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Inelastic X-ray scattering (IXS) measurements have been performed on an MgO

single crystal in order to evaluate IXS as a methodology for accurate and precise

determination of elastic constants and sound velocities. By performing the IXS

experiment using a 12-analyzer array, the complete set of single-crystal elastic

constants of MgO were determined to a precision better than 0.8% (sound

velocities to better than 0.2%). The results are consistent with values in the

literature. The precision and accuracy of this work, which is significantly better

than other published work to date, demonstrates the potential of IXS in

determining elastic properties.

Keywords: inelastic X-ray scattering; elastic constants; sound velocity; single crystal; MgO;
the Christoffel equation.

1. Introduction

Elasticity is a basic property of materials, indicating their

strength and flexibility. There are several techniques to

determine the elastic constants of materials by ultrasound

(Jacobsen et al., 2002; Oda et al., 1994; Yoneda, 1990), but they

usually require large samples (linear dimensions of a few

hundred micrometres or more). However, large crystals of

sufficient quality are not always available. Furthermore, most

ultrasound techniques are not easily applied at pressures

greater than 20 GPa (Higo et al., 2008). Elasticity at higher

pressures can be determined, in some cases, by other techni-

ques. For example, Brillouin light scattering (BLS) can be

applied to measure elastic constants of tiny crystals under

pressure (Zha et al., 2000), but it is difficult to apply to opaque

materials. A related technique, impulsive stimulated light

scattering (ISLS), can be applied to opaque materials under

high-pressure conditions (Crowhurst et al., 2004). However,

using ISLS to study opaque materials under high-pressure

conditions is complicated because it relies on probing the

interface formed by the sample in contact with the pressure

medium: the obtained bulk elastic properties depend on

assumptions about the elastic properties of the material

surrounding the sample. The mathematical treatment is also

somewhat complicated. Another technique, nuclear resonant

inelastic scattering, can provide the phonon density of states,

from which an aggregate sound velocity can be determined,

but it is difficult to obtain elastic constants using this method.

It is also limited to samples which contain Mössbauer nuclei.

Inelastic X-ray scattering (IXS) is a technique for obtaining

elastic constants from samples since the measured sound

velocity, as the wavenumber approaches zero, corresponds to

that of the elastic wave. Since X-ray beams may be focused to

spot sizes of a few tens of micrometres, this technique can be

applied to similarly sized samples. As hard X-rays are pene-

trating, it can also be applied to samples within more complex

environments, such as diamond-anvil cells. Since it is possible

to obtain structural information on the same instrument, the

ambiguity of dimension parameters can be reduced. Also, of

course, the X-ray determination is independent of optical

opacity of the samples. Inelastic neutron scattering (INS),

which can provide similar information in principle, requires

much larger samples (�10 mm3).

There are only a limited number of reports treating the

determination of elastic constants with IXS (Antonangeli et

al., 2004; Bosak et al., 2006, 2007) and the precision of the

determination varies from several percent to >10%. This level

of precision does not give sufficiently precise values for

geophysical application. For example, laboratory results on

sound velocities of candidate materials in the earth’s interior

are used for estimation of the temperature structure. In the

case of MgO, the temperature dependence of longitudinal

sound velocity is �6 � 10�4 km s�1 K�1 (Isaak et al., 1989). A

5% error in the sound velocity (0.5 km s�1) corresponds to

800 K.

In this paper we present an experimental determination of

the elastic constants of magnesium oxide using high-resolution

IXS. Since the elasticity of MgO has been extensively studied,
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we can compare our results against well known literature

values and demonstrate the capability of IXS. The IXS data

have been collected at arbitrary momentum transfers, not

only along high-symmetry crystallographic directions, which

matched a multi-analyzer IXS spectrometer and made the

experiment highly efficient. The accuracy and precision of the

elastic property determination will be discussed.

2. Experimental

The IXS experiment was carried out at BL35XU at SPring-8

(Baron et al., 2000). The energy of the incident beam and the

energy resolution were 21.747 keVand�1.5 meV full width at

half-maximum (FWHM) using the Si (11 11 11) reflection. We

used a 3 � 4 array of spherical analyzer crystals at the end of

the 10 m horizontal arm to analyze the scattered X-rays with

12 different scattering vectors (Baron et al., 2008). The

dimension of the incident X-ray beam in the present work was

about 100 mm diameter (FWHM), but can be reduced to

smaller sizes when required (�20 mm). Energy scans (at

constant momentum transfer) were carried out by changing

the energy of the X-rays incident on the sample by thermal

expansion of the backscattering monochromator crystal, while

the energy (temperature) of the analyzers was held fixed.

The energy scale was determined using the temperature-

dependent thermal expansion of silicon (Lyon et al., 1977)

(�silicon = 2.6453 � 10�6 K�1 at the elastic peak at 303.12 K)

calibrated, in the present set-up, using a known phonon in

diamond (Kulda et al., 2002). The temperature variation of

the thermal expansion parameter of silicon is relatively weak

(0.3% K�1) and was not a serious source of error, since the

temperatures used in the experiment were stable to better

than 10 mK and reproducible. Given our use of the Stokes–

anti-Stokes separation to determine the phonon energy, the

important contributions to error in the energy scale are (i)

possible instabilities on the time scale of a single scan and (ii)

the systematic error in the calibration. Comparison of the

elastic peak position in successive scans suggests that the

stability of the energy-temperature scale was better than

�0.2 meV. The systematic error in the calibration is more

difficult to quantify. The longitudinal optical mode of diamond

was taken to have an energy of 164.7 meV at Q = (1.1 1.1 1.1)

from Kulda et al. (2002). The agreement achieved in that work

between three estimates of phonon energy [164.67 � 0.31

(INS), 164.69 � 0.03 (IXS) and 164.71 (local density approx-

imation) is extremely good. However, the accuracy of the

value is not clear, with the only comment being that the

INS scale is probably not reliable to better than 1–2 meV.

Meanwhile, experience with the set-up used in the present

measurement means that when we are most careful in our

temperature scale (calibration, attachment, thermal shielding

of sensors) the agreement with the 164.7 meV value is within

0.5% of the measured energy based on the thermal expansion

data of Lyon et al. (1977). We then take our energy scale, after

calibration, to have a systematic error of less than 0.5%.

The sample was a commercial single crystal of MgO of

1.0 mm thickness bought from Tateho Chemical Industries.

The sample was set, in air, on the Eulerian cradle of the IXS

spectrometer. The lattice parameter of this crystal was

measured off-line (laboratory source) and found to be

4.212 Å. After placement on the IXS spectrometer, four

reflections (and the previously measured lattice constants)

were used to determine the orientation matrix (UB matrix).

The measured mosaic spread of the (4 0 0) reflection was

0.024�. Measurements were made near to the (4 0 0) and

(2 �22 0) Bragg reflections with momentum resolutions set to

(0.024 0.025 0.007) and (0.024 0.024 0.005) full width, respec-

tively. It took about 17 h to obtain all of the spectra used in the

analysis presented here.

3. Analysis

Fig. 1 shows a representative set of 12 IXS spectra obtained,

simultaneously, using the 12-analyzer array. Generally, the

spectra consist of several pairs of lines (each pair being a

Stokes and an anti-Stokes excitation of one mode) in addition

to an elastic contribution near zero energy transfer. Up to

three pairs of acoustic modes can in principle occur at any

given momentum transfer. In previous work, IXS spectra were

typically measured along high-symmetry directions where

only one pair of lines was visible in order to simplify the

analysis. Since all of 12 analyzers cannot be located under such

conditions simultaneously, multiple pairs of Stokes and anti-

Stokes lines are seen in some spectra. Because most spectra

were measured almost at points with high symmetry in reci-

procal space, one of the transverse modes was not detected. At

small reduced momentum transfer, in principle three modes

can appear but generally two transverse modes are almost

degenerated. Pseudo-Voigt functions were used to fit the

peaks shown in a spectrum by least-squares methods. One of

the fit spectra is shown in Fig. 2.

The energy zero for each spectrum was determined from

the average value of Stokes and anti-Stokes peaks. While the

elastic peak might be used, it is essentially a dirt effect, typi-

cally resulting from imperfections in the sample, and/or scat-

tering from the sample environment. In particular, elastic

scattering from the sample environment, for which the source

point can be different than the centre of the spectrometer, can

occur at an energy slightly shifted from the elastic value for

the sample in the centre of the spectrometer. Thus, the centre

of the Stokes–anti-Stokes pair, when available, is the best

determination of the energy zero.

For precise determination of elastic constants using the

multi-analyzer IXS spectrometer, we used not only data along

high-symmetry directions but also those at arbitrary points in

reciprocal space. In order to calculate elastic constants from

measured energies and momentum transfers of phonons, we

used the Christoffel equation (p. 211 of Auld, 1973),

� !=jqjð Þ
2A ¼ ChA; ð1Þ

where �, !, |q| and A are the density of the sample, angular

frequency, wavevector and polarization vector (or amplitude)

of the plane elastic wave, respectively. Ch is a 3� 3 matrix, the

elements of which are
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Ch11 ¼ C11n2
1 þ C66n2

2 þ C55n2
3 þ 2 C16n1n2ð

þC56n2n3 þ C15n3n1Þ;

Ch22 ¼ C66n2
1 þ C22n2

2 þ C44n2
3 þ 2 C26n1n2ð

þC24n2n3 þ C46n3n1Þ;

Ch33 ¼ C55n2
1 þ C44n2

2 þ C33n2
3 þ 2 C45n1n2ð

þC34n2n3 þ C35n3n1Þ;

Ch12 ¼ Ch21 ¼ C16n2
1 þ C26n2

2 þ C45n2
3 þ C12 þ C66ð Þn1n2

þ C25 þ C45ð Þn2n3 þ C14 þ C56ð Þn3n1;

Ch23 ¼ Ch32 ¼ C56n2
1 þ C24n2

2 þ C34n2
3 þ C25 þ C46ð Þn1n2

þ C23 þ C44ð Þn2n3 þ C36 þ C45ð Þn3n1;

Ch31 ¼ Ch13 ¼ C15n2
1 þ C46n2

2 þ C35n2
3 þ C14 þ C56ð Þn1n2

þ C36 þ C45ð Þn2n3 þ C13 þ C55ð Þn3n1;

where Cij are elastic stiffness constants and (n1, n2, n3) indi-

cates the propagation vector (direction vector of q) in a

Cartesian coordinate system. In the case of a cubic material,

Ch is rewritten using the relationship between the elastic

constants [C11 = C22 = C33, C44 = C55 = C66, C12 = C23 = C31, and

the others are zero (see p. 362 of Auld, 1973)] as

Chcubic ¼

C11n2
1 þ C44 n2

2 þ n2
3ð Þ C12 þ C44ð Þn1n2 C12 þ C44ð Þn3n1

C12 þ C44ð Þn2n1 C11n2
2 þ C44 n2

3 þ n2
1

� �
C12 þ C44ð Þn2n3

C12 þ C44ð Þn3n1 C12 þ C44ð Þn2n3 C11n2
3 þ C44 n2

1 þ n2
2

� �
2
64

3
75:
ð2Þ

The density of the samples was calculated from the lattice

parameter and the total weight of the atoms in the unit cell.

The elastic constants can be obtained by solving the eigen-

value problem for the Ch matrix. The elastic constants Cij were

taken as fitting parameters and a least-squares algorithm was

used to minimize the difference between the measured

phonon frequencies and those found from inverting the

eigenvalue problem of equation (1). In addition, we adopted

an hkl correction vector, (�h �k �l), as a fitting parameter to

eliminate possible effects from systematic errors in alignment

[e.g. (h k l)real = (h k l)nominal + (�h �k �l)], as will be

discussed in more detail below. Thus, six free parameters

[three elastic constants, and three components (�h �k �l)]

were used to fit 172 data points.

We included a correction to the mode energies owing to the

finite Q-resolution. For ideal Q-resolution, the intensity of

inelastic scattering by acoustic phonon, I, can be expressed as

the following equation: I / q�2, where q is a reduced

momentum transfer. Here we assume that the phonon signal is

�-function-like at E = E0 and that the phonon dispersion is
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Figure 1
Representative IXS spectra of a single crystal of MgO obtained using the 12-analyzer IXS spectrometer. The reciprocal lattice coordinate of the spectro-
arm centre is (3.962, 0.036, �0.006) in reciprocal lattice units (r.l.u.). The reciprocal lattice coordinate of each analyzer is shown in the figure.



linear, E = �q. In this case, the obtained signal intensity varies

with q and therefore with E. Consequently, the centroid of the

obtained signal can be different from the true centre E0. The

centroid can be calculated using the following equation,

Ecentroid ¼

RE2

E1

EIðqÞ dE

RE2

E1

IðqÞ dE

¼
�

�q
q2

0 �
�q2

4

� �
ln

q0 þ ð�q=2Þ

q0 � ð�q=2Þ

� �

’ �q0 1�
1

6

�q

q0

� �2

þ . . .

" #
;

where q0 is the momentum transfer at E = E0 and �q is the

Q-resolution. Therefore, �E = E0 � Ecentroid is the value for

the energy correction. Using lattice constants and (h k l)

values obtained without energy correction, we calculated �E

for all measured phonons assuming the obtained phonon

energies without energy correction as E0, which is appropriate

as the first approximation. In the end, the six parameters were

optimized using the corrected energy values. The values of the

energy correction are shown in Fig. 3. We used 0.025 r.l.u. as

�q for all measured points. Note that we assume that �q is

much smaller than q0 and an energy gradient exists along the

propagating direction. In the case that �q is comparable with

measured q0, one must consider a more complicated correc-

tion owing to the energy gradients perpendicular to the

propagating direction.

4. Results

The obtained elastic constants and sound velocities with the

corrections are shown in Table 1. Adiabatic bulk and shear

moduli KS and GS have been calculated from the elastic

constants. Aggregate sound velocities of compressional

(longitudinal) and shear (transverse) waves VL and VT

calculated from KS, GS and the density are also listed.

Figs. 4 and 5 show the residues of the observed phonon

energies from those obtained by fitting with and without the

corrections, respectively. The residues are plotted in (a)

against the absolute values of the reduced momentum trans-

fers q, which is expressed as Q = s + q, where Q is the total

momentum transfer and s is the reciprocal lattice vector

nearest to Q. This type of plot will show the divergence from

the linear dispersion (see Discussion). The residues are also

plotted against the projected momentum transfer to each axis

in (b), (c) and (d), which will show the possible errors in

alignment. It is seen that the residues are reduced by the hkl

correction, which drastically improved the precision of

determination of elastic constants. The hkl correction vector

was found to be (0.0056 � 0.0005, �0.0080 � 0.0007, 0.0043 �
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Figure 3
Values of the energy correction originating from finite Q-resolution. The
correction is the larger at the point closer to the � point.

Table 1
Elastic moduli and sound velocities of MgO.

A: present result; B: Isaak et al. (1989); C: Yoneda (1990); D: Oda et al. (1994); E: Sinogeikin & Bass (1999); F: Zha et al. (2000); G: Jacobsen et al. (2002). IXS:
inelastic X-ray scattering; RPR: rectangular parallelepiped resonance; UI: ultrasonic interferometry; RSUS: resonant sphere ultrasound spectroscopy; BLS:
Brillouin light scattering.

A B C D E F G
Method IXS† RPR UI RSUS BLS BLS UI

C11 (GPa) 293.9 � 1.0 298.96 � 0.65 297.8 296.03 � 0.13 297.9 � 1.5 – 298 � 2
C12 (GPa) 95.2 � 0.7 96.42 � 0.61 95.1 95.35 � 0.13 95.8 � 1.0 – 92 � 5
C44 (GPa) 154.9 � 0.2 157.13 � 0.31 155.8 � 0.15 155.89 � 0.05 154.4 � 2.0 – 157 � 2
KS (GPa) 161.4 � 0.6‡ 163.93 � 0.60 162.7 � 0.2 162.13 � 0.12 163.2 � 1.0 162.5 � 0.7 160 � 3
GS (GPa) 129.6 � 0.3‡ 131.8 � 0.5§ 131.1 � 0.1‡} 130.68 � 0.05‡} 130.2 � 1.0 130.4 � 1.7 133 � 2
VL (km s�1) 9.656 � 0.011 9.73 � 0.01 9.702 � 0.002} 9.682 � 0.004} 9.69 � 0.03} 9.68 � 0.04 9.70 � 0.04}
VT (km s�1) 6.013 � 0.008 6.06 � 0.01 6.048 � 0.002} 6.034 � 0.002} 6.03 � 0.03} 6.06 � 0.03 6.08 � 0.04}

† Sound velocities and elastic constants have a systematic uncertainty of 0.5 and 1.0%, respectively, owing to energy calibration (see text). ‡ Voight–Reuss–Hill average. § Hashin–
Shtrikman average. } Calculated values using elastic constants and their errors.

Figure 2
The third left spectrum in the middle row of Fig. 1 (solid diamonds) with
the best-fit result using pseudo-Voigt functions (thin dotted lines for the
individual components and thick solid line for the total fit).



0.0012) in r.l.u., which corresponds to angular misalignment

of about 0.1�. The errors in elastic constants are found to

decrease by one order of magnitude using the correction.

For example, the value of C11 changes from 288 � 5 GPa to

293.9 � 1.0 GPa. Defining the reliability factor as

P
Eobs � Ecalc

�� ��=PEobs;

where Eobs and Ecalc are the phonon energy from the obser-

vation and model, respectively, we see this factor improved

from 3.46% to 1.67% when the hkl correction is included.

It should be noted that there can

be two different origins for the hkl

correction used here. One is the mis-

alignment of the sample, corresponding

to an error in the UB matrix used

during the experiment. Another is the

misalignment of the spectrometer. In

particular, IXS instruments usually

require focusing and other optics, so

the incident beam is not horizontal but

slightly off horizontal; for the present

spectrometer, and set-up, the beam was

incident at about 3.5 mrad off hori-

zontal. Meanwhile, the spectrometer 2�
arm moves in the horizontal plane, so

there are almost always small systematic

errors. The magnitude of this error will

depend upon precisely how the UB

matrix is determined, but, to a first

approximation, can be considered a

constant offset in the neighbourhood

of any fixed reciprocal lattice point.

Thus the correction introduced here is a

convenient way to account for these

sources of error, while taking advantage

of the fact that relative motions of the

spectrometer are extremely precise.

5. Discussion

The results of the elastic constants

and velocities of MgO determined by

different techniques are shown in Table

1 (Isaak et al., 1989; Yoneda, 1990; Oda

et al., 1994; Sinogeikin & Bass, 1999;

Zha et al., 2000; Jacobsen et al., 2002).

The previous studies give the compres-

sional and shear wave velocities of 9.68–

9.73 and 6.03–6.08 km s�1, respectively.

Despite the difference in methods, the

results of those studies are in excellent

agreement. The compressional and

shear wave velocities obtained in

the present work are 9.656 and

6.013 km s�1, respectively. Although the

present values are slightly smaller than

the lower limit of the above ranges, the difference from the

intermediate values are only 0.5–0.7%. Thus IXS is an accu-

rate method for determining elastic constants.

Note that the compressional and shear velocities obtained

without the corrections are 9.48 and 5.85 km s�1, which are out

of the above range. The hkl correction vector determined

through the fitting was small but improved the accuracy and

precision of the determination. This means the small deviation

of measured q from the assumed direction causes large errors.

Consequently the crystal orientation should be carefully

determined and all the measurements should be completed at
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Figure 4
Residues of the fit to the phonon energies versus (a) reciprocal distances and against (b, c, d)
reciprocal lattice coordinates of a*, b* and c*, respectively. The hkl correction vector is [0.0056 (5),
�0.0080 (7), 0.0043 (12)] in r.l.u. The reliability factor is 1.67%.

Figure 5
Residues of the fit to the phonon energies without the hkl and energy corrections versus (a)
reciprocal distances and against (b, c, d) reciprocal lattice coordinates of a*, b* and c*, respectively.
The residues seem to be correlated with a*, b* and c*. The reliability factor is 3.46%.



one attempt without dismounting the sample from the spec-

trometer.

The present method has determined the elastic constants

and velocities of MgO with 0.2–0.7% and 0.1–0.2% of errors,

respectively. This precision favourably compares with those of

the other techniques. The errors in the determination of elastic

properties with IXS in the previous studies were a few percent

in bulk modulus (Antonangeli et al., 2004; Bosak et al., 2006,

2007), which are larger than the present one (0.4%) by more

than one order of magnitude. In this study we assigned one

phonon energy measured at a certain q with one corre-

sponding sound velocity propagating to the direction by using

equations (1) and (2) within the approximation of linear

dispersion. The multi-analyzer IXS spectrometer yields the

large number of data in a limited time, which leads to very

precise results.

There is a concern as to whether the dispersion of the

acoustic modes is truly linear in the measured region of reci-

procal space. In the previous studies (Bosak et al., 2006, 2007),

a sinusoidal function was used to fit phonon energies

measured along a high-symmetry direction to help compen-

sate for this problem. In our work the deviation from linear

dispersion would appear as a negative correlation between the

fitting residues and the reciprocal distances in a plot like

Fig. 4(a) as has been seen in another case (Fukui et al., 2008).

The present case shows a very weak negative correlation

between the reciprocal distance and the residue (the correla-

tion coefficient is �0.297). If the correlation was large, a cut-

off |q| value could be set to improve the fitting results and the

analysis performed with only the data points measured at a

reciprocal distance smaller than the cut-off. It might also be

better to choose a momentum-dependent cut-off taking the

shape of the Brillouin zone into account. It is obviously

preferable that the IXS spectra are measured as close to a �-

point as possible, given constraints owing to sample quality

and momentum resolution (However, note that it is not always

better to measure an IXS spectrum at the point closer to a �-

point since the effect of finite Q-resolution on the observed

phonon energy is larger as shown in Fig. 3.) In the present case

the large number of data points in the range 0.02 < |q| <

0.03 Å�1 efficiently constrained the values of the elastic

constants, giving small errors in spite of relatively scattered

residues shown in Fig. 4(a).

Another good point of the present method is the use of the

energies of phonons propagating in arbitrary directions. The

velocities VL[100] and VT[100] are only related to C11 and C44,

respectively. Since sound velocities propagating in arbitrary

directions are complicated functions including all elastic

stiffness constants, the data points obtained at arbitrary points

constrain all of the elastic constants in relatively equal

measure and prevent an excessive error on a certain constant,

e.g. C12 in this case, owing to the error propagation.

In general, mosaicity of the sample could be a significant

source of error, though the present sample has a low mosaic

spread. A sample with large rocking-curve widths sometimes

gives an inconsistent UB matrix. Thus a reasonably good

crystal is important, and at higher pressures one should try to

maintain hydrostatic conditions to reduce induced strain

6. Summary

We have determined the elastic constants of MgO by IXS.

The use of an analyzer array and the Christoffel equation to

analyze data along arbitrary directions in reciprocal space

allows unprecedented precision and accuracy for this tech-

nique, comparable with desired levels for geophysical appli-

cations. The careful examination of error correlations and a

correction to account for sample and spectrometer misalign-

ment is crucial to obtain both precise and accurate results.
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