
research papers

J. Synchrotron Rad. (2011). 18, 823–834 doi:10.1107/S0909049511037149 823

Journal of

Synchrotron
Radiation

ISSN 0909-0495

Received 12 May 2011

Accepted 13 September 2011

X-ray near-field speckle: implementation and
critical analysis

Xinhui Lu,a*‡2S. G. J. Mochrie,a,b S. Narayanan,c A. R. Sandyc and M. Sprungc}4

aDepartment of Physics, Yale University, New Haven, CT 06511, USA, bDepartment of Applied

Physics, Yale University, New Haven, CT 06511, USA, and cAdvanced Photon Source, Argonne

National Laboratory, Argonne, IL 60439, USA. E-mail: xlu@bnl.gov

The newly introduced coherence-based technique of X-ray near-field speckle

(XNFS) has been implemented at 8-ID-I at the Advanced Photon Source. In the

near-field regime of high-brilliance synchrotron X-rays scattered from a sample

of interest, it turns out that, when the scattered radiation and the main beam

both impinge upon an X-ray area detector, the measured intensity shows low-

contrast speckles, resulting from interference between the incident and scattered

beams. A micrometer-resolution XNFS detector with a high numerical aperture

microscope objective has been built and its capability for studying static

structures and dynamics at longer length scales than traditional far-field X-ray

scattering techniques is demonstrated. Specifically, the dynamics of dilute silica

and polystyrene colloidal samples are characterized. This study reveals certain

limitations of the XNFS technique, especially in the characterization of static

structures, which is discussed.

Keywords: X-ray; near field; speckle; spectroscopy; scattering.

1. Introduction

Although small-angle X-ray scattering (SAXS) and X-ray

photon correlation spectroscopy (XPCS) have succeeded in

exploring the structure and dynamics of many interesting

systems, the length scale of the observable systems is generally

limited to a range from several nanometers to 100 nm,

corresponding to a wavevector range of 10�3 Å�1 to 0.1 Å�1

(an angular range of 0.1� to 10�) (Dierker et al., 1995; Mochrie

et al., 1997; Pontoni et al., 2003; Falus et al., 2004; Narayanan et

al., 2006; Lu et al., 2008). Special difficulties are encountered

when exploring the lower limit of the angular range, since to

isolate the weak scattering from the strong direct beam it is

necessary to block the direct beam and extraneous scattering

from slits, etc., which sets a boundary for the smallest detected

angle. In order to probe longer length scales with X-rays, a

Bonse–Hart camera is typically used, which can access a

wavevector (q) range of 10�4 Å�1 to 0.1 Å�1 (Diat et al., 1995;

Ilavsky et al., 2002; Narayanan et al., 2001). A conventional

Bonse–Hart camera is one-dimensional collimated which is

not suitable for anisotropic samples. At a cost of reduced

scattering intensity, there are several papers describing a two-

dimensional-collimated Bonse–Hart camera (Bonse & Hart,

1966; Konishi et al., 1997; Ilavsky et al., 2009). They demand a

de-convolution procedure and are inefficient in comparison

with the area-detector-based method available for larger

wavevectors. The scanning procedure also makes it difficult

for time-resolved measurements. In addition, previous works

(Ehrburger-Dolle et al., 2001; Shinohara et al., 2007) show that

ultra-small angles could be achieved by using a very long

sample-to-detector distance or a very small beam stop. In this

case, additional interpolations with SAXS data are required

because of the limitation of the field of view. The recently

introduced coherence-based X-ray near-field speckle (XNFS)

technique potentially offers an improved means of studying

characteristically large length scale structures with X-rays

(Cerbino et al., 2008). In addition, XNFS is able to extend

X-ray measurements to wavevectors (length scales) at least an

order of magnitude smaller (larger) than may be achieved

using a Bonse–Hart camera.

The principle of XNFS is as follows. When coherent or

partially coherent radiation impinges on a disordered material

consisting of a number of scatterers at random locations, a

random set of phase shifts will be induced on the scattering

beam. As a consequence, a grainy pattern will be observed in

the scattered beam a certain distance away from the material.

This pattern is called a speckle pattern (Sutton et al., 1991). In

the near-field region, under conditions where the scattered

radiation and the transmitted beam simultaneously impinge

upon an X-ray area detector, high-quality speckles can also be

observed resulting from coherent interference between the

incident and scattered beams. This speckle is called X-ray

near-field speckle (XNFS) in analogy to the near-field speckle

(NFS) that was initially exploited using laser sources (Giglio et

al., 2000).
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If, instead of a laser, one uses a high-brilliance X-ray source,

it then becomes possible to study dense, optically turbid and/

or absorbing media, in a range of length scales where no other

X-ray or optical methods are applicable. To date there exists a

single manuscript describing the extension of NFS into the

X-ray regime, by Cerbino et al. (2008). They showed that the

spatial power spectrum of XNFS is in principle simply and

directly related to the sample’s structure factor [SðqÞ] in the

range of wavevectors from 10�5 Å�1 or less to 10�3 Å�1 or

larger. Equivalently, XNFS measures the density–density

correlation function [g1ðrÞ] from length scales of 6� 104 Å or

more to 1� 103 Å or less. In addition, the evolution of the

heterodyne speckle pattern in time determines the sample’s

intermediate scattering function [Sðq; tÞ] and its spatial

Fourier transform, g1ðr; tÞ. Here, we will demonstrate the

implementation of XNFS measurements at beamline 8-ID-I

at the Advanced Photon Source (APS) at Argonne National

Laboratory, and will explore and discuss the utility and

drawbacks of this method for studies of colloidal suspensions.

2. Basic theory

In this section we present a derivation of what we may expect

to measure in XNFS experiments. We envision a sample with

density �ðx; y; z; tÞ and a detector located in the plane z = z 0,

so that x 0 and y 0 specify a given detector pixel. Then, we may

write for the amplitude scattered by volume element dx dy dz

at ðx; y; zÞ to the detector pixel at ðx 0; y 0; z 0Þ at time t,

das ¼ ir0a0 exp ikz � ik
Rz
0

�ðx; y; sÞ ds� k
Rz
0

�ðx; y; sÞ ds

� �
� �ðx; y; z; tÞ dx dy dz expðikRÞ=R;

where r0 is the Thomson radius, a0 exp½ikz � ik
R z

0 �ðx; y; sÞ ds

� k
R z

0 �ðx; y; sÞ ds] is the amplitude of the incident wave at z,

and

R ¼ ðx 0 � xÞ
2
þ ð y 0 � yÞ

2
þ ðz 0 � zÞ

2
h i1=2

:

� and � are the real and imaginary parts of the X-ray refractive

index, respectively.

For a sufficiently uniform sample, for which the z-integrals

of � and � are independent of x and y, and ignoring the phase

part, we may write

das ¼ ir0a0 expðikzÞ�ðx; y; z; tÞ dx dy dz
expðikRÞ

R

� �
exp
�z

�

� �
;

ð1Þ

where � is the X-ray absorption length. Equation (1) repre-

sents a quite different regime than that used to interpret X-ray

imaging experiments. Such imaging experiments instead rely

on the x and y dependence of
R z

0 �ðx; y; sÞ ds and
R z

0 �ðx; y; sÞ ds

to create an image of the sample. Henceforth, we will neglect

explicit mention of absorption, but otherwise take equation

(1) as our expression for the scattered amplitude.

In the near-field regime, in which scattered X-rays interfere

with the incident beam within the coherence area of the

incident beam, we are necessarily concerned with values of

x 0 � x and y 0 � y that are of the order of 100 mm or less, and

values of z 0 � z that are of the order of several millimeters or

more, so that z 0 � z� x 0 � x and z 0 � z� y 0 � y. It follows

that

R ’ ðz 0 � zÞ þ
ðx 0 � xÞ

2
þ ð y 0 � yÞ

2

2ðz 0 � zÞ
; ð2Þ

and, therefore,

das ’ ir0a0�ðx; y; z; tÞ dx dy dz expðikz 0Þ

�

exp
n

ik ðx 0 � xÞ
2
þ ð y 0 � yÞ

2
� �

= 2ðz 0 � zÞ½ �

o
z 0 � z

: ð3Þ

To determine the total amplitude scattered to (x 0; y 0; z 0), it is

simply necessary to integrate over the volume (V) of the

sample, i.e.

as ¼ ir0a0

R
V

dx dy dz �ðx; y; z; tÞ expðikz 0Þ

�

exp
n

ik½ðx 0 � xÞ
2
þ ð y 0 � yÞ

2
�= 2ðz 0 � zÞ½ �

o
z 0 � z

: ð4Þ

Heterodyne near-field speckle involves interference between

the scattered beam and the incident beam of amplitude az 0.

Thus, the intensity at time t recorded at (x 0; y 0; z 0) is

Iðx 0; y 0; tÞ ¼ az0

�� ��2 þ a�z0as þ az0a
�
s þ as

�� ��2
’ az0

�� ��2 þ a�z0as þ az0a
�
s ; ð5Þ

where at the detector az0 = a0 expðikz0Þ and we have taken

as � az0 .

Therefore, the measured intensity is

Iðx 0; y 0; tÞ ¼ a0

�� ��2(1þ ir0

R
V

dx dy dz

� �ðx; y; z; tÞ
expfik½ðx 0 � xÞ

2
þ ð y 0 � yÞ

2
�=½2ðz 0 � zÞ�g

z 0 � z

�

���ðx; y; z; tÞ
expf�ik½ðx 0 � xÞ2 þ ðy 0 � yÞ2�=½2ðz 0 � zÞ�g

z 0 � z

�)

¼ ja0j
2

(
1� 2r0

R
V

dx dy dz

�

"
� 0ðx; y; z; tÞ

sinfk½ðx 0 � xÞ2 þ ð y 0 � yÞ2�=½2ðz 0 � zÞ�g

z 0 � z

þ � 00ðx; y; z; tÞ
cosfk½ðx 0 � xÞ

2
þ ðy 0 � yÞ

2
�=½2ðz 0 � zÞ�g

z 0 � z

#)
;ð6Þ

where � 0 and � 00 are the real and imaginary (absorptive) parts

of the electron density, respectively.

Equation (6) implicitly assumes perfect transverse coher-

ence. To incorporate the effect of a finite transverse coherence

length, it is necessary to introduce a mutual coherence func-

tion,
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�12 x 0 � x; y 0 � yð Þ ’

exp � ðx 0 � xÞ
2=ð2�2

xÞ þ ð y
0
� yÞ

2=ð2�2
yÞ

� �	 

; ð7Þ

where �x and �y are the transverse coherence lengths in the x-

and y-directions, respectively. Incorporating the effect of

partial coherence, equation (6) becomes

Iðx 0; y 0; tÞ ’

a0

�� ��2 1� 2r0

Z
V

dx dy dz exp �
ðx 0 � xÞ2

2�2
x

þ
ðy 0 � yÞ2

2�2
y

� �� �2
4

� � 0ðx; y; z; tÞ
sin k x 0 � xð Þ

2
þ y 0 � yð Þ

2
� �

2 z 0 � zð Þ
	 


z 0 � z

 

þ � 00ðx; y; z; tÞ
cos k x 0 � xð Þ

2
þ y 0 � yð Þ

2
� �

2 z 0 � zð Þ
	 


z 0 � z

!#
: ð8Þ

The first term of (8) is constant and the second term of (8) is

a convolution in terms of real-space variables. Therefore, in

Fourier space, the first term becomes a �-function at the origin,

while the second term becomes a product. Therefore, in terms

of the Fourier transform variables q and p (q 6¼ 0 and p 6¼ 0),

in the realistic case that the z-variations in the sample density

occur on length scales less than k=q2, which is typically

hundreds of micrometers or more, it may further be shown

that the Fourier-transformed intensity is given by

~IIðq; p; tÞ ’ja0j
22r0

 Z
�

dz exp

(
�ðz 0 � zÞ

2
=2

�
q2�2

x

ðz 0 � zÞ
2
þ k2�4

x

þ
p2�2

y

ðz 0 � zÞ
2
þ k2�4

y

" #)

�
�x�y

½ðz 0 � zÞ
2
þ k2�4

x�
1=4
½ðz 0 � zÞ

2
þ k2�4

y�
1=4

� � 0ðq; p; z; tÞ sinð�Þ þ � 00ðq; p; z; tÞ cosð�Þ½ �

!
; ð9Þ

where � is the thickness of the sample, �ðq; p; z; tÞ is mixed in

real and reciprocal space and the phase factor � is equal to

1

2
�

kq2ðz 0 � zÞ�4
x

ðz 0 � zÞ
2
þ k2�4

x

�
kp2ðz 0 � zÞ�4

y

ðz 0 � zÞ
2
þ k2�4

y

"

þ tan�1 ðz
0 � zÞ

k�2
x

þ tan�1 ðz
0 � zÞ

k�2
y

�
:

Note that the tan�1 terms in the phase factor describe an on-

axis phase jump of a focused beam (Gouy effect) (Gouy, 1890)

and underline the well known fact that field correlations

propagate as the radiation field does. So these terms account

for the change in the phase in the interference between the

scattered beam and transmitted beam.

Equation (9), which stands as a one-dimensional convolu-

tion, may be further simplified by the following argument: the

z-variations in �ðq; p; z; tÞ occur on length scales set by the

sample’s structure, namely of the order of tens of micrometers

or less. On the other hand, the z-variations in the remainder of

the integrand occur on a length scale given by k=q2, which is

typically many hundreds of micrometers or more. Therefore,

in the integrand it is permissible to replace each �ðq; p; z; tÞ by

its mean value, i.e. by its zero Fourier component divided by

the sample thickness, i.e. �ðq; p; z; tÞ ’ ~��ðq; p; 0; tÞ=�. This

factor, which is now independent of z, may be then taken

outside of the integral, yielding

~IIðq; p; tÞ ’ a0

�� ��22r0

 Z
�

dz exp

(
�ðz 0 � zÞ2

2

�
q2�2

x

ðz 0 � zÞ
2
þ k2�4

x

þ
p2�2

y

ðz 0 � zÞ
2
þ k2�4

y

" #)

�
�x�y

½ðz 0 � zÞ
2
þ k2�4

x�
1=4
½ðz 0 � zÞ

2
þ k2�4

y�
1=4

� � 0ðq; p; 0; tÞ sinð�Þ þ � 00ðq; p; 0; tÞ cosð�Þ½ �

!
: ð10Þ

Changing variable s 
 z 0 � z, equation (10) becomes

~IIðq; p; tÞ ’ ja0j
2
ð2r0=kÞ

(
� ~�� 0ðq; p; 0; tÞ��1

�

Zz 0��

z 0

ds exp �
s2

2

q2�2
x

k2�4
x þ s2

þ
p2�2

y

k2�4
y þ s2

� �� �

�
�x�y

ðs2 þ k2�4
xÞ

1=4
ðs2 þ k2�4

yÞ
1=4

� sin
1

2
�

kq2s�4
x

s2 þ k2�4
x

�
kp2s�4

y

s2 þ k2�4
y

þ tan�1 s

k�2
x

þ tan�1 s

k�2
y

� �� �

� ~�� 00ðq; p; 0; tÞ��1

Zz 0��

z 0

ds exp �
s2

2

q2�2
x

k2�4
x þ s2

þ
p2�2

y

k2�4
y þ s2

� �� �

�
�x�y

ðs2 þ k2�4
xÞ

1=4
ðs2 þ k2�4

yÞ
1=4

� cos
1

2
�

kq2s�4
x

s2 þ k2�4
x

�
kp2s�4

y

s2 þ k2�4
y

þ tan�1 s

k�2
x

þ tan�1 s

k�2
y

� �� �)
:

ð11Þ

The sample thickness � is about the diameter of the capillary

equal to 0.7 mm, which is much smaller than the sample-to-

detector distance s ranging from 53 mm to 203 mm. Thus, we

assume that the integrand varies negligibly within the range of

z of the sample. As a result, equation (11) can be further

simplified as
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~IIðq; p; tÞ ’ ja0j
2 2r0

k

 
~�� 0ðq; p; 0; tÞ

� exp �
s2

2

q2�2
x

k2�4
x þ s2

þ
p2�2

y

k2�4
y þ s2

� �� �

�
�x�y

ðs2 þ k2�4
xÞ

1=4
ðs2 þ k2�4

yÞ
1=4

� sin
1

2
�

kq2s�4
x

s2 þ k2�4
x

�
kp2s�4

y

s2 þ k2�4
y

þ tan�1 s

k�2
x

þ tan�1 s

k�2
y

� �� �

þ ~�� 00ðq; p; 0; tÞ exp �
s2

2

q2�2
x

k2�4
x þ s2

þ
p2�2

y

k2�4
y þ s2

� �� �

�
�x�y

ðs2 þ k2�4
xÞ

1=4
ðs2 þ k2�4

yÞ
1=4

cos
1

2
�

kq2s�4
x

s2 þ k2�4
x

�
kp2s�4

y

s2 þ k2�4
y

þ tan�1 s

k�2
x

þ tan�1 s

k�2
y

� �� �!
:

ð12Þ

Here the term expf�ðs2=2Þ½q2�2
x=ðk

2�4
x + s2Þ + p2�2

y=ðk
2�4

y + s2Þ�g

describes the effect of the partial coherence of the source

beam on the speckle intensity. It is a product of two Gaussians

with variances �qx;y
= ½ðk2�4 þ s2Þ=s2�2

x;y�
1=2. The full width at

half-maximum (FWHM) of the Gaussian distribution is

wqx;y
¼ 2ð2 ln 2Þ1=2�qx;y

. Fig. 1 plots the FWHM of coherence of

the source beam versus (a) sample-to-detector distance s and

(b) coherence length �. From Fig. 1(a) we observe that wq

decreases as s increases until it reaches a constant value at a

certain distance,

s0 ¼ k�2; ð13Þ

which is the usual near-field condition, called the Fresnel

condition. However, for XNFS that requires that the way

scattered radiation falls onto the sensor duplicates the actual

angular distribution of the scattered intensity, a much stronger

condition should be satisfied (Giglio et al., 2000),

s 00 ¼ k�a; ð14Þ

where a is the size of the scattering particle. With this condi-

tion the source beam fills the whole field of view and the

speckle size is related to the actual size of the probing mate-

rial. In Fig. 1(b), wq is plotted versus coherence length for

different values of s. For the estimated coherence lengths at

8ID indicated via the dashed lines in (b), in principle, one

expects to observe an s-dependent change in the two-dimen-

sional speckle intensity. However, in reality, owing to the

limited spatial resolution, which in turn limits the q range and,

more critically, the sensor response (Alaimo et al., 2009), we

have not been able to observe this s-dependent variation, as

we discuss in more detail below. When s2 � k2�4
x and

s2 � k2�4
y as we expect at 8-ID, then equation (12) may be

simplified even further,

~IIðq; p; tÞ ’ ja0j
2 2r0

k
exp �

s2

2

q2

k2�2
x

þ
p2

k2�2
y

� �� �

�

 
~�� 0ðq; p; 0; tÞ sin

1

2
�
ðq2 þ p2Þs

k
þ

s

k

1

�2
x

þ
1

�2
y

� �� �� �

þ ~�� 00ðq; p; 0; tÞ cos
1

2
�
ðq2 þ p2Þs

k
þ

s

k

1

�2
x

þ
1

�2
y

� �� �� �!
; ð15Þ

where the term exp½�ðs2=2Þðq2=k2�2
x þ p2=k2�2

yÞ� is introduced

as the spatial coherence transfer function by Cerbino et al.

(2008).

Introducing ’ = tan�1ð ~�� 0= ~�� 00Þ, which is always small, except

at X-ray energies near an absorption edge, and ~�� =

½ð ~�� 0Þ2 þ ð ~�� 00Þ2�1=2, we may re-write (15) as

~IIðq; p; tÞ ’ I0ð2r0=kÞ ~��ðq; p; 0; tÞ exp
�s2

2

q2

k2�2
x

þ
p2

k2�2
y

� �� �

� sin
1

2
�

q2s

k
�

p2s

k
þ

s

k�2
x

þ
s

k�2
y

þ ’

� �� �
¼ I0ð2r0=kÞ ~��ðq; p; 0; tÞTðp; qÞ; ð16Þ
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Figure 1
The FWHM wq of the Gaussian distribution for the effect of partial
coherence of the source beam, plotted versus (a) sample-to-detector
distance for different coherence length and (b) coherence length for
different sample-to-detector distances. In (a) dashed lines denote the
boundaries separating far-field and near-field for 8 mm and 163 mm from
left to right. In (b) the intersections of dashed lines and colored lines
denote the differences of �q at different s for � = 8 mm and 163 mm.



where p and q are the wavevectors obtained in the x- and y-

directions, respectively, by numerically Fourier transforming

the CCD image, I0 = ja0j
2, � is the sample thickness, ~�� is the

electron density in Fourier space, and where the latter equality

defines the transfer function Tðq; pÞ. It is worth emphasizing

that the transfer function TðQÞ with Q = ðq; pÞ is written as

TðQÞ ¼ exp
�s2

2

q2

k2�2
x

þ
p2

k2�2
y

� �� �

� sin
1

2
�

Q2s

k
þ

s

k�2
x

þ
s

k�2
y

þ ’

� �� �
: ð17Þ

Equation (16) immediately allows us to calculate the static

structure factor SðQÞ in terms of measured quantities. Speci-

fically,

SðQ; 0Þ ¼ �ðq; p; 0; tÞ
�� ��2D E

¼

IðQ; tÞ
�� ��2D E

ð4r2
0I2

0 jTðQÞj
2=k2Þ

: ð18Þ

Similarly, it is straightforward to show that, in the context of

XNFS, the normalized IFS is

g1ðQ; �Þ
¼ �ðq; p; 0; tÞ��ðq; p; 0; t þ �Þ
� �

�ðq; p; 0; tÞ
�� ��2D E

¼
IðQ; tÞI�ðQ; t þ �Þ
� �

IðQ; tÞ
�� ��2D E : ð19Þ

According to (19), g1 is independent of the transfer function

TðQÞ, and in turn does not depend on the sample-to-detector

distance s.

In summary, the intensity measured in the near-field speckle

experiments is proportional to the density of the sample rather

than the modulus squared of the density as in conventional

far-field speckle experiments like XPCS and SAXS. Thus, the

time autocorrelation of IðQÞ gives directly the intermediate

scattering function g1 [equation (19)]. When the delay time � is

chosen to be zero, we obtained a quantity proportional to the

static structure factor SðQÞ [equation (18)] times the NFS

transfer function jTðQÞj2.

3. Detector design

High spatial resolution and high detection efficiency are key

goals for imaging the X-ray speckles in XNFS experiments.

In XNFS experiments, in order to resolve micrometer-sized

particles, it is necessary to employ detectors capable of

resolving on the micrometer scale. A typical X-ray imaging

detector consists of a crystal X-ray scintillator, a microscope

objective and a fast high-resolution large-dynamic-range

CCD-based camera. The scintillator converts X-rays into

visible light; the objective collects the visible light and

magnifies the visible-light image; and finally the CCD camera

records the image. Our aim was to design a detector with the

best combination of scintillator and objective to achieve the

optimal combination of spatial resolution and detection effi-

ciency for XNFS experiments.

A key characteristic of an objective is its numerical aperture

(NA). The NA of an objective defines the largest angle of light

acceptance as well as the light-collecting power. The detection

efficiency scales as (NA)2. Thus, a large NA objective is

necessary for high detection efficiency. It is common to use

immersion oil of high refractive index (n = 1.515) between the

front lens of the objective and the scintillator to achieve a high

NA. We employed a Nikon Plan Fluor 40� oil immersion

microscope objective with NA = 1.3, a working distance of

0.2 mm and a field of view of diameter 0.67 mm. This objective

uses an infinity-focused optical system with a reference focal

length of 200 mm. In our case, with the implementation of a

tube lens with adjustable focal length from 25 mm to 150 mm,

the 40� objective gives a real magnification of 5–30 times.

Generally, taking into account both the effects of diffraction

and depth of focus, the spatial resolution [R] as a function of

NA is given by (Martin & Koch, 2006)

R ¼ ð p=NAÞ2 þ ðq�z NAÞ2
� �1=2

; ð20Þ

where p = 0.18 mm and q = 0.075 mm are constants obtained by

numerical simulations (Martin & Koch, 2006) and �z is the

X-ray absorption length of the scintillator. Based on (20), one

can plot R versus NA for different �z, as shown in Fig. 2. It is

clear from Fig. 2 that, in order to achieve a spatial resolution of

a micrometer or less with high detection efficiency (NA� 1.0),

we have to choose a scintillator with an X-ray absorption

length of 10 mm or less.

Besides the X-ray absorption length, several additional

characteristics of the crystal scintillator are critical for X-ray

imaging, including high X-ray stopping power; high light yield;

the emission wavelength being compatible with CCD readout

(400 nm–700 nm); a similar refractive index to the immersion

oil (n = 1.515); and a small thickness to minimize spherical

aberration. At a minimum, the scintillator thickness should be

smaller than the working distance of the objective (0.2 mm),
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Figure 2
Spatial resolution versus numerical aperture NA of the objective for
different X-ray absorption lengths of the scintillator, adapted from
Martin & Koch (2006).



so that the objective can focus to the upstream side of the

scintillator.

As shown in Table 1, one potential candidate is YAG:Ce

(Y3Al5O12:Ce), which has been widely used in X-ray imaging

detectors. However, its X-ray absorption length at 7.44 keV is

about 25 mm, which is not suitable for a submicrometer reso-

lution detector with a NA = 1.3 objective (Fig. 2). Another

candidate is CdWO4, whose X-ray absorption length at

7.44 keV is only 6.5 mm. However, it is very difficult to obtain

thin crystals of CdWO4. It easily breaks before being thinned

to the desired thickness (<0.2 mm) owing to its (010) cleavage

plane. In addition, the CdWO4 refractive index (n = 2.2) is

much different from that of immersion oil (n = 1.515), which

will induce a relatively large spherical abberation. In our set-

up, we use LYSO (Lu1.8Y0.2SiO5) which appears to be the most

appropriate candidate overall. Its X-ray absorption length at

7.44 keV is 9.5 mm, slightly larger than the X-ray absorption

length of CdWO4 but still good enough to produce high spatial

resolution. Its light yield is 32 photons per keV, much higher

than both CdWO4 and YAG:Ce. Its refractive index (n = 1.81)

is not too far from that of immersion oil inducing less spherical

abberation than CdWO4. In addition, we found a manu-

facturer providing two-sided polished LYSOs with a thickness

of 0.15 mm, just appropriate for our objective, although even

thinner would lead to reduced spherical aberrations (Koch et

al., 1998; Born & Wolf, 1999).

4. Experimental set-up

XNFS measurements were carried out at beamline 8-ID-I of

the APS at Argonne National Laboratory, using X-rays of

energy 7.44 keV and half the source beam size available at the

8-ID-I hutch, about 0.5 mm� 0.5 mm. Fig. 3 shows a sketch of

the optical set-up located in the 8-ID-I hutch. From right to

left we have the beam source, the sample stage, the scintillator,

the microscope objective and the CCD

camera. In XNFS experiments, no spatial

and spectral filtering of the direct beam are

required (Cerbino et al., 2008). We inherit

the exiting set-up for XPCS which gives an

energy resolution of �E=E’ 3� 10�4 and

remove all the slits letting the full beam

impinge onto the sample, and record the

interference pattern of the transmitted and

scattered beams by means of our detector placed at distances

from the sample ranging from z = 53 mm to 203 mm.

As described before, we use two-sided polished LYSO

(Lu1.8Y0.2SiO5) with a thickness of 0.15 mm to convert X-rays

into visible light and a Nikon Plan Fluor 40� oil immersion

microscope objective with a numerical aperture of NA = 1.3 to

magnify the image. Both of them are mounted on a piezo-

electric stage which has a mechanical manual adjustable

coarse travel range of 4 mm and a piezo-electric travel range

of 20 mm with a resolution of 20 nm. As a result, by carefully

tuning the distance between the objective and the scintillator,

we are able to focus the image which is in turn magnified 5 to

30 times by a tube lens with adjustable focal length and then

recorded by a ‘CoolSNAP’ CCD camera made by Photo-

metrics. The camera features 1392 � 1040 pixels of size

6.45 mm � 6.45 mm and a maximum frame rate of 56 Hz. All

the images so-obtained are subsequently cropped to 1024 �

1024 pixels for convenience of two-dimensional Fourier

transformations in the data analysis.

There are several contributions to the detection resolution.

(i) The resolution of the scintillator, for X-rays incident

onto the scintillator at a single point. According to Koch et al.

(1998) and Martin & Koch (2006), this is typically 0.1 mm for

7–8 keV X-rays, smaller than optical limits on the resolution.

(ii) The resolution determined by the diffraction limit and

the defect of focus of the objective and the scintillator via

equation (3). With an objective with NA = 1.3 and LYSO with

an X-ray absorption length of 9.5 mm, we obtain a spatial

resolution of 0.98 mm.

(iii) The reduction in resolution caused by the spherical

aberration due to the use of a scintillator of mismatched

refractive index, which is proportional to the thickness of the

scintillator and the cube of NA (Koch et al., 1998; Born &

Wolf, 1999). Since our objective is corrected for spherical

aberration and the additional spherical aberration induced by

replacing the glass coverslip by the scintillator can be

compensated for by adjusting the oil thickness, this factor is

not critical to the spatial resolution.

(iv) The (demagnified) size of the CCD pixel, if too large,

could limit the resolution. For a magnification of 30, the

CoolSNAP can resolve a length scale as small as 6.45/30 =

0.215 mm which does not limit the resolution. As a result, the

spatial resolution of the detector should be largely determined

by factor (ii), which is about 1 mm.

Hence, we are able to estimate the maximum q range. With

rmin = 0.98 mm, in reciprocal space, qmax = 	=R’ 4� 10�4 Å�1.

On the other hand, the lower limit of the wavevector qmin

should be determined by the largest accessible length scale. In
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Figure 3
Sketch of the optical set-up for XNFS experiments. The key components
from right to left are: beam source, sample stage, scintillator, microscope
objective and CCD camera.

Table 1
Characteristics of the scintillators.

Scintillator

X-ray
absorption
length (mm)

Light yield
per keV

Refractive
index

Density
(g cm�3)

Wavelength
of maximum
emission (nm)

LYSO (Lu1.8Y0.2SiO5:Ce) 9.5 32 1.81 7.1 420
YAG:Ce (Y3Al5O12:Ce) 25 8 1.82 4.55 550
CdWO4 6.5 12 to 15 2.2 7.9 475



principle, the largest length scale is the size of the measured

scattering image equal to 1024� 0:215 mm = 0.22 mm, so qmin =

2	=0:22 mm ’ 3� 10�6 Å�1. However, practically our data

show an identical low q profile that is independent of which

sample is being studied and of the sample-to-detector

distance. This is likely to be due to the beam structure on long

length scales. So, the realistic useful qmin is of the order of

10�5 Å�1. Nevertheless, the q-range achieved is at least a

decade below the range accessible to the conventional XPCS

experiments.

5. Silica 0.45 mm

The first sample we measured at 8-ID-I, as an initial test of our

XNFS set-up, was a colloidal suspension of silica particles of

diameter 0.45 mm and a volume fraction (
) around 0.05 in

water. The sample is injected into a 0.7 mm-diameter boron

glass capillary for X-ray measurements with an energy of

7.44 keV and a flux density of 108 s�1. The static structure

factor peak of this sample is expected to be located around

10�3 Å�1, which means that the sample has a uniform scat-

tering profile in the q range accessible in our XNFS set-up [i.e.

SðqÞ ’ a constant]. In other words, the intensity profile IðqÞ we

measured from this silica suspension should simply result from

the transfer function TðqÞ [equation (16)]. Thus, it should be

an ideal sample to examine the sample-to-detector distance (s)

dependence of TðqÞ.

Illustrated in Fig. 4(a) is a typical raw image of the silica

suspension measured at z = 53 mm. The image contains 1024

� 1024 pixels with a pixel size of dpix = 6.45 mm. The magni-

fication of the detector is set to 30. Thus this image corre-

sponds to a region of size 0.22 mm � 0.22 mm in the sample.

The speckle pattern appears quite obscure and weak owing to

the large-scale static background. After averaging over 1000

frames, the speckle pattern is washed away leaving the static

beam profile fluctuation unchanged, as shown in Fig. 4(b). In

order to remove the large-scale static fluctuations, we perform

a normalization of each raw image by dividing each one with

an average image, averaged over 1000 frames, as shown in

Fig. 4(b). Fig. 4(c) presents one example of the resultant

image, which reveals a clear uniform speckle pattern [Iðx; yÞ].

Next, a two-dimensional discrete Fourier transform is

performed via

Iðq; pÞ ¼
1

N

XN�1

x¼0

XN�1

y¼0

Iðx; yÞ exp½�iðqxþ pyÞ=N�; ð21Þ

which produces the q-space image, as shown in Fig. 4(d). Here,

N = 1024. As a result, the corresponding q coordinates are

given by

q ¼
2	

N�r

x

�r
; p ¼

2	

N�r

y

�r
; ð22Þ

where �r is the size of one pixel, equal to dpix=30 = 0.215 mm.

We report in Fig. 5 several examples of the magnified

Fourier-transformed image corresponding to the region inside

the dashed lines in Fig. 4(d). Different panels are obtained

at different sample-to-detector distances: (a) 53 mm, (b)

103 mm, (c) 153 mm and (d) 203 mm. In each image, promi-

nant fringes can be seen. It is clear that the fringes become

finer when the detector is moved away from the sample. This

agrees with the theoretical prediction that the transfer func-
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Figure 4
(a) A raw single frame of a scattering image of SiO2 of diameter 0.45 mm
at a sample-to-detector distance of 53 mm. (b) The image averaged over
1000 frames. (c) Normalized image obtained by dividing the raw image by
the averaged image. Each image consists of 1024 � 1024 pixels. (d) Two-
dimensional Fourier transform of (c).

Figure 5
Enlarged Fourier-transformed scattering image of the SiO2 suspension
at different sample-to-detector distances (a) 53 mm, (b) 103 mm, (c)
153 mm and (d) 203 mm.



tion jTðqÞj2 is proportional to a sine term whose frequency

depends on the sample-to-detector distance [equation (17)].

Note that the rings of the Fourier transformation are not

azimuthally uniform. This effect may be related to asymmetry

in the coherence of the source beam. However, the envelope

of the asymmetry has no obvious s-dependence, in contrast to

what may be expected on the basis of equation (12). Thus, we

do not understand this asymmetry in detail. In fact, exam-

ination of these data (Fig. 5), in the light of equation (12),

suggests that the predicted effect of a finite coherence length is

not playing a role in determining these data, presumably

because the width of the Gaussian in equation (12) is greater

than our accessible q-range of qmax ’ 2� 10�3 Å�1, even for

the largest values of s studied. Alaimo et al. (2009) showed that

by far the largest contribution to the q decay of the speckle

power spectrum is due to the sensor transfer function. It is

highly possible that these asymmetry rings are due to the

sensor response. This is supported by the slightly elongated

speckles in the direction orthogonal to that of the power

spectra, as shown Fig. 4(c). Ideally, an accurate sensor transfer

function should be obtained when the sample is placed close

enough to the sensor. However, owing to the limitation of our

set-up, 53 mm is almost the closest distance we can reach.

To quantify jTðqÞj2, we plot in Fig. 6(a) the azimuthally

averaged intensity profile (symbols) versus wavevector (q) for

different values of s varying from 203 mm to 53 mm with a

decrement of 10 mm. The thick solid lines in Fig. 6(a) are the

fits of IðqÞ to the relation

IðQÞ ¼ A1 TðQÞ
�� ��2 þ A2 exp �ðvQÞ

�� �
þ B; ð23Þ

with Q = jQj = ðq2 þ p2Þ
1=2 and TðQÞ as a simplification of (17),

TðQÞ ¼ exp
�
� ðwQÞ

�
exp
�s2

2

q2

k2�2
x

þ
p2

k2�2
y

� �� �

� sin �
Q2s

2k
þ

s

k�2
þ ’

� �� �
; ð24Þ

which consists of a product of three terms. The first factor is

additional to equation (17) in order to take into account the

contributions from the sensor transfer function (Alaimo et al.,

2009); the second term derives from the partial coherence

of the incident beam. How the coherence length enters is

somewhat counterintuitive: it is proportional to the width of

the Gaussian term in reciprocal space. However, this term is

set to unity for fitting, since it plays no significant role in the

accessible q range, as we observed in the context of Fig. 5. The

third term is a sine function that describes the fringes

produced by the interference of the scattered beam and inci-

dent beam. In the X-ray domain, this term is called the phase-

contrast transfer function, and is related to the so-called

Talbot effect in imaging measurements (Cerbino et al., 2008).

Note that we assume �x = �y = � for the simplification of a

phase factor in the sine function.

Besides the contribution of TðQÞ and background noise, the

second term in (23), in the form of a stretched exponential

decay, describes another experimentally significant contribu-

tion to the intensity profile: namely multiple scattering. The

existence of multiple scattering is evident based on three

observations. Firstly, the sine-squared term goes to zero

periodically, which should make the intensity profile exhibit

minima with the same magnitude. However, the measured

minima decrease with q. The second piece of evidence

pointing to the importance of multiple scattering comes from

the dynamic data (see later), which display a q-dependent

decay rate and exponent that mirrors and anti-mirrors the

form of TðQÞ [Figs. 7(c) and 7(d)]. This indicates that we are

measuring faster dynamics owing to multiple scattering where

single scattering vanishes. Thirdly, very strongly scattering

samples, i.e. deliberately multiply-scattering samples, show no

minima at all.

Hence, we fit the intensity data in two steps. In the first step

we focus on multiple scattering. Note that the single-scattering

term vanishes at values of q satisfying ð1=2Þ½�ðQ2s=kÞ +

ð2s=k�2Þ þ ’� = n	, where n = 1, 2, 3, . . . . As a consequence,

we extract the intensity at the Q values corresponding to those

minima in IðQÞ and fit them with only the multiple-scattering

term plus the background. The characteristic length v is fixed

to 500 mm. The amplitude A2 and the exponent � were allowed

to vary. The resultant multiple-scattering term is plotted as the
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Figure 6
(a) Intensities of the SiO2 suspension at different sample-to-detector
distances. Symbols are the data. Thick solid lines are the fittings based on
equation (23). Thin solid lines are obtained by fitting the local minima
with a stretched exponent, describing the contribution of multiple
scattering. Data are displaced by a factor of ten for clarity. (b) The best-fit
exponent � versus sample-to-detector distances varying from 53 mm to
203 mm for the silica 0.45 mm suspension.



thin solid lines in Fig. 6(a). The best-fit exponents � are plotted

in Fig. 6(b) versus the sample-to-detector distance s. � fluc-

tuates around 0.345, giving an empirical stretched-exponential

form for the intensity of the multiple scattering. Next, the

remaining intensities after subtracting the filled multiple

scattering and background are fitted with the transfer function

[equation (24)]. We use the measured sample-to-detector

distance s and try to find one set of w, � and ’ that works for all

the values of s. The only varying parameter is the overall

amplitude. The set w = 1.8 mm, � = 163 mm and ’ = 0.026 yields

a good fit for all values of s studied, as shown by the thick solid

curves in Fig. 6(a). 2	w, the characteristic length scale of the

sensor transfer function, is about 11 mm, 17 pixels on the

detector (Cerbino et al., 2008; Alaimo et al., 2009). The small

value of ’ indicates that the X-ray absorption for this silica

sample is essentially small. In general, the fitting reproduces

the data with few fitting parameters, confirming the theoretical

relation between the sample-to-detector distance s and the

transfer function TðqÞ, and consequently confirming the

feasibility of our experimental set-up.

With the same principle of XPCS, the fluctuations of near-

field speckles should reflect the dynamics of the sample. As

shown in equation (19), the time autocorrelation of the

intensity gives rise to g1 instead of g2 in XNFS experiments.

Hence, we have presented in Fig. 7(a) the normalized inter-

mediate scattering function [g1ð�Þ] versus delay time (�) for �
between 0.4 s and 319 s corresponding to an exposure time of

0.2 s for different s at q = 8:180� 10�5 Å�1. The values of g1

collapse into one curve for different s,

which agrees with the theoretical

prediction that g1 has no s-dependence

owing to the cancelation of TðqÞ.

However, for a larger wavevector of q =

1:420� 10�4 Å�1, the g1 values do not

overlap for different s, as shown in

Fig. 7(b). To elucidate the reason for

this discrepancy and quantify our

observations, we have fitted g1

measured at different s and q to a

stretched exponential form,

g1 ¼ exp �ð�tÞ
�

½ �: ð25Þ

The best-fit relaxation rate (�) [equa-

tion (25)] versus wavevector q is illu-

strated in Fig. 7(c). The values of � at

successive s are displaced by a factor of

1.1 from the previous s value for clarity.

Generally, �ðqÞ at different s show a

q2 behavior, illustrated by the dashed

line in Fig. 7(c). However, peaks are

observed at the q positions coinciding

with the q positions of the dips in the

transfer function TðqÞ (Fig. 6a).

Away from these multiple-scattering

peaks, �ðqÞ increases as q2 versus q,

which is reasonable for a SiO2 suspen-

sion undergoing Brownian motion.

Quantitatively, for Brownian motion, we expect �ðqÞ = Dmq2.

As a result, we derive the value of the diffusion coefficient

Dm = �=q2 ’ 1:167� 10�12 m2 s�1. According to the first-

order hydrodynamic interactions, Dm = D0ð1þ 1:45
Þ
(Batchelor, 1976), where the Stokes–Einstein diffusion coef-

ficient D0 = kBT=ð6	�RÞ ’ 1:048� 10�12 m2 s�1 with kB the

Boltzmann constant, T the room temperate equal to 293 K, �
the dynamic viscosity equal to 1� 103 kg m�1 s�1, we obtain


 ’ 0.07, which is reasonable.

At the q positions of the peaks, where the single-scattering

amplitude goes to a minimum because of the zeros of the sine-

squared term in TðqÞ, we hypothesize that we are measuring

multiple scattering of the sample. This theory explains why we

obtain faster dynamics at those q positions (Berne & Pecora,

2000). Fig. 7(d) shows the corresponding best-fit exponent �,

which exhibits similar fluctuation patterns as TðqÞ and

supports our hypothesis. Underlying this hypothesis is the idea

that the rapid variations of TðqÞ versus q may be associated

with single scattering, whereas the intensity of multiple scat-

tering likely shows a relatively smooth q-dependence.

Accordingly, if, for a particular set of data, the scattering

minima owing to TðqÞ are indistinct (do not send the scattering

intensity to zero), then it follows that the XNFS data set in

question suffers from multiple scattering. Hence, to calculate

g1, we have to pick q smaller than the first dip of TðqÞ so that

the measured coherent scattering is reliable.

To further test this idea, we carried out measurements on a

sample that could be expected to show very strong scattering
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Figure 7
Normalized intermediate scattering functions of the SiO2 suspension versus delay time � measured
at different sample-to-detector distances with (a) q = 8:180� 10�5 Å and (b) q = 1:420� 10�4 Å�1.
(c) The best-fit decay rate � versus wavevector q. Points are the fitting results and the lines are
guides to the eye. Data are displaced by a factor of 1.1 for clarity. (d) The best-fit exponent � versus
wavevector q. Data are displaced by a factor of 1.3 for clarity.



and therefore strong multiple scattering, namely a 3 mm-thick

sample of Gillette Foamy shaving foam, which is know to

consist of a dense foam of micrometer-sized air bubbles in

aqueous liquid. Fig. 8(a) shows the scattering intensity from

such a sample as a function of q, obtained using the XNFS

prescription. However, in contrast to the more weakly scat-

tering silica spheres, discussed above, evidently in this case

there are not the oscillations in intensity that are expected for

XNFS, i.e. there is no evidence that the XNFS jTðqÞj2 is

displayed in these data. We infer that this is indeed the result

of multiple scattering and that the X-ray scattering from the

3 mm-thick foam is completely in the multiple-scattering

regime. This implies that jTðqÞj2 is a signature of single scat-

tering. We can also calculate g1 for the foam according to the

XNFS prescription. This is shown in Fig. 8(b). The dynamics

are rather slow, of the order of 0.1 s�1.

These results point to another difficulty with the XNFS

method (which is common to ultra-small-angle X-ray scat-

tering methods in general), namely that multiple scattering

must be carefully considered and if possible eliminated. In the

case of the foam, a sufficiently thin sample (much thinner than

3 mm) would have eventually reached the single-scattering

regime. Interestingly, in the case of XNFS, in contrast to more

traditional USAXS methods, the existence or not of multiple

scattering may be straightforwardly and immediately recog-

nized from the intensity profile, i.e. jTðqÞj2, as we discussed

previously.

6. Polystyrene 4 mm

In this section we present the XNFS data obtained from a

colloidal suspension of polystyrene particles of diameter 4 mm.

Similar to the preparation of the silica sample, this sample is

injected into the same boron glass capillary, thus resulting in a

sample thickness of 0.7 mm. This sample is not as stable as the

last sample, since particles with 4 mm undergo sedimentation.

The static structure-factor peak of the polystyrene suspension

of this size lies within the q-range accessible by our XNFS set-

up. Hence, we expect to observe more complicated intensity

profiles with the contributions from both structure of the

suspension and the transfer function. Illustrated in Fig. 9 are

the scattering intensities (symbols) plotted versus q obtained

by azimuthally averaging the Fourier-transformed scattering

images over 1000 frames for sample-to-detector distances s =

113 mm, 143 mm, 173 mm and 203 mm (from top to bottom).

The corresponding transfer functions [TðqÞ] obtained by

fitting data of a silica sample measured at the same s are

plotted as solid lines with the same colors for easy compar-

isons for the peak positions of Ttalb. The intensity data deviate

from the lines. Firstly, the peak positions of the data match

those of TðqÞ. There might be one extra peak located at q

around 10�4 Å�1 for all s, which comes from the static struc-

ture factor peak. In addition, the peaks of this sample are less

sharp than those of the silica sample. This indicates that the

power spectra are largely suffered from the sensor transfer

function.

Illustrated in Fig. 10(a) are the normalized intermediate

scattering functions (g1) at q = 8:18� 10�5 Å�1 for delay times

from 0:02 D0q2 to 20 D0q2 s and sample-to-detector distances s

from 203 mm to 113 mm with an interval of 10 mm. The g1 for

the polystyrene suspension do not totally overlap for different
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Figure 9
Intensities of the polystyrene 4 mm suspension at different sample-to-
detector distances. The discs of different colors are the data measured at
different sample-to-detector distance. The solid lines are theoretical plots
of the transfer function TðqÞ of the silica suspension for comparison. The
data are displaced by a factor of 30 for clarity.

Figure 8
(a) Intensities of 3 mm-thick Gillette shaving foam at a sample-to-
detector distance s = 103 mm. (b) The corresponding normalized
intermediate scattering functions (g1). The symbols are the data. The
lines are fittings based on a stretched exponential decay [equation (25)].



s at this q position, but decay slightly faster when the detector

moves closer to the sample stage. We reason that this is the

result of the sedimentation of the polystyrene particles, which

leads to a denser sample with faster dynamics.

Following the same procedure as for the silica sample, the

best-fit relaxation rates (�), obtained by fitting one of the 100

frames g1 with a single exponential form [equation (25)], are

plotted versus wavevector q for different s in Fig. 10(b). The

values of � at different s are displaced for clarity. Similarly,

peaks that correspond to dips of transfer function are

observed, confirming our conclusion about the measurement

of multiple scattering at the minima of the transfer function. In

this case the peaks are more visible than those observed in the

silica sample, indicating stronger multiple scattering in this

sample with larger polystyrene particles.

7. Future work and conclusion

In conclusion, we have presented the implementation of the

new coherent X-ray technique, X-ray near-field speckle, as

well as its applications and limitations. Clearly, XNFS is

capable of obtaining ultra-small-angle X-ray scattering and

X-ray photon correlation spectroscopy with its simple set-up

and direct relationship to the density correlation function. It

effectively extends to wavevectors an order of magnitude

smaller than the wavevector range covered by conventional

SAXS and XPCS, and enables us to explore the static and

dynamic structures of micrometer-sized samples. We believe

this technique will be valuable for optically dense and turbid

samples which induce strong multiple scattering optically.

Technically, XNFS is not difficult to realise. A speckle

pattern is produced simply by letting both scattered beam and

transmitted beam impinge onto the detector. It does not

require spatial filtering as it did in XPCS, which allows us to

use the whole source beam and in turn greatly enhance the

speckle contrast. As a consequence, it does not require

laborious alignments. All the efforts were devoted to the

design of the detector. A high numerical aperture objective

was employed to produce high spatial resolution and efficient

light collection. The measurements give convincing results,

which proves the feasibility of this set-up. Improvements could

be made on several aspects. One is to utilize a thinner scin-

tillator, which will give rise to reduced spherical aberration. A

faster CCD camera will improve the probing range of the

dynamics of this technique.

One key difficulty of this technique is due to the transfer

function TðqÞ. It entangles with SðqÞ. It is straightforward to

characterize the structure-factor peaks and dips located at

positions smaller than the q position of the first dip of TðqÞ.

However, this would make the reliable q range very small. If

XNFS is to realise its full potential, it will be necessary to

figure out an effective way to deconvolve the static structure

factor from the transfer function in the future. One possible

way is to use sample-to-detector distances as small as possible,

although with a cost in scattering contrast. Strong absorption

samples might not be affected by this factor owing to the phase

factor induced in the sine term of TðqÞ [equation (24)].

Another possible improvement might be made by measuring a

control sample with exactly the same material but uniform

SðqÞ in the accessible q window, then dividing the intensity

profile of the interested sample by that of the control sample.

Another important issue is multiple scattering. Evidence of

the existence of multiple scattering comes from the intensity

profile and sample-to-detector dependent decay rate. Making

the sample as thin as possible should solve this problem.
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