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The propagation of X-rays through a compound refractive lens (CRL) with

imperfect CRL elements is investigated. The trajectories of random rays within

the geometrical optics regime are calculated in one plane using Monte Carlo

methods. Three different lenses were simulated: Be, Al and Ni lenses designed

for photon energies of 20 keV, 60 keV and 175 keV, respectively. The results

show that while transverse displacements of single elements in a CRL do not

influence imaging resolution, rotational errors can be important. Systematic

calculations of aberrations owing to the deviation of the element’s surface from

a perfect parabolic shape are also presented.

Keywords: compound refractive lens; X-ray optics; errors in the lens; ray-tracing.

1. Introduction

X-ray refractive optics have became a powerful tool for

scattering experiments, as well as for X-ray imaging. In the

X-ray regime the difference between the refractive index of

materials and unity is very small. Therefore, to obtain a

reasonably short focusing length, X-ray refractive lenses are

made from stacks of many single elements. The main draw-

back of X-ray refractive lenses is their small effective aperture

caused by photon absorption in the material of the lenses.

However, owing to the high brightness of present and future

synchrotron sources, one can use such lenses quite efficiently.

Moreover, the absorption can be reduced using kinoform

methods (Nazmov et al., 2005).

A detailed description of the properties of compound

refractive lenses (CRLs) can be found by Lengeler et al. (2005)

and Schroer et al. (2001). Recently, Snigirev & Snigireva

(2008) have presented a review of high-energy X-ray micro-

optics where CRLs were compared with mirrors, capillaries,

waveguides and Fresnel zone plates. Other kinds of existing

refractive devices, such as multi-prism lenses (or saw-tooth

lenses) (Cederström et al., 2002) or prism arrays (Jark et al.

(2004), can also be applied to concentrate X-ray beams.

Lithographic methods are the most popular methods for

single-lens or lens-array fabrication (e.g. Nazmov et al., 2007;

Artemiev et al., 2005; Nöhammer et al., 2003; Aristov et al.,

2000). However, two other techniques, the pressing technique

(e.g. Lengeler et al., 2001; Andrejczuk et al., 2007) and

producing bubbles in a micro-capillary (e.g. Huang et al., 2009;

Dudchik et al., 2003), have been applied. Lithographic

methods can be very accurate not only in obtaining the shape

of the surface of the lenses but also in aligning them together.

Other techniques seem less accurate. However, in some cases

the highest precision is not required to obtain a good lens

performance (Snigirev & Snigireva, 2008).

Several authors have used ray-tracing methods to simulate

CRLs and to investigate the influence of fabrication errors

on their performance (Elleaume, 1998; Protopopov, 1999;

Dudchik et al., 2000; Evans-Lutterodt et al., 2003; Alianelli et

al., 2007; Umbach et al., 2008). The problem of the misalign-

ment of single lenses with respect to the optical axis of the

CRL has already been discussed (Elleaume, 1998; Protopopov,

1999; Pantel et al., 2001a,b; Piestrup et al., 2001). Protopopov

(1999) also discussed the effect of bending the whole stack of

compound lenses. In this work we used our own ray-tracing

program to test the systematic misalignment of conical surface

axes of single elements in the stack, and also calculated the

focus broadening connected with the departure of single lens

surfaces from parabolic shape. The set-up for magnetic

Compton scattering experiments at the BL08W beamline at

SPring-8 was taken as an example for modelling the geometry

in our simulations. Our calculations have been designed to test

the geometry used in experiments with a planar Ni refractive

lens at 175 keV (Andrejczuk et al., 2006, 2007). Therefore, we

developed a ray-tracing program which calculates the trajec-

tories of rays in one plane (two dimensions). A brief

description of the method was given by Andrejczuk et al.

(2006). While we have concentrated on the performance of a

Ni lens for 175 keV photon energy, we have also simulated the

focusing performance of an aluminium lens for 60 keV and a

beryllium lens for 20 keV photon energy.

The CRL was located 47 m from the source and was

designed to image the source at 3.5 m. We assume an inco-

herent source chosen in such a way that the geometrical image
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size is slightly below the diffraction limit determined by the

CRL’s effective aperture.

In Compton scattering experiments it is important to have

not only an intense beam in the focus but also to minimize the

surrounding background. Therefore, using various approx-

imations, we estimated the background caused by Rayleigh

and Compton scattering occurring in the lens material.

In the following section we describe the method of the

calculations. We then present results of simulations for

different types of errors in the lenses, followed by a discussion

and summary.

2. Calculations

We consider the focusing of an X-ray beam in one plane only

(planar lens). The vectorized Monte Carlo procedure (e.g.

Bobrowicz et al., 1984) for ray-tracing in two dimensions

within geometrical optics laws has been written in Matlab. The

lens shape is described by a general conical curve of eccen-

tricity e and radius of curvature p at the vertex (Fig. 1). The

eccentricity defines the type of conical curve: one obtains a

circle when e = 0, an ellipse when 0 < e < 1, a parabola for e = 1,

and a hyperbola for e > 1. N single biconcave lenses of

thickness l are situated in the external coordination system XY

shown in Fig. 2. Parameters e and p, as well as the position of

the vertex and the angle between the axis of the conic and the

X axis, were varied during the simulations. We assumed

perfectly smooth surfaces. We also assumed homogeneous

lens material. Small-angle scattering from surface and bulk

inhomogeneities (Elleaume, 1998; Lengeler et al., 1998) was

not considered here.

The program simulates a set of rays (photons) that is

emitted from the source, then transmitted by the lens and,

finally, detected at the screen. The single ray is defined by its

origin (x, y) and the ry projection of its unit vector. The rays

are randomly generated in the source volume within a range of

parameters such that the height of the primary beam at the

entrance of the lens is smaller than 2 mm. The intersection

points of the rays with conical curves and lines are calculated

on the basis of an analytical solution. When the intersection of

a ray with a conical curve (or a flat part of the lens) occurs, the

new direction r 0y is derived using the refraction law. The ray is

propagated to the next optical element. After each intersec-

tion new parameters describing the downstream ray are

calculated. Finally, if the ray has not been absorbed, the

intersection Fy (Fig. 2) of the refracted ray with the screen is

calculated. The histogram of the y coordinates of the inter-

section points Fy gives the intensity distribution at the sample

surface. The histogram of the x coordinate of Fx (Fig. 2) is also

calculated. In the case when the image is formed on the optical

axis the mean value gives the image position and the standard

deviation of Fx describes its depth.

For every ray its own photon energy parameter is assigned.

The index of refraction of the lens material associated with a

given photon energy is calculated using the approach

presented by Lengeler et al. (1998). In the calculations

presented here the sources were strictly monochromatic. We

use different energies when we simulate the background

owing to Rayleigh and Compton scattering.

The source was situated at a distance of �47 m (xu; Fig. 2)

and the screen was situated at a distance of 3.5 m (xs; Fig. 2).

The source was modelled as a Gaussian spot with a second

spatial moment � = 0.6 mm in the y direction and 1 mm in the x

direction. The resulting spot size on the screen was of the
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Figure 1
Layout of a single lens. The lens is a plate of thickness l where on both
sides parabolic-like grooves are defined. The shape of the grooves is
described by a general conical curve with equations in the coordination
system centred at its vertex (XvYv), as shown in the figure. The curve is
parameterized by the radius of curvature at vertex p and eccentricity e.
The physical aperture of the lens H, and the thickness between vertexes d,
are also shown.

Figure 2
The geometry used in the simulations. The coordination system XY is plotted using solid thick lines. The broken lines mark the propagated beam. The X
coordinates of the source, front of the lens and the screen are�xu, x0 and xs, respectively. l and L are the thickness of a single lens and the total length of
the compound lens, respectively. Fx and Fy are the intersection points of the refracted ray with the X axis and the screen plane, respectively. The
proportions of the objects in the figure do not correspond to the real situation.



order of 0.1 mm. This is comparable with the diffraction limit

for the model geometry. We adjusted the front lens position

(x0 in Table 1, Fig. 2) to obtain the source image exactly at the

fixed screen location.

Although different numbers of rays were used in particular

simulations, the intensity I0 of the source beam was normal-

ized to the value 106 photons m�1 measured at the screen

position, with no lens in the way. The calculated intensity

distribution dN/dy at the screen represents the ratio of the

number of detected photons dN in the interval dy. The

intensity distribution dN/dy is expressed in units of

counts m�1. CRL errors both change the shape of the beam

and can shift its vertical position. The range of the histogram

was adjusted to secure a proper description of the beam

profile at the screen.

To be sure that our numerical method was accurate enough,

we compared the results of simulations of a parallel beam

passing a single lens with the results derived from an analytical

solution. We found that the accuracy of the simulation of the

vertical intensity distribution was of the order of 10�10 m.

Three different lenses were taken into consideration: a

beryllium lens for 20 keV, an aluminium lens for 60 keV, and a

nickel lens for 175 keV photon energy. The parameters of all

three lenses are shown in Table 1. For all cases the eccentricity

e was equal to 1 � � (Evans-Lutterodt et al., 2003), except

when the relation between the broadening of the image and

the eccentricity was investigated. The thickness between

vertices was 3 mm, the smallest value for which rotated para-

bolas did not intersect. All CRLs (if perfectly aligned) gave a

sharp image of the source at 3.5 m. The image had a Gaussian

profile with a full width at half-maximum (FWHM) of 0.1 mm.

The intensity of the image was different for each CRL owing

to the different level of absorption (Fig. 3). The model beam

size (2 mm) at the entrance of the lens is substantially wider

than the physical aperture in order to accept changes in the

position of the lens owing to introduced errors. The direct

transmission by the flat part of the Be, Al and Ni CRLs

was 5.0 � 10�2, 7.6 � 10�6 and 2.4 � 10�10, respectively. We

characterize the size of an image on the screen by a width

parameter W. This is obtained by calculation of the second

moment (RMS) of a simulated distribution and multiplying it

by 2.35. The mean value of the intensity distribution gives the

vertical position of the beam which we call hereafter the

centre of the beam (C).

Absorption in the lens material was modelled by the

random removal of rays during propagation. The probability

of this process was calculated on the basis of available cross-

section data (McMaester et al., 1969) (photoelectric absorp-

tion, Rayleigh and Compton scattering) and the path length

inside the single lens. The correctness of this method has been

checked in separate simulations with a set of flat model

absorbers. The detected intensity was in full agreement with

the values calculated from the I0 exp(��t) dependence. We

also simulated the transmission profile by a single concave

parabolic lens and good agreement with analytical predictions

was found. Rays that were supposed to be totally reflected

were removed from the beam. However, such cases were very

rare and did not influence the results.

We estimated the background due to Rayleigh and

Compton scattering by additional simulations of scattering in

three dimensions and performing a projection back to two

dimensions (Andrejczuk et al., 2006). This was done with

additional constrains. The rays which scattered by more than

60� were removed from the set and accounted for as absorbed

rays. Only one scattering per single ray was allowed during a

single lens passage. If the energy of the scattered ray changed,

the refraction was calculated for the new energy. The simu-

lations showed that the intensity distribution of the scattered

background was flat in the region of a few millimetres around

the focus. Its intensity was roughly proportional to the total

intensity transmitted by the lens. This suggests that the

background was generated in the part of the lens which was

close to the CRL exit. The level of the background was quite

small (Table 2, first row). Taking into account that the

projection into two dimensions overestimates the real effect,

the contribution of the scattering to the total intensity distri-

bution can be neglected. Therefore we show most of our

results without accounting for the scattering.
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Figure 3
The simulated beam profile at the screen position for perfectly aligned
Be, Al and Ni lenses. The histograms were obtained with the emission of
1.2 � 106 rays for each lens. All beams have width W roughly equal
to 0.1 mm.

Table 1
Parameters of simulated lenses.

The type of lens material and the energy of radiation are shown in the first row.
The following rows contain values of the parameters corresponding to the
three different lenses: p is the radius of curvature at the vertex, N is the
number of biconcave lenses, � is the linear attenuation coefficient, � is the
refraction index decrement (n = 1 � �), x0 is the position of the front of the
CRL in the X direction (Fig. 2), l is the thickness of the single biconcave lens, L
is the total length of the CRL and H is the geometrical aperture of the lens.

Be 20 keV Al 60 keV Ni 175 keV

p (mm) 200 150 100
N 37 157 274
� (cm�1) 0.3957 0.7507 1.615
� � 10�7 8.520 1.500 0.5761
x0 (mm) 47.13 �24.90 9.16
l (mm) 2.00 1.00 0.50
L (cm) 7.4 15.7 13.7
H (mm) 1264 773.9 445.6



3. Results

Fig. 3 shows the results of simulations of the beam profile

when all elements were perfectly aligned, the eccentricity e =

1 � �, and 1.2 � 106 rays were emitted from the source into a

2 mm aperture in front of the lens. The number of rays which

reached the screen was 4.12 � 105, 1.21 � 105 and 0.50 � 105

for the Be, Al and Ni lenses, respectively. These numbers

represent typical values, which were used to calculate histo-

grams and resulting parameters. The integral of the distribu-

tion gives us the integral intensity Iint detected on the screen

(Table 2). The accuracy of the calculated parameters is

roughly 1%, and the statistical uncertainty of W parameters is

smaller than the size of the points in the figures.

The effective aperture Aeff is often discussed in the litera-

ture. Different definitions can be found, but the one used most

frequently is the aperture Aeff which transmits the same

number of rays as the lens does. For a parabolic planar lens,

assuming parallel rays propagating through the lens and d = 0,

this approach gives a simple expression (see, for example, Jark

et al., 2004),

A
ð1Þ
eff ¼ ð2�Þ

1=2
p=ð�2NÞ½ �

1=2; ð1Þ

where � is the linear attenuation coefficient and N is the

number of double concave lenses. Because the normalization

of the direct beam is 1 photon mm�1, Iint also gives the simu-

lated effective aperture Aeff expressed in micrometres (Table

2). Results of simulations fit quite well with expression (1)

[A
ð1Þ
eff , Table 2]. Aeff has slightly higher values than A

ð1Þ
eff despite

d 6¼ 0. This is connected to the fact that the rays go through the

CRL in bent trajectories and more rays pass the thinner part

of the lenses than in the configuration used to derive A
ð1Þ
eff. For

a lens with parabolic shape the transmission profile is a

Gaussian, with its FWHM equalling roughly Aeff.

We investigated the rotations of the entire planar CRL

around the axis perpendicular to the XY plane (the axis of

grooves direction) and passing through the centre of the lens.

We found that the intensity drops by 10% for rotations of 4.20,

0.78 and 0.40 mrad for the Be, Al and Ni lenses, respectively.

These numbers are approximately half of the value of the

angles corresponding to the ratio of the effective aperture Aeff

and the total length of the lens L. No visible change of the

width W of the focused beam has been observed within this

range of angles. The parabolic and the sinusoidal deformation

of the entire CRL in the Y direction as a function of the

amplitude of the deformation have also been investigated. No

broadening of the beam was found before the beam’s intensity

dropped substantially.

3.1. Misalignment of parabola axis: rotation

As seen above, rotations of the entire CRL cannot be large

if one wants to preserve the transmission. However, all para-

bola axes can be systematically rotated by an angle �r . This

can happen when a fabrication pressing device is misaligned in

such a way that produces grooves shown in the inset in Fig. 4.

We will call it rotation error. Simulations find that for such a

systematic error the centre of the beam does not shift (C = 0)

and the integral intensity does not change for rotations of

parabola axes up to 100 mrad. For higher angles the integral

intensity decreases quickly.

The dependence of the peak width W on the value �r

exhibits a threshold behaviour illustrated in Fig. 4. The

broadening depends on the lens type, and the width W reaches

1 mm for a 11, 34 and 66 mrad rotation of the Be, Al and Ni

lenses, respectively. The situation does not change when every

second double-concave lens is rotated by 180� around the

optical axis, which effectively corresponds to a change of the

sign of rotations of the parabolas (��r).

3.2. Misalignment of parabola axis: bending

The CRL performance worsens if we assume a deformation

where the parabolas on both sides of the double concave lens

are rotated in opposite directions. This can happen when the

two pressing tools systematically press in slightly different

directions and produce all lenses as shown in the inset of Fig. 5.

Here we call this the bending error. Simulations show that if

the bending error is the same in all single lenses the beam

profile changes even for small bending angle �b. Fig. 5 shows

the width W of the beam profile at the screen position as a
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Figure 4
Dependence of the width of the beam profile on the rotation angle �r .
The inset shows parabolas rotated by 0.16 rad.

Table 2
Parameters obtained from simulations.

The type of lens material and the energy of radiation are shown in the first row.
Ibckg is the intensity of the Rayleigh–Compton background. Iint is the integral
of dN/dy for the ideal case. Aeff and A

ð1Þ
eff are effective apertures resulting from

simulations and from equation (1), respectively. Aeff /p is the ratio of the
effective aperture of a CRL lens and the radius of curvature of a single lens.
dC/d�b is the coefficient of the vertical shift of the centre of the beam owing to
the bending error.

Be 20 keV Al 60 keV Ni 175 keV

Ibckg (counts m�1) 34 (4) 16 (3) 7.3 (4)
Iint (counts) 694 (2) 216.3 (6) 90.5 (4)
Aeff (mm) 694 (2) 216.3 (6) 90.5 (4)
A
ð1Þ
eff (mm) 655 200 84.3

Aeff /p 3.48 1.44 0.905
dC/d�b (mm mrad�1) 0.67 0.22 0.12



function of the bending angle �b. The width W reaches a value

of 1 mm for 0.7, 5 and 19 mrad bending for the Be, Al and Ni

lenses, respectively.

Up to 100 mrad, rotation and bending do not reduce the

integral intensity transmitted by the lens. However, bending

changes the position of the beam centre C. Fig. 6 shows

examples of beam shapes influenced by rotation and bending

errors for the Ni CRL. As can be seen, the beam keeps its

position in the presence of rotation errors (green triangles). It

moves and becomes asymmetric when bending errors are

introduced (red circles). Simulations show that the centre of

the beam moves roughly linearly with �b with the coefficient

dC/d�b shown in Table 2. The results show that among the

three CRL lenses discussed the beryllium CRL is most

sensitive to rotation and bending errors.

The effect of bending is similar to that of rotation if one

changes the bending direction of every second lens by rotating

it by 180� around the optical axis. Indeed, as seen in Fig. 6,

bending by 63 mrad and reversing every second lens (black

squares) gives a beam profile equivalent to that obtained with

rotations by the same angle (green triangles). We have also

simulated the CRL with random distribution of the parabola

rotation angles. The smearing of the image caused by the

random rotations is similar to the systematic rotation

discussed above in the case of the Al and Ni lenses. For the

beryllium lens, which has a relatively small number of

elements, the fluctuations do not average as well as in the case

of the two other lenses. For the beryllium lens the width W

reaches 1 mm for �(�r) = 2 mrad.

3.3. Misalignment of parabola axes: transversal shift

That the resolution does not depend on a transverse shift of

the parabolas has been reported many times in the literature.

We also simulated vertical shifts s of the lenses. The shift is

illustrated in the inset in Fig. 7. A systematic shift occurs when

all lenses have the same shift error s. The dependence of the

integral intensity on the shift s is shown in Fig. 7. The intensity

drops by 10% for shifts s of 15.6, 36.8 and 102 mm for the Ni,

Al and Be lenses, respectively. The shape of the beam and its

width W and position C do not depend on the s value in the

investigated range of the s parameter.

We have also simulated random fluctuations of the vertical

shifts s. The dependences of integral intensity on the standard

deviation �(s) is practically the same as those shown in Fig. 7

when s is replaced by �(s). As noticed by Pantell et al. (2001a),

a transverse shift does not influence the image shape but

reduces the CRL transmission by adding a thickness �d = �2/p

to the effective thickness of a double concave lens. This results

in the following reduction of the CRL transmission,

I ¼ I0 exp ð���2NÞ=p
� �

; ð2Þ

research papers

620 Andrzej Andrejczuk et al. � Planar parabolic compound refractive lens J. Synchrotron Rad. (2010). 17, 616–623

Figure 6
Examples of the beam profile for a Ni 175 keV lens for different states of
parabola axes misalignment. The profile for the undisturbed lens is
plotted by the blue solid line. The red circles represent bending by
16 mrad and the green triangles represent rotation by 63 mrad. The black
squares show bending of 63 mrad but for a CRL having every second lens
reversed (rotated by 180� around the optical axis).

Figure 7
The integral intensity detected at the screen versus the transversal shift s.
Points represent results of the simulations. Lines represent theoretical
predictions based on equation (2) where s was inserted instead of �, and
I0 was set to the integral intensity obtained for the perfect lens.

Figure 5
Dependence of the width of the beam profile on bending angle �b. The
inset shows parabola axes bent by 0.16 rad.



where � is the standard deviation of the fluctuations of the

transversal shift and N is the number of double concave lenses.

Our numerical simulations agree very well with the results

obtained from this simple expression (2) (see Fig. 7). We have

also observed, as reported by Protopopov (1999), that for

different fluctuations one obtains different vertical shifts of

the focus. For a given realisation of the fluctuations the focus

position changes linearly with �. The width W of the peak at

the screen position does not depend on �.

For large transverse fluctuation amplitudes the flat part of

the lenses can enter the region where the beam is transmitted

and small satellites appear around the central peak. This can

be seen in Fig. 8 which shows the beam profile simulated for

the Ni lens with large fluctuations of the shift s (normal

distribution). In our model case, � = 63 mm and the integral

intensity is 15 counts. The satellites appear for a certain

amplitude of fluctuations and then their intensity increases

with � while the intensity of the main peak decreases. The

intensity of individual satellite peaks varies strongly from one

configuration to another. However, they are very regularly

spaced in the y direction, and the period depends on the lens

parameters. We have found that the periods are 9, 1.5 and

0.5 mm for the Be, Al and Ni lenses, respectively.

3.4. Broadening owing to departure from parabolic shape

In the literature, parabolic lenses are reputed to give the

smallest aberrations for CRLs. We checked this assertion with

our simulations. We made a series of simulations varying the

eccentricity e while keeping other parameters constant

(Table 1). Fig. 9 shows the width W of the beam profile at the

screen position as a function of (e � 1) plotted on a loga-

rithmic scale. The figure is divided into two parts, where the

left-hand side and right-hand side show the results for e < 1

and e > 1, respectively. The direction of the horizontal axis in

the left-hand part of the figure was reversed. In the centre of

the figure the lens’s shapes are close to a parabola, at the left-

hand boundary the lens’s surfaces are circular, and at the

right-hand boundary they have hyperbolic shapes as shown by

the insets in Fig. 9.

An increased image width W up to 1 mm occurs when the

value |1 � e| approaches 0.00045, 0.0090 and 0.053 for the Be,

Al and Ni lenses, respectively. It is interesting that if we

calculate the change of the lens width at the place which

corresponds to the effective aperture Aeff then for all lenses

we obtain roughly the same value of 0.2 mm. This number can

represent the required precision of the machining process

when one aims at 1 mm focusing.

4. Discussion

Our simulations indicate that the performance of a CRL is

most sensitive to bending errors of the individual lenses. In the

case of the beryllium lens even small but systematic bending

can influence the quality of imaging. The lenses are small

objects and 1 mrad of rotation corresponds to a deformation

of the order of 1 mm. This kind of error can easily appear when

the pressing technique is used for the fabrication of the lenses.

When strong bending errors are present our simulations imply

that rotating every second lens by 180� around the optical axis

reduces the aberrations by one order of magnitude. It was

shown in x3.2 that the sensitivity to the rotation and bending

angles is similar when one applies the above reversing

procedure.

The dependence of the width W on �r and �b can be

discussed in terms of optical aberrations. It can be shown that

for small angles of rotation of the parabola the ray’s path �x

inside the single concave parabolic lens, as a function of

distance y from the optical axis, is equal to

�x ¼
y2

2p
� yþ

y3

2p2

� �
�þ

y2

2p
þ

5y4

8p3

� �
�2: ð3Þ
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Figure 9
The width W of the beam profile at the screen versus the eccentricity e.
The left-hand and right-hand parts show data for e < 1 and e > 1,
respectively. The direction of the left-hand horizontal axis is reversed.
The insets show the shape of the lenses of the same radius of curvature p =
200 mm and e = 0.3, 1 and 1.8 from left to right.

Figure 8
Example beam profile for the Ni lens with high transversal random
fluctuations of �(s) = 63 mm. The solid line represents the result of
simulations. The broken line represents the profile convoluted with
the Gaussian of FWHM = 0.5 mm. The maximum of the main peak is
8 � 107 counts m�1.



The first term is the path for the non-rotated parabola. The

second term, which is proportional to �, contains aberrations

known as the tilt and the coma. The third term, proportional to

�2, contains aberrations known as the spherical aberration and

the defocus. In the case of a double concave lens with rotation

error the terms with the odd powers of � are cancelled. For the

bending error these terms are doubled. This qualitatively

describes the character of the aberration observed in the

simulations. In the case of bending errors we observe strong

aberrations owing to the coma and the tilt, and the width of

the beam is proportional to �b. This is clearly illustrated in

Fig. 6, where the shape of the focal spot and the shift of its

position correspond to the coma and the tilt aberration,

respectively. In the case of the rotation errors the spherical

aberration and the defocus have a much smaller influence on

the width W as they are proportional to �2
r . One can also note

that the slopes of the curves plotted on log–log scales in Figs. 4

and 5 differ by a factor of two. This reflects the fact that the

effect of the rotation errors is proportional to �2
r , and the

effect of the bending errors is proportional to �b. Equation (3)

also explains why, in the case of the stack of N double concave

lenses, reversing every second lens reduces the aberrations. In

this case the tilt and the coma terms are again cancelled.

It seems that an accuracy of 0.01 mm is technically achiev-

able in the pressing technology. For the elements of size 1 mm

this corresponds to angles of the order of 10 mrad. As the

simulations show (Fig. 4), for Ni and Al lenses this level of

angular error has no influence on the lens resolution.

However, in the case of the beryllium lens, the angular errors

should be smaller than 2 mrad.

The sensitivity of the performance of the lens to the rota-

tion, the bending and the changes in e is correlated with the

ratio of the effective aperture and the radius of curvature

(Aeff /p, Table 2). Additional simulations performed for

modified lenses Be (longer, N = 194, p = 1000 mm, Aeff /p =

0.70) and Ni (similar length but N = 56 and p = 20 mm, Aeff /p =

4.53) seem to confirm this statement; we obtained the smallest

aberration for the Be lens and the highest aberration for the

Ni lens. Qualitatively this is in accordance with the aberration

terms in equation (3). When we increase the p factor the

aberration terms in the optical path decrease.

The above argument might suggest that the lenses with

larger radii are better because they are less sensitive to the

rotational and the shape errors. However, one should keep in

mind that the larger p requires a higher N number of the

CRL’s elements for a given focal length. In a real CRL the

thickness d between parabola vertices is of the order of tens of

micrometres, and with a large number of the elements the

transmission is substantially reduced. This is especially the

case for CRLs operating at a high photon energy. For example,

the Ni lens operating at 175 keV has 274 double concave

lenses. For d = 10 mm it gives 54 counts of the integral intensity

in comparison with 90 for d = 0 (for the incident beam of

intensity 1 photon mm�1). The increase of p by a factor of two

will result in doubling the number of lenses and the reduction

of the integral intensity to 33 counts. On the contrary, the

reduction of p by a factor of two will reduce the number of

lenses by two and increase the integral intensity to 69 counts.

Therefore, for focusing of high-energy X-rays, lenses with a

smaller radius of curvature are desirable. Also, the reduction

of p can substantially decrease the cost of the CRL if fabri-

cation of a single element is expensive.

From a practical point of view the shift of the beam is not as

important as the image broadening. Usually positioning of the

beam is performed using scans of the vertical position of the

lens, and the small shift can be easily cancelled. Simulated

shifts of the beam owing to bending are small. For �b =

10 mrad the shift is several micrometres. The simulations show

that for a wide range of angles the shift of the centre of the

beam C is linear in �b.

The insensitivity of the focusing quality of the compound

parabolic lens to transversal shifts of its elements is confirmed

in our simulations. For both systematic and small random

shifts we observed a single peak with constant width W.

However, satellites appear for error distributions where only a

few lenses are vertically displaced far enough from the optical

axis that their flat parts come close to the region where the

beam is still transmitted. An example of such a distribution is

a normal one with the size of the standard deviation �a that

fulfills the above condition. This leads to the equation for the

threshold of the standard deviation for which the satellites can

appear,

�a ¼
1

2

H

2
� Aeff

� �
: ð4Þ

The threshold level given by the above equation agrees with

the threshold observed in simulations.

To obtain a quantitative description of the period of the

satellites we consider a single parabola shifted up by a distance

s = (H/2) � Aeff. In this case the transmitted part of the beam

reaches the flat part of the lens. The part of the beam passing

through the flat part of the lens is less focused and crosses the

X axis at �x = x/2N further than the main image. Because this

happens for the rays propagating at distance Aeff below the

optical axis, this part of the beam crosses the screen at �y1 =

Aeff�x/x below the main image. The shift s of the lens causes a

small upward shift of the main image that is equal approxi-

mately to �y2 = s/2N. The distance �y between the two parts

of the beam will be the sum of �y1 and �y2 so we obtain the

approximate expression

�y ¼
Aeff

2N
þ
ðH=2Þ � Aeff

2N
¼

H

4N
: ð5Þ

It is evident from (5) that the period of satellites is propor-

tional to the physical aperture, and is inversely proportional to

the number of lenses. Equation (5), derived under the

assumption that the source is at infinity, describes the

observed period of satellites with an accuracy of 10%.

Owing to the large number of elements in the Ni CRL the

space between satellites is small. When such a lens is used to

image a large source, the satellites will produce a smeared

background around the main peak. This can be seen in Fig. 8

where the simulated beam profile has been convoluted with a

Gaussian profile of FWHM width equal to 0.5 mm. It is note-

research papers

622 Andrzej Andrejczuk et al. � Planar parabolic compound refractive lens J. Synchrotron Rad. (2010). 17, 616–623



worthy that for lenses such as the beryllium lens, discussed in

this paper, the transmission is non-zero for the entire physical

aperture. Therefore, the satellites appear even for a very small

amplitude of fluctuations. One can avoid the appearance of

the satellites by using an additional diaphragm with a suffi-

ciently small aperture in the front of the CRL.

A broad background can appear owing to Rayleigh and

Compton scattering in the lens material. However, its level is

low. Let us consider an example where the sample’s size is of

the order of 3 mm, and is placed on a substrate of size 1 mm. In

this case the scattering in the CRL material will give an

integral background �10�4 smaller than the integral signal

from the sample in a Compton scattering experiment.

It should be stressed that the results presented here are

valid for planar lenses only. The rotational errors, which

strongly influence the focus quality, can be less important in

two-dimensional focusing when the random fluctuation of the

paraboloid axes are distributed in space, and not in the plane,

as in our calculations.

5. Summary

The ray-tracing program for simulations of the performance of

planar compound refractive X-ray lenses has been described.

We have investigated the influence of misalignment of

symmetry axes of surfaces of CRL elements on the focusing

performance. Two types of misalignment errors were consid-

ered: rotation errors when two collinear axes of conical

surfaces of a biconcave lens were rotated with respect to the

CRL axis, and bending errors when two axes were bent with

respect to each other. Calculations made for three different

CRLs showed that these errors can be important for lenses

with a high ratio of effective aperture to radius of curvature at

the vertexes. In particular, systematic bending errors can cause

aberrations which make the beam broader, asymmetric and

shifted. However, the influence of the bending errors can be

reduced to the rotation errors, which give smaller aberrations,

by reversing every second biconcave lens. The analysis also

showed that the deviation from parabolic shape has to be

smaller than a fraction of a micrometre at the radius of the

effective aperture if one wants to achieve focusing of better

than 1 mm on a distance of a few metres. The simulation

confirmed that a small transversal displacement of the indi-

vidual lenses has no influence on the quality of focusing.

However, it was found that, for a large amplitude of the

random fluctuations, satellites with constant period can appear

around the main focus.
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M., Tümmler, J., Simionovici, A. S., Drakopoulos, M., Snigirev,
A. A. & Snigireva, I. (2001). Nucl. Instrum. Methods. Phys. Res. A,
467–468, 944–950.

Lengeler, B., Schroer, C. G., Kuhlmann, M., Benner, B., Guenzler,
T. F., Kurapova, O., Zontone, F., Snigirev, A. A. & Snigireva, I.
(2005). J. Phys. D, 38, A218–A222.
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