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Accurate mass density information is critical in high-pressure studies of

materials. It is, however, very difficult to measure the mass densities of

amorphous materials under high pressure with a diamond anvil cell (DAC).

Employing tomography to measure mass density of amorphous samples under

high pressure in a DAC has recently been reported. In reality, the tomography

data of a sample in a DAC suffers from not only noise but also from the missing

angle problem owing to the geometry of the DAC. An algorithm that can

suppress noise and overcome the missing angle problem has been developed to

obtain accurate mass density information from such ill-posed data. The validity

of the proposed methods was supported with simulations.
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1. Introduction

Research on the equation of state of materials under high-

pressure conditions provides important information on the

fundamental physical properties (e.g. density versus pressure)

of materials, and is a traditionally active area in high-pressure

research. For crystalline samples the routine method used

to study density under high pressure is X-ray diffraction.

However, for non-crystalline samples, such as amorphous

materials and melts, it is challenging to obtain density infor-

mation under high-pressure conditions. Using X-ray scattering

and diamond anvil cell (DAC) methods, several cases have

been reported by fitting the structural factors of the non-

crystalline samples under pressure conditions to estimate the

density (Eggert et al., 2002; Shen et al., 2002, 2004). More

attention was recently attracted by combining scattering data

with first-principle calculations and Monte Carlo simulations

(Sheng et al., 2006, 2007; Zaug et al., 2008). At the same time,

synchrotron X-ray absorption methods are widely used by

applying the absorption law [I = I0 exp(���t), where I and I0

are the intensities of the transmitted and incident beams,

respectively, � and � are the mass absorption coefficient and

density of the sample, and t is the sample length in the X-ray

path] to measure the density of melts under pressure using a

large-volume press (Katayama et al., 1993, 1998; Katayama,

1996; Sanloup et al., 2000). In these experiments the sample

length measurement, which was normally based on a one-

dimensional scan, was critical to accurately obtain sample

mass density. To improve this method, synchrotron radio-

graphy techniques were developed to measure the density of

melts under pressure (Chen et al., 2000, 2005). Approaches to

combining the synchrotron X-ray diffraction and absorption

techniques for the density measurement of melts and amor-

phous materials in a DAC were also reported (Shen et al.,

2002; Hong et al., 2007).

Recently, a tomographic method using a modified Drick-

amer anvil apparatus was introduced to study the density of

melts (Wang et al., 2005), and the authors discussed the

possibility of applying tomography techniques to a DAC for

higher pressure by pointing out that the reduction in sample

volume in a DAC may limit the usefulness of this technique. In

this report we present a methodology which is developed to

overcome this problem for density measurements using

microtomography in a DAC. In this work methods are

proposed that aim to extract mass density information from

both the complete data case and the case of data with missing

angle, based on simulation results. In the complete data case,

the mass density calculated from the tomographic recon-

struction can be used directly to determine the compression

curve of a material. In the case of data with missing angle, the

relative mass density change of an unknown sample can be

obtained with a known sample as reference. The methods may

have wide applications for other important cases with amor-

phous materials and melts under much higher pressure

conditions in materials science and Earth science.

2. An algorithm to extract mass density from
tomographic reconstruction of a sample in a DAC

Tomography is an imaging technique that can build a three-

dimensional (3-D) structure of a specimen from a series of
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images taken at many angles between 0 and 360� (Natterer,

1986; Kak & Slaney, 1987). Depending on the structure

information encoded in the images, 3-D structures of

elemental distribution, chemical state, phase etc. can be

obtained. When the images are absorption-contrast-based

projection images, tomography gives a 3-D map of the linear

attenuation coefficient of the specimen, which is proportional

to the specimen’s mass density.

The application of absorption-contrast-based tomography

to characterize a specimen inside a DAC allows one to

measure the mass–pressure relation by measuring the volume

change (volumetric approach) or, directly, the mass density

change (mass density approach).

In high-pressure experiments with a DAC, the sample size is

usually on the tens of micrometres scale. In the volumetric

approach, a high-resolution microscope is therefore needed

to measure the volume of such a sample precisely. As an

example, if a sample has a size of 30 mm� 30 mm� 30 mm, the

spatial resolution of the microscope has to be 0.3 mm to

achieve 1% volume measurement precision. In practice,

experimental data always suffer from various types of noise.

This makes the determination of the volume boundary

strongly dependent on the threshold. For two data sets taken

under two pressures that have different noise levels, it is

difficult to define consistent thresholds in two volume recon-

structions. As a sequence, the volume determination from two

volume reconstructions is subjected to subjective uncertainty.

In the mass density approach, there is no need for a high-

resolution microscope provided a homogeneous portion of the

sample can be properly imaged. Most important is that the

mass density approach can accommodate noise presented in

the data. This is discussed below.

The filtered-back-projection (FBP) algorithm is widely used

for tomography reconstruction (Kak & Slaney, 1987). With the

FBP algorithm, the frequency spectrum of a sample’s projec-

tion images is filtered and then back-projected into the image

space to obtain the sample structure (Natterer, 1986). When

the projection images are noisy, the reconstructed sample

structure suffers from errors. In this work, two types of noise

that dominate the noise level in an image are considered, i.e.

Gaussian-thermal noise related to the imaging detector’s dark

current, and Poisson noise related to the detector’s shot noise.

It can be proved that the expectation of FBP reconstructions

from the noisy data of the sample is identical to that from the

noise-free data of the sample (Kak & Slaney, 1987). Therefore,

averaging reconstructions from multiple measurements of the

same sample will reduce noise effects. In the numerical

implementation of any algorithms, it is always subject to the

error due to data discretization. To reduce the discretization

error, averaging the reconstructed values in a small region, in

which the mass density is supposed constant, will help. With

the aid of two types of averaging the mass density with

reduced noise effect can be obtained. The mass density of the

sample obtained in this way is therefore a good approximation

to its real mass density.

In high-pressure experiments with a DAC, the diamond cell

is held by a steel frame. The sample is loaded between two

diamonds; a gasket is generally used to form a closed chamber

between the diamonds anvils and around the sample. To

perform tomography of the sample in a DAC, the X-ray beam

illuminating from the DAC side passes through the gasket

onto the samples. The projection images obtained by rotating

the DAC are recorded by an imaging detector downstream of

the DAC. Owing to blocking by a steel frame, there are no

projection images available in a certain angle range. With FBP,

the reconstructions from tomographic data with missing angle

usually suffer from distortions in terms of both reconstructed

values and the shape of the sample, as illustrated in Fig. 1. In

this case, however, the relative mass density of an unknown

sample can still be obtained with some reference samples.

Simulations with the phantom shown in Fig. 1(a) have been

carried out. In the phantom there are three different samples,

NaCl, Fe and Pt, which represent low-density, middle-density

and high-density materials. Pressure–mass-density (P–�)

curves of NaCl, Fe (body-centred cubic) and Pt in the pressure

range 0–30 GPa were calculated from their equations of state
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Figure 1
(a) Phantom used in the simulations. The pressure medium Si oil and pressure marker rubies were simulated. Three different samples, NaCl, Fe and Pt,
which represent low-, middle- and high-density materials, were simulated. The boxes shown in the three samples are the regions in which the
reconstructed mass densities are averaged. (b) Reconstruction from noisy complete data, and (c) reconstruction from noisy and incomplete data that had
a missing angle of 35�. The display window is [�0.02, 2] in all three figures.



(Badro, 1999) and are shown in Fig. 2(a). Ruby balls as

pressure markers and silicone oil as pressure medium are also

simulated. The mass densities of NaCl, Fe and Pt under

ambient condition are 2.16 g cm�3, 7.87 g cm�3 and 21.46 g

cm�3, respectively. All materials’ mass densities were

normalized to the mass density of Fe under ambient condi-

tions. For simplicity, the mass densities of the ruby and the

pressure medium were kept constant in the simulated pressure

range, i.e. 2.73 g cm�3 and 1.06 g cm�3, respectively. No phase

transitions of the samples were considered. The areas of three

sample regions shrank accordingly, along with their mass

density changes. A parallel illumination beam is assumed in

the simulation. The width of the projection images was 512

pixels, and a total of 1024 projection images were evenly

generated in the range 0–180�. The pixel size of the image is

assumed to be 1 mm, which is typical in synchrotron-based

microtomography. Poisson noise and Gaussian noise (having a

mean level of 100 and deviation of 5) were added in the

projection images. The illumination beam is uniform and has a

pixel count of 3600. FBP with a Hann filter was employed to

reconstruct the mass density distribution of the phantom from

the simulated projection images. There were in total ten noisy

data sets generated at each pressure point. Fig. 1(b) shows one

of the ten reconstructions at 0 GPa.

First, the reconstructions from the complete tomographic

data have been carried out. Equation (1) defines the error

term used to characterize the errors in the reconstructions,

errðPÞ ¼ �avgðPÞ � �realðPÞ; ð1Þ

where �avg is the mass density calculated from the tomo-

graphic reconstructions after a two-step average, and �real is

the mass density of the sample. Over the entire pressure range,

as shown in Fig. 2(a), the calculated mass density curves of all

three samples are visibly parallel to their �real curves. Fig. 2(b)

shows the error curves calculated using equation (1). It is

found that all error curves are close to zero and the magni-

tudes are small compared with �real of samples. The offsets of

the error curves from zero are due to the filtering used in the

reconstructions, the residual error introduced by noise, and

the residual discretization error. Since the magnitudes of the

error curves are small compared with the samples’ mass

densities over the entire pressure range, the following

approximation can be made,

�realðPÞ ’ �avgðPÞ þ constant: ð2Þ

Because of the unknown constant in (2), the P–� curves of the

samples calculated using (2) are in general offset from their

real P–� curves. However, if a calculated P–� curve can be

aligned to its corresponding real P–� at one pressure point, for

instance at 0 GPa, the calculated P–� can be aligned to its real

P–� curve. Fig. 2(c) shows the normalized error curves of three

samples to their mass densities under ambient conditions. The

error curves are aligned to the ambient conditions. As shown

in Fig. 2(c), the error is within 2% for the low-density material

(NaCl), and within 0.2% for the mid-density (Fe) and high-

density materials (Pt). These results suggest that (2) is a good

approximation of P–� measurement when there is no missing

angle in the tomographic data. Heavier samples allow more

precise results. It is interesting that the overall shape of the

NaCl error curve is sinusoidal-like while that of the Fe and Pt

error curves become more negative with decreasing pressure.

This is probably related to the slopes of the P–� curves of the
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Figure 2
Reconstruction results with the complete data. (a) Ideal mass densities
and calculated mass densities of NaCl, Fe and Pt. To show the details
clearly, the curves associated with NaCl are offset by 2.4, and the curves
associated with Fe are offset by 1.63. (b) Differences between the real
mass densities and the tomographic estimations of the mass densities of
NaCl, Fe and Pt. (c) Normalized error of the calculated mass densities
in (b).



materials. As seen in Fig. 2(a), the slope of the NaCl error

curve is large in the low-pressure range (<5 GPa), and is

smaller and roughly constant in the higher-pressure range (15–

30 GPa). The slopes of the Fe and Pt error curves are roughly

constant in the range 0–30 GPa. The proof of this hypothesis is

out of scope of this report.

In the case of tomographic data with missing angle, the

error curves calculated using equation (1) are no longer small

in magnitude and widely separated from each other over the

entire pressure range. In the simulation of this case, the same

phantom was used and ten noisy data sets with 35� missing

angle were generated. The 35� missing angle is typical of the

Panoramic DAC cell that we used in the experiments. The

error curves of three samples calculated using equation (2) are

presented in Fig. 3(a). Fig. 3(b) shows the differences between

error curves of NaCl and Fe, and NaCl and Pt. The fluctuation

of the error curve associated with NaCl and Fe is small in the

pressure range 0–15 GPa, and the fluctuation of the error

curve associated with NaCl and Pt is small in the pressure

range 15–30 GPa. Assume NaCl is the sample to be measured.

If the fluctuation of the error curve between NaCl and a

reference sample is small in some pressure range, the mass

density of NaCl can be estimated in that pressure range using

equation (3),

�NaCl
real ¼ �

NaCl
avg � �ref

avg � �
ref
real

� �
þ constant: ð3Þ

Here, �ref
avg and �ref

real represent the calculated mass density of a

reference sample from the tomographic reconstructions and

the real mass density of the reference sample, respectively.

Fig. 3(c) shows the calculated P–� curves with Fe and Pt as

reference samples. The calculated curves are aligned to the

real P–� curve of NaCl at 0 GPa. The normalized errors are

shown in Fig. 3(d). It is seen that the calculated mass density of

NaCl with Fe as a reference has good agreement (better than

0.2% in the range 15–30 GPa) with the real mass density curve

on the higher-pressure end, while the calculated mass density

of NaCl with Pt as a reference is roughly parallel to the real

mass density curve on the lower-pressure end (within 2% in

the range 0–15 GPa). The reference sample’s mass density

curve, being more parallel to the mass density curve of the

sample to be inspected, gives a better result. It should be

pointed out that the normalized error of the relative mass

density measurements is sample-dependent. The higher

sample’s absolute mass density tends to have the smaller
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Figure 3
Results with the incomplete data. (a) Reconstruction errors of NaCl, Fe and Pt. Fe and Pt curves are offset by 0.69 and 0.96, respectively, to display the
details of all three curves in the same figure. (b) The reconstruction error differences � between NaCl and Fe, and between NaCl and Pt. To show the
details of both curves, the curves of the error difference between NaCl and Fe are offset by 0.21. (c) Calculated mass densities of NaCl using equation (3).
The calculated curves are aligned to the real mass density curve at 0 GPa. (d) Normalized errors of the calculated mass densities in (c).



normalized error. For instance, if Pt is the unknown sample

and NaCl is the reference in the pressure range 0–15 GPa, the

normalized error will be about 0.1%. This is because the

normalized error is determined by the difference between the

error terms of the unknown sample and the reference sample,

and the absolute mass density of the unknown sample. If the

error term difference is the same, a higher estimated absolute

mass density of the unknown sample makes the normalized

error smaller.

The reason why the calculated mass density of NaCl with Pt

as a reference has a good agreement with the real values in the

pressure range 0–15 GPa is because the magnitude of (�NaCl
avg �

�NaCl
real ) � (�ref

avg � �
ref
real) is small. This makes the approximation

in equation (3) more pronounced. This also explains why the

calculated mass density of NaCl with Fe as a reference has a

relatively better agreement with the real curve within the

pressure range 15–30 GPa. It is noted that, in Fig. 2(b), the P–

� curve of NaCl is almost parallel to the P–� curve of Fe at the

higher-pressure end, and to the P–� curve of Pt at the lower-

pressure end. This is similar to the relations among the three

error curves shown in Fig. 3(c). The similarity between the

error curves and the mass density curves has a mathematical

origin (see the Appendix A for proof). Explicitly, the differ-

ence between the error terms of two samples is almost

constant if the P–� curves of two samples are parallel to each

other. This observation suggests that, for an unknown sample,

a reference sample whose P–� curve has a similar slope to that

of the unknown sample is desired. In practice, finding such a

reference can be done iteratively. With an arbitrary reference

sample, an estimated P–� curve of the unknown sample is

obtained. If the estimated P–� curve is parallel to the refer-

ence sample’s P–� curve at the pressure of interest, the esti-

mated P–� curve is accurate and a search is made. If two

curves are not parallel, a new reference sample that has its P–�
curve roughly parallel to the estimated curve of the unknown

sample is chosen; this process is continued until the evaluation

condition is satisfied. In choosing a reference sample, it is not

necessary to have the candidate having its P–� curve parallel

to the estimated P–� curve of the sample over a large pressure

range. A large pressure range can be divided into several small

ranges, and searching of the reference samples can be made in

each small pressure range.

It is pointed out that the simulation model considered in

this report is rather simple and idealized. There are many

other factors that may affect the errors in a real experiment.

One of these is the continuity of the sample. Loose powder

samples that may have intergranular spaces filled with pres-

sure medium are clearly not the case. The simulations in this

report refer to samples in chunk state loaded into a DAC. For

simplicity, Si oil and ruby compressions are not considered in

the simulations. This, however, should not be a problem. As

shown in the simulations, the materials (Pt and Fe)

compressed under pressure do not significantly affect the P–�
curve determination of the sample (NaCl). As discussed in

Appendix A, the determination of the sample’s P–� curve is

dominated by the mass density change of the sample. The

effect of non-ideal geometry of sample chamber shape

development during gasket material deformation upon

compression is also neglected in the simulations. The effect of

the gasket can be taken out by considering the absorption of

the gasket of standard shape. In our experiments, hard X-rays

and Be gasket are always used. The deviation of the gasket

real shape from the assumed shape, and the part of the gasket

deformation are small compared with the gasket size. The

error from the non-ideal gasket shape can therefore be

ignored. Other complicated issues such as phase mixture

during phase transitions, crystallization and re-crystallization

processes are neglected in the simulations. Errors contributed

from inherent problems in high-pressure DAC experiments,

such as pressure gradient, strain and stress states of sample

embedded in non-ideal hydrostatic pressure medium, which

are indeed very interesting topics and could be approached by

other advanced novel techniques like synchrotron X-ray

diffraction tomography, are out of the scope of this paper.

The proposed method has been applied to study the

anomalous phase behaviour of amorphous Se (a-Se) (Liu et

al., 2008). In the experiments, silicone oil was used as the

pressure medium and reference sample. Although, to the

authors’ knowledge, there is no reported P–� result for sili-

cone oil, our preliminary measurements of silicone oil’s P–�
relation in separate experiments show that it is very close to

the measured Se P–� relation with silicone oil as the reference

sample. The reconstructed Se P–� curve shows that the mass

density of a-Se at 10.4 GPa, where a-Se converts into mono-

clinic Se (m-Se) first and then m-Se converts into trigonal Se

(t-Se), is in the middle of the mass densities of m-Se and t-Se.

This suggests a density-fluctuation-driven phase transition

from a-Se to m-Se.

3. Conclusions

In this work the methodology to measure mass density with

tomography in high-pressure experiments is proposed. With

numerical simulations, it is found that the relative mass density

of an unknown sample can be obtained without reference

samples in the case of complete data, and with reference

samples when the tomographic data has missing angles. These

simulation results support the validity of the proposed

methods. In reality, there are many factors that may affect the

mass density information extracted from tomography results.

It is necessary to control the experimental conditions close

to the condition employed in the simulations to make the

methods valid.

APPENDIX A
Heuristic argument for the correlation between mass
density and its tomographic reconstruction error at a
given point in an incomplete data case

In the parallel illumination beam case, a sample’s 3-D struc-

ture, with its linear attenuation coefficient as contrast, can be

reconstructed using FBP (Kak & Slaney, 1987),

�recðx; y; PÞ ¼
P
�2�

P
k

p�ðk�; PÞhðx cos � þ y sin � � k�Þ: ð4Þ
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The coordinates definitions used in (4) are defined in Fig. 4(a).

p� is the line integral of the sample’s linear attenuation coef-

ficient along direction �. The convolution kernel h is the

tomography system’s impulse function, which is defined as

hðk�Þ ¼
1=4 k ¼ 0;
0 k ¼ even;
�1=ð�k�Þ2 k ¼ odd:

8<
: ð5Þ

h is plotted in Fig. 4(b). As the linear attenuation coefficient is

proportional to the sample’s mass density, (4) can be rewritten

as

�ðx; y; PÞ ¼ c
P
�2�

P
k

p�ðk�; PÞhðx cos � þ y sin � � k�Þ: ð6Þ

The prefactor c is the scaling factor between the sample’s mass

density and the sample’s linear attenuation coefficient. The

convolution of the projection p� with the impulse function h in

(6) represents a filtering operation, and the summation over

angle represents the backprojection operation. Fig. 4(c)

schematically illustrates the FBP process represented in (6).

Equation (6) can be rewritten as

�recðx; y; PÞ ¼
� P
�2�

þ
P

�2���

�P
k

p�ðk�; PÞhðx cos �

þ y sin � � k�Þ

¼ ~��recðx; y; PÞ þ ��ðx; y; PÞ: ð7Þ

Suppose the projection data are only being collected in the

angle range � 2 � in an incomplete data case. ~��recðx; y; PÞ is

the reconstructed mass density at position (x, y) from the data

in the limited angle �, and ��(x, y; P) is the reconstruction

error.

In the so-called shift-and-add tomosynthesis, the recon-

struction formula is exactly the same as the reconstruction

formula for ��(x, y; P) in (6) except for the different impulse

response functions being used (Dobbins III & Godfrey, 2003).

In tomosynthesis reconstructions, it can be proved qualita-

tively that the reconstructed value at one position is domi-

nated by the mass density at that position, while a smooth

background contributed from other positions is superimposed.

This suggests that ��(x, y; P) is also dominated by the mass

density at the position (x, y). Therefore, the difference

between ��(x, y; P) at two positions reflects the mass density

difference at two positions except for some background. If the

P–� curves at two positions are parallel, the difference

between ��(x, y; P) at two positions is therefore constant. This

confirms the observation in the numerical simulations.
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Figure 4
(a) Schematic of tomography. (b) Impulse response function used in the
FBP reconstruction algorithm. (c) Schematic of FBP reconstruction. Back
projecting the projections multiplied by the impulse response function
gives the reconstruction at a specific position.
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