addenda and errata

Radiation

ISSN 0909-0495

Two-dimensional approach to fluorescence yield XANES measurement using a silicon drift detector. Erratum

Y. Tamenori, ${ }^{\text {a }}{ }^{*}$ M. Morita ${ }^{b}$ and T. Nakamura ${ }^{\text {a }}$
${ }^{\text {a }}$ Japan Synchrotron Radiation Research Institute/SPring-8, 1-1-1 Kouto, Sayo 679-5198, Japan, and ${ }^{\mathbf{b}}$ Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan. E-mail: tamenori@spring8.or.jp

An error in the paper by Tamenori et al. [(2011), J. Synchrotron Rad. 18, 747-752] is corrected.

In the second paragraph of $\S 3.2$ of Tamenori et al. (2011), we had provided incorrect fluorescence decay probability values for $\mathrm{Mn} L_{23^{-}}$ shell ionization (0.0063) and O K-shell ionization (0.05). The correct fluorescence decay probability value of $\mathrm{Mn} L_{23}$-shell ionization is 0.005 and that of O K-shell ionization is 0.0083 (Krause, 1979).

Consequently, we had overestimated the difference between the fluorescence decay probabilities of $\mathrm{Mn} L_{23}$-shell and $\mathrm{O} K$-shell ionization.

Based on the correct fluorescence decay probability values, the Mn L_{23}-shell ionization value is about 60% of the $\mathrm{O} K$-shell ionization value. This ratio supports a qualitative interpretation of the dip structure that appeared in the NEXAFS spectra of a MnO crystal [Fig. 3 of Tamenoriet al. (2011)]. Furthermore, the model proposed in the original paper was also corroborated by two-dimensional fluorescence measurement results, which have been presented in the last paragraph of $\S 3.2$. Therefore, the overall conclusions of the original paper remain unchanged.

We thank Professor Toshiaki Ohta of Ritsumeikan University for drawing our attention to this error.

References

Krause, M. O. (1979). J. Phys. Chem. Ref. Data, 8, 307-327.
Tamenori, Y., Morita, M. \& Nakamura, T. (2011). J. Synchrotron Rad. 18, 747752.

