

including the elastic anisotropy, although the computation is

then of course more complex; this is planned for future

refinements.
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Figure 1
Schematic of the double-crystal bent Laue monochromator being
designed for the I12 (JEEP) beamline at the Diamond Light Source.
�B is the Bragg angle.

Figure 2
Diagram of the first crystal of the I12 monochromator, assuming that the
crystal is indirectly cooled by a liquid-nitrogen current close to its sides.
The incident beam actually strikes the center of the crystal, but only the
back half of the crystal is shown here. The region in which the incident
beam strikes the crystal is shown by the volume markings on the forward
end. The slanted planes drawn within the crystal volume indicate the
reflecting (111) atomic planes.



2. Finite-element method

2.1. Treatment of deformations

The treatment of this and the next section is based on the

information set out in the Theory Reference for ANSYS and

ANSYS Workbench (ANSYS Inc., 2007). Defining a Cartesian

coordinate system in which the position R of a point in the

undistorted crystal is given by x x̂xþ y ŷyþ z ẑz, we then obtain

the resulting displacements u = u x̂xþ v ŷyþ w ẑz of the nodes of

the finite elements. ANSYS1 Workbench2 software addi-

tionally provides the normal strains "ii and the engineering

shear strains � ij, which are defined as follows if the deforma-

tion is small,1

"xx ¼
@u

@x
; ð1Þ

"yy ¼
@v

@y
; ð2Þ

"zz ¼
@w

@z
; ð3Þ

�xy ¼ �yx ¼
@u

@y
þ
@v

@x
; ð4Þ

�xz ¼ �zx ¼
@u

@z
þ
@w

@x
; ð5Þ

�yz ¼ �zy ¼
@v

@z
þ
@w

@y
: ð6Þ

ANSYS1 Workbench2 also calculates the corresponding

stresses within the crystal.

We wish to calculate the effect of the crystal deformation on

a Bragg reflection from some family of atomic planes defined

in the undistorted crystal by
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Figure 3
Temperature distribution within the region of the first crystal penetrated
by the incident beam under preliminary assumptions about the low-
energy filtering and the cooling system. The temperatures are given in
degrees C.

Figure 4
Displacements along the X direction of points within the region of the
crystal penetrated by the incident beam.

Figure 5
Displacements along the Y direction of points within the region of the
crystal penetrated by the incident beam.

Figure 6
Displacements along the Z direction of points within the region of the
crystal penetrated by the incident beam.

1 The engineering shear strains � ij are to be distinguished from "ij, the off-
diagonal components of the strain tensor. For i 6¼ j, "ij = � ij / 2 (Dieter, 1988).



R � h ¼ �m; ð7Þ

where m is an integer and h is a reciprocal lattice vector. The

deformation u transforms each point R in the undistorted

crystal to a new point r = R + u. Thus, after the deformation,

the atomic planes in (7) are transformed into new surfaces

described by

r � h� u � h ¼ �m: ð8Þ

If the deformation is small, u may be treated as a function of r

rather than R, so that a local reciprocal lattice vector h 0 = h �

rr(u �h) may be defined. The Cartesian components of h 0 may

be rewritten in matrix form as follows,

h0x

h0y

h0z

2
664

3
775

N

¼

hx

hy

hz

2
664

3
775�

@u
@x

@v
@x

@w
@x

@u
@y

@v
@y

@w
@y

@u
@z

@v
@z

@w
@z

2
6664

3
7775

N

hx

hy

hz

2
664

3
775

¼ I � UNð Þ

hx

hy

hz

2
664

3
775; ð9Þ

where I is the identity matrix and UN is the matrix of the

derivatives of the displacement. The subscript N indicates that

the quantity is evaluated in the neighborhood of one of the

finite-element nodes. Thus it is clear that a complete knowl-

edge of all derivatives of the displacement is required to

calculate the local reciprocal lattice vector. Unfortunately,

ANSYS1 Workbench2 software is not able to provide this in

its present form. The strains are not sufficient, as they provide

only the sums of the off-diagonal terms in UN. The following

treatment corrects this shortcoming, allowing the local reci-

procal lattice vectors to be determined in the neighborhood of

each node in the finite-element analysis.

2.2. Derivation of the displacement derivatives

ANSYS1 Workbench2 software uses shape functions to

interpolate to the displacement at any point within each

element from the displacements of the nodes of that element.

Each node i = 1, . . . , n, where n is the total number of nodes of

the element, has an associated shape function Ni given in

terms of the element’s ‘natural coordinates’ r, s and t. These

coordinates are a linear (but not necessarily orthogonal) set

defined such that the surfaces r = �1, s = �1 and t = �1 form

the element’s boundaries. From the above we obtain the

components of the displacement at some arbitrary (r, s, t),

uðr; s; tÞ ¼
Pn
i¼ 1

Niðr; s; tÞui; ð10Þ

vðr; s; tÞ ¼
Pn
i¼ 1

Niðr; s; tÞvi; ð11Þ

wðr; s; tÞ ¼
Pn
i¼ 1

Niðr; s; tÞwi; ð12Þ

where (ui, vi, wi) is the displacement at node i.

The matrix of displacement derivatives U at some point

(r, s, t) within a given element can thus be found by differ-

entiating (10), (11) and (12),

@u
@x

@v
@x

@w
@x

@u
@y

@v
@y

@w
@y

@u
@z

@v
@z

@w
@z

2
66664

3
77775
ðr; s; tÞ ¼

@N1

@x
@N2

@x . . . @Nn

@x

@N1

@y
@N2

@y . . . @Nn

@y

@N1

@z
@N2

@z . . . @Nn

@z

2
666664

3
777775
ðr; s; tÞ

�

u1 v1 w1

u2 v2 w2

..

. ..
. ..

.

un vn wn

2
6666664

3
7777775
: ð13Þ

In order to obtain the derivatives of the shape functions with

respect to the global Cartesian coordinates (x, y, z), as

opposed to the element’s natural coordinates (r, s, t), we need

further information. This is provided by the assumption that

all elements are isoparametric; that is, the global Cartesian

coordinates of point (r, s, t) of any element are interpolated by

the shape functions in just the same way as the displacement at

the same point,

xðr; s; tÞ ¼
Pn
i¼ 1

Niðr; s; tÞxi; ð14Þ

yðr; s; tÞ ¼
Pn
i¼ 1

Niðr; s; tÞyi; ð15Þ

zðr; s; tÞ ¼
Pn
i¼ 1

Niðr; s; tÞzi; ð16Þ

where (xi , yi , zi) are the global Cartesian coordinates of the

element’s ith node.

Now, using the chain rule, we find

@u
@x

@v
@x

@w
@x

@u
@y

@v
@y

@w
@y

@u
@z

@v
@z

@w
@z

2
66664

3
77775
¼

@r
@x

@s
@x

@t
@x

@r
@y

@s
@y

@t
@y

@r
@z

@s
@z

@t
@z

2
66664

3
77775

@u
@r

@v
@r

@w
@r

@u
@s

@v
@s

@w
@s

@u
@t

@v
@t

@w
@t

2
66664

3
77775

¼ J�1

@u
@r

@v
@r

@w
@r

@u
@s

@v
@s

@w
@s

@u
@t

@v
@t

@w
@t

2
66664

3
77775
; ð17Þ

where J is the Jacobian matrix given by

J ¼

@x
@r

@y
@r

@z
@r

@x
@s

@y
@s

@z
@s

@x
@t

@y
@t

@z
@t

2
66664

3
77775
¼
Xn

i¼ 1

@Ni

@r xi
@Ni

@r yi
@Ni

@r zi

@Ni

@s xi
@Ni

@s yi
@Ni

@s zi

@Ni

@t xi
@Ni

@t yi
@Ni

@t zi

2
66664

3
77775
: ð18Þ

The right-hand side can be found by differentiating (14), (15)

and (16). With this knowledge we can obtain the derivatives of

the displacement with respect to the global Cartesian coor-

dinates,
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Uðr; s; tÞ ¼

@u
@x

@v
@x

@w
@x

@u
@y

@v
@y

@w
@y

@u
@z

@v
@z

@w
@z

2
66664

3
77775
ðr; s; tÞ

¼ J�1ðr; s; tÞ

@N1

@r
@N2

@r . . . @Nn

@r

@N1

@s
@N2

@s . . . @Nn

@s

@N1

@t
@N2

@t . . . @Nn

@t

2
666664

3
777775
ðr; s; tÞ

�

u1 v1 w1

u2 v2 w2

..

. ..
. ..

.

un vn wn

2
666664

3
777775
: ð19Þ

2.3. Details of the finite-element calculation

ANSYS1 Workbench2 software provides numerous types

of elements of different shapes and with different numbers of

nodes. For our calculations we used the 20-node brick

SOLID95. Eight of the nodes lie on the corners [(r, s, t) = (�1,

�1,�1)], and the remaining twelve lie at the midpoints of the

edges [(r, s, t) = (0, �1, �1), (�1, 0, �1), (�1, �1, 0)].

The shape functions of this element are defined in ANSYS1

Workbench2 software as follows.

For corner node i at (r, s, t) = ðri; si; tiÞ, where ri; si; ti = �1,

Niðr; s; tÞ ¼ ð1þ rirÞð1þ sisÞð1þ titÞðrirþ sisþ tit � 2Þ: ð20Þ

For edge node i at (r, s, t) = ð0; si; tiÞ, where si; ti = �1,

Niðr; s; tÞ ¼ ð1� r2Þð1þ sisÞð1þ titÞ: ð21Þ

For edge node i at (r, s, t) = ðri; 0; tiÞ, where ri; ti = �1,

Niðr; s; tÞ ¼ ð1þ rirÞð1� s2
Þð1þ titÞ: ð22Þ

For edge node i at (r, s, t) = ðri; si; 0Þ, where ri; si = �1,

Niðr; s; tÞ ¼ ð1þ rirÞð1þ sisÞð1� t2Þ: ð23Þ

ANSYS1 Workbench2 software calculates the strains at the

Gaussian integration points of each element and then extra-

polates these values to the element’s nodes, as will be

explained in more detail in the next section. We follow the

same procedure in calculating the derivatives of the displa-

cement. Each type of element has a defined number of inte-

gration points situated at defined natural coordinates.

SOLID95 contains 14 integration points, of which eight lie

close to the corners and six near the centers of the faces. The

natural coordinates of these points are as follows.

Corner points: (r, s, t) = (�A, �A, �A), where A =

0.75868 69106 39328.

Face center points: (r, s, t) = (�B, 0, 0), (0, �B, 0) and

(0, 0, �B), where B = 0.79582 24257 54222.

3. Calculation of displacement derivatives from
displacements

The first task is to calculate the displacement derivatives at the

integration points of each element. ANSYS1 Workbench2

software provides as input for our calculations the global

Cartesian coordinates and the displacements of the nodes of

each element. Using the appropriate shape functions given in

(20)–(23), we use (19) to calculate the matrix of the displa-

cement derivatives U(rint, sint, tint) with respect to the global

Cartesian coordinates at each integration point (rint, sint, tint).

The next step is to extrapolate all of the displacement

derivatives to the nodes. For this, ANSYS1 Workbench2

software uses only the eight corner integration points (r, s, t) =

(�A, �A, �A), so that the values at each node (ri, si, ti) are

given by

Uðri; si; tiÞ ¼
1

8A3

P2

j¼ 1

P2

k¼ 1

P2

l¼ 1

Aþ ð�1Þ jri

� �
Aþ ð�1Þksi

� �

� Aþ ð�1Þlti

� �
U ð�1Þ jA; ð�1ÞkA; ð�1ÞlAÞ
� �

:

ð24Þ

So far we have treated only a single element. However, in

general each node will be shared by more than one element.

Frequently, two different elements sharing the same node will

not give the same U for that node after the extrapolation is

carried out. Therefore, for each node I = 1, . . . , N, where N is

now the total number of nodes in the entire crystal, we

average all the values of U calculated at that node over all the

elements that include it. We call the result U
avg
I . It is this that

will be used in all subsequent calculations.

3.1. Calculation of lattice distortion

From the above we may now obtain the local reciprocal

lattice vector h 0 in the neighborhood of node I using (9),

substituting U
avg
I for UN. In comparing the local reciprocal

lattice vectors of the deformed crystal with those of the

undeformed crystal, it is useful to define the ‘diffraction plane’

as the plane which contains the incident beam, the diffracted

beam and the undistorted reciprocal lattice vector h. This must

be distinguished from the ‘reflecting atomic plane’ that is

perpendicular to h and is responsible for the Bragg reflection.

The following additional unit vectors may then be defined in

relation to the diffraction plane,

ŝs = the normal to the diffraction plane,

ĉc = h � ŝs=jhj:
The effect of the local lattice distortion on the diffraction

may be most readily described by the following:

|h 0|/|h| � 1 ’ ��d/d, where d is the interplanar spacing of

the reflecting atomic planes of the crystal;

��in, the rotation of the reflecting atomic planes within the

diffraction plane. This is the angle between h and h 0diff , the

component of h 0 that lies in the diffraction plane. It is positive

if h 0diff � ĉc > 0;

��out, the rotation of the reflecting atomic planes out of the

diffraction plane. This is given by arcsinðjh 0 � h 0diffj=jh
0jÞ. It is

positive if h 0 � ŝs > 0.
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Another useful parameter for estimating the degree of

deviation from the Bragg condition at a given node is given by

Zachariasen (1945),

y ¼
1�b

2 �0 þ
b
2 �

jbj1=2 Kj�hj
: ð25Þ

�0 and �h are Fourier components of the crystal’s electric

susceptibility �(r),2 which of course has the same spatial

periodicity as the lattice, so that

�ðrÞ ¼
P

h

�h expð�2�i h � rÞ: ð26Þ

K is a polarization factor, equal to 1 if the incident beam is

polarized perpendicular to the diffraction plane and to cos2�B

(�B is the Bragg angle) if the beam’s polarization lies within

the diffraction plane. If the incident beam’s wavevector is k0,

and the inward normal to the crystal’s surface is n̂n, then3

b ¼
n̂n � k0

n̂n � ðk0 þ hÞ
; ð27Þ

� ¼
1

k2
0

jh 0j2 þ 2k0 � h
0

� �
: ð28Þ

In general, at the peak of the reflection in an unbent undis-

torted crystal, |y |� 1 (Fig. 7). This defines the Darwin width of

a Bragg reflection from a perfect crystal. Thus, if the local

values of y at two different points in the crystal differ by 1,

then the incidence angle (or wavelength) at which the Bragg

condition is fulfilled at these points will differ by half the

reflection’s Darwin width. From the discussion above, it is

clear that a bent crystal will diffract rays over a considerably

larger range of y. For example, a flat crystal bent to a radius of

60 m, approximately the correct value for the I12 beamline,

will diffract 50 keV rays over a total range �y = 38.6 and

150 keV rays over a range �y = 115.6, whereas an unbent flat

crystal will diffract these rays only over a range �y ’ 2.

4. Results

The method of the previous section was applied to a silicon

crystal struck by a beam of X-ray photons from the I12 wiggler

while being cooled by a flow of liquid nitrogen. The 50 keV

photons in this beam are to be reflected by the crystal’s (111)

atomic planes, which lie at an asymmetry angle of �44� from

the crystal’s surface as shown in Fig. 2. These photons are thus

diffracted at a Bragg angle of 2.266� in grazing exit. As in this

figure, only the back half (X� 27.5 mm) is displayed, since the

front half (X � 27.5 mm) is a mirror image of the back. A

mesh of 0.5 mm was found to provide sufficient detail without

requiring excessive computation time. Samples of the local

reciprocal lattice vectors were taken across three planes

parallel to the crystal surface: the central plane Z = 0 mm

halfway between the entrance and exit surfaces of the crystal,

the plane Z = +1 mm that lies 0.5 mm below the crystal’s

entrance surface, and the plane Z = �1 mm that lies 0.5 mm

above the crystal’s exit surface.

The local variations in �d/d displayed in Fig. 8 show no

significant dependence on the depth inside the crystal, as

would be expected from the temperature distribution shown

in Fig. 3. On the other hand, the dependence of �d/d on

the horizontal coordinates is significant, the total range of

variation extending to eight parts per million even with the

assumption made here that the crystal is not deliberately

bent.

Fig. 9 shows that ��in varies significantly not only horizon-

tally within each Z plane but also with depth. The Y coordi-

nate of the center of the region of maximum deformation

within each plane lies at +4 mm for Z = +1 mm, at 0 mm for

Z = 0 mm and at �4 mm for Z = �1 mm.

Fig. 10 shows that |��out| does not exceed 1 mrad. Since the

diffraction from the (111) atomic planes is insensitive to

warping of the planes in this direction, the effect of ��out is

negligible.

The effect of �d/d, ��in and ��out on the diffraction is

summarized in Fig. 11. The variation in the Bragg parameter y

extends to 1.418, or 0.709 times the Darwin width of the (111)

rocking curve in the perfect crystal. Since �d/d and ��out vary

little with depth, most of the variation of y with depth is due to

the warping of the atomic planes given by ��in . We note that

the variation in y caused by the heat load and the cooling

system is much less than the range �y over which a crystal

bent to a 60 m radius will diffract X-rays. This encourages us to

continue to refine the monochromator design.

5. Conclusions

The trial finite-element analysis reported here shows that

the distortion of a silicon crystal caused by the thermal load of

the incident beam from the Diamond I12 wiggler covers a

significant fraction of the rocking curve of the asymmetric

(111) Laue-case reflection in a perfect crystal, but only a

small fraction of the total range of X-rays diffracted by the
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Figure 7
General dependence of the rocking curve of an unbent perfect crystal on
the parameter y defined by equation (25). Note that the maximum
reflection lies within the region |y | � 1. y is directly dependent on the
local reciprocal lattice vector as shown by equation (28), from which the
rocking curve’s dependence on �d, ��in or ��out may be determined.

2 �0 and �h are assumed not to be significantly altered if the displacements are
small.
3 Strictly speaking, we should use h 0 in the formula for b, but the effect of using
h instead is small. The effect on y is contained chiefly in �, where h 0 must
therefore be used.



crystal when bent. The assumption that the crystal is cooled

by liquid nitrogen close to that temperature of 120 K where

the thermal expansion is nearly zero is thus already very

useful. Both the variation in interplanar spacing and the

warping of the diffracting atomic planes influence the devia-

tion from the ideal Bragg condition. Further modeling calcu-

lations are now being carried out to find ways to reduce the

thermal distortion and also to design a mechanical bender for

the crystal.

The distribution of local reciprocal lattice vectors obtained

by the method of this paper can be used as input for an X-ray

diffraction program such as TRANSQ (Epelboin, 1996), or

into some similar program based on the Takagi–Taupin

(Takagi, 1969; Taupin, 1964) or Penning–Polder theories

(Penning & Polder, 1961) developed to calculate X-ray

diffraction in distorted crystals. It may also be used in a ray-
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Figure 8
The relative deviation �d/d of the (111) interplanar spacing d in parts per
million from the undistorted value at room temperature (see color scales
at the right-hand corner of each figure) in the plane Z = +1 (top), Z = 0
(middle) and Z = �1 (bottom). The overall negative sign of �d/d results
from the simulation of crystal cooling from room temperature by liquid
nitrogen, which of course contracts the crystal. See the text of x4 for
definitions of the Z planes.

Figure 9
The deformation ��in in mrad (see color scales at the right-hand corner of
each figure) in the plane Z = +1 (top), Z = 0 (middle) and Z = �1
(bottom). See the text of x4 for definitions of the Z planes.



tracing program based on kinematic diffraction theory, which

is much simpler and appears particularly suitable for the

diffraction of high-energy photons from a highly asymmetric

bent crystal.

ANSYS, ANSYS Workbench, AUTODYN, CFX, FLUENT

and any and all ANSYS Inc. brand, product, service and

feature names, logos and slogans are registered trademarks or
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States or other countries. All other brand, product, service and

feature names or trademarks are the property of their

respective owners.
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Figure 10
The deformation ��out in mrad (see color scales at the right-hand corner of
each figure) in the plane Z = +1 (top), Z = 0 (middle) and Z = �1
(bottom). See the text of x4 for definitions of the Z planes.

Figure 11
The deviation �y of the Bragg parameter y from the center of the rocking
curve y = 0 (see color scales at the right-hand corner of each figure) in the
plane Z = +1 (top), Z = 0 (middle) and Z =�1 (bottom). Each unit change
of �y corresponds to half the Darwin width of the Bragg reflection from
an unbent perfect crystal. See the text of x4 for definitions of the Z planes.
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