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An equation in the paper by Rowles [(2011), J. Synchrotron

Rad. 18, 938–941] is corrected.

In the paper by Rowles (2011), there is an error in equation (32):

the equation should read

p ¼ �
h

2 tan �
: ð32Þ
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Equations for the calculation of the dimensions of a gauge volume, also known

as the active volume or diffraction lozenge, in an energy-dispersive diffraction

experiment where the detector is collimated by two ideal slits have been

developed. Equations are given for equatorially divergent and parallel incident

X-ray beams, assuming negligible axial divergence.
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1. Introduction

Energy-dispersive diffraction has a range of applications in

measuring engineering stress and strain (Korsunsky et al., 2011),

in situ experimentation in difficult environments (Scarlett et al., 2009)

and determination of reaction kinetics (Russenbeek et al., 2011;

Provis & Van Deventer, 2007).

The experimental arrangement for such an experiment is quite

simple; it is often a parallel or divergent incident X-ray beam with an

energy-dispersive detector fixed at a set angle, 2�, to the incident

beam, with the diffracted beam collimated using a pair of slits

(Korsunsky et al., 2010) or two parallel plates (Barnes et al., 1998).

The effect of a parallel-plate collimator is simply to produce several

gauge volumes, effectively increasing the length of the diffraction

volume along the incident beam (Häusermann & Barnes, 1992).

In order to correctly plan an experiment, or carry out a full analysis

of the collected data, it is often important to know the exact

dimensions of the volume from which the diffraction information is

measured, i.e. the gauge volume. It is assumed that the X-ray beam is

uniform in the axial direction and that the full three-dimensional

representation of the gauge volume can be calculated by a simple

projection of the cross section.

2. Gauge volume

2.1. General

The size and location of the gauge volume cross section is as shown

in Fig. 1. The acceptance angle of an energy-dispersive detector, D, is

defined by a pair of ideal slits along the diffracted beam path. The

X-ray source is assumed to be an ideal line source with negligible

axial divergence. The slits are assumed to be centred on, and

perpendicular to, the diffracted beam path, which is at an angle ’
(’ � 2�) to the incident beam. The acceptance angle of the diffracted

beam slits is given by 2�, where

tan � ¼
aþ b

2c
; ð1Þ

where a and b are the widths of the primary and secondary slits, and

c is the distance between them.

The two angles � and � are given by

� ¼ ’� �; ð2Þ

� ¼ �� ’� �; ð3Þ

where ’ is the angle of the diffracted beam.

The distance, d, from the primary slit to the convergence of the

diffracted beams, is given by

d ¼
ac

aþ b
: ð4Þ

The lengths of the gauge volume along the centre of the incident

beam before and after the centre of the goniometer is given by

f ¼ ðeþ dÞ
sin �

sin �
; ð5Þ

g ¼ ðeþ dÞ
sin�

sin �
; ð6Þ

respectively, where e is the distance along the diffracted beam from

the primary slit to the centre of the goniometer.

The cross-sectional area of the gauge volume can be calculated via

Bretschneider’s formula (Zwillinger, 2003, p. 322),

Area ¼ ðs� 12Þðs� 23Þðs� 34Þðs� 41Þ � 12 23 34 41 cos2 ’
� �1=2

;

ð7Þ

where s is given by

s ¼
12þ 23þ 34þ 41

2
; ð8Þ

where the construct ‘yz’ denotes the length of the line segment from

point y to point z as numbered in Fig. 1. The lengths, 12, 23, 34 and 41

are defined in equations (11)–(14) and (25)–(28) for the divergent

and parallel incident-beam cases, respectively.

The total length of the gauge volume is the distance between the

projection of points 1 and 3 onto the centre of the incident beam, and

the length of the central region is the distance between the projection

of points 2 and 4 onto the centre of the incident beam. The central

region is defined as the central quadrilateral sandwiched between two

exterior triangles, the sum of which is the gauge volume. The size of

the central region is of importance when examining, for example, thin

flat plates oriented perpendicular to the incident beam, as the plate



must be situated inside the central region to ensure uniform inten-

sities across the thin dimension of the sample.

If the length of the central region, as given in equations (22) and

(34) below, is negative, then the vertical extent of the gauge volume is

defined by the diffracted beam optics, otherwise the vertical extent

of the gauge volume is defined by the incident beam, as is the case

in Fig. 1. The total and central length equations are not valid for

90� � � < ’ < 90� + �, as, in this range, the meaning of the points 1–4 is

altered. Finally, the total and central lengths, as defined here, are valid

up to a scattering angle of 90�, after which the equation for the total

length yields the central length, and vice versa. As a guide, the total

length is always greater than the central length.

2.2. Divergent incident beam

The divergent beam case is presented in Fig. 1(a). The apparent

source radius is given by R, the distance from the apparent source, S,

to the centre of the goniometer, O. The apparent incident beam

divergence is given by 2�.
For an ideal line source of finite height q at a distance Rinst from the

centre of the goniometer with a divergence controlled by a slit of

height t at a distance u from the line source, the apparent source

radius, R, and apparent incident beam divergence, 2�, are given by

R ¼
qu

t � q
þ Rinst; ð9Þ

tan � ¼
t � q

2u
: ð10Þ

The lengths of the four sides of the gauge volume are given by

12 ¼ ðR� f Þ sin �
1

sinð�� �Þ
þ

1

sinð�þ �Þ

� �
; ð11Þ

23 ¼ sin � eþ d�
R sin �

sinð’� �Þ

� �
1

sinð�� �Þ
þ

1

sinð� þ �Þ

� �
; ð12Þ

34 ¼ ðRþ gÞ sin �
1

sinð� þ �Þ
þ

1

sinð� � �Þ

� �
; ð13Þ

41 ¼ sin � eþ dþ
R sin �

sinð’þ �Þ

� �
1

sinð�þ �Þ
þ

1

sinð� � �Þ

� �
; ð14Þ

and the lengths of the diagonals are given by

13
2
¼ 12

2
þ 23

2
þ 2 12 23 cosð�� �Þ; ð15Þ

24
2
¼ 23

2
þ 34

2
þ 2 23 34 cosð� þ �Þ: ð16Þ

The lengths i, j, k and m refer to the distance from the source to the

projection of points 1, 2, 4 and 3, respectively, onto the centre line of

the incident beam. These lengths are given by

i ¼
ðR� f Þ sin� cos �

sinð�þ �Þ
; ð17Þ

j ¼
ðR� f Þ sin� cos �

sinð�� �Þ
; ð18Þ

k ¼
ðRþ gÞ sin � cos �

sinð� � �Þ
; ð19Þ

m ¼
ðRþ gÞ sin � cos �

sinð� þ �Þ
: ð20Þ

The total length of the gauge volume is given by the difference of (20)

and (17); the length of the central region of the gauge volume is given

by the difference of (19) and (18),

Lengthtotal ¼ m� i; ð21Þ

Lengthcentre ¼ k� j: ð22Þ

The beam heights at points 2 and 4 are given by
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Figure 1
Schematic diagram of the experimental layout of an energy-dispersive diffraction
experiment. The shaded regions denote the gauge volume; the region from which
diffraction information is measured. An energy-dispersive detector, D, is
collimated by the primary, a, and secondary, b, slits, which are perpendicular to
the beam diffracted at an angle ’. The two slits are a distance c apart, and the
primary slit is a distance e from the centre of the goniometer, O. The acceptance
angle of the slits is given by 2�. The distances f and g denote the upstream and
downstream lengths of the gauge volume at the centre of the incident beam from
the centre of the goniometer. The total length of the gauge volume is given by
the distance between the projection of points 1 and 3 onto the centre line of the
incident beam. The length of the central region of the gauge volume is given by
the distance between the projection of points 2 and 4 onto the centre line of the
incident beam. (a) Divergent beam. The apparent source, S, is a distance R from
the centre of the goniometer, and has a divergence of 2�. (b) Parallel beam. The
incident beam has a height of h.



h2 ¼ min �
23 sinð� þ �Þ

cos �
; 2j tan �

� �
; ð23Þ

h4 ¼ min
41 sinð�þ �Þ

cos �
; 2k tan �

� �
; ð24Þ

where min(x, y) denotes choosing the minimum value of x or y as the

beam height.

2.3. Parallel incident beam

The parallel beam case is shown in Fig. 1(b). The lengths of the four

sides of the gauge volume are given by

12 ¼ h= sin�; ð25Þ

23 ¼ sin� eþ d�
h

2 sin’

� �
1

sin�
þ

1

sin �

� �
; ð26Þ

34 ¼ h= sin �; ð27Þ

41 ¼ sin� eþ dþ
h

2 sin’

� �
1

sin�
þ

1

sin �

� �
; ð28Þ

where h is the height of the beam. The lengths of the diagonals are

given by

13
2
¼ 12

2
þ 23

2
þ 2 12 23 cos�; ð29Þ

24
2
¼ 23

2
þ 34

2
þ 2 23 34 cos �: ð30Þ

The distances 2n and 2p refer to the distance from the projection of

points 1 and 2, and 3 and 4, respectively, onto the centre line of the

incident beam. These lengths are given by

n ¼
h

2 tan�
; ð31Þ

p ¼
h

2 tan �
: ð32Þ

The total length, and the length of the central portion, of the gauge

volume are given by the combination of equations (5), (6), (31) and

(32),

Lengthtotal ¼ ð f þ nÞ þ ðgþ pÞ; ð33Þ

Lengthcentre ¼ ð f � nÞ þ ðg� pÞ: ð34Þ

The beam heights at points 2 and 4 are given by

h2 ¼ min �23 tan �; h
� 	

; ð35Þ

h4 ¼ min 41 tan�; h
� 	

; ð36Þ

where min(x, y) denotes choosing the minimum value of x or y as the

beam height.

3. Application

At a recent experiment at beamline I12-JEEP at the Diamond Light

Source, it was necessary to calculate the gauge volume dimensions

to enable the correct positioning of the sample. All the relevant

instrument dimensions are given in Table 1. The calculated para-

meters, along with the gauge volume lengths, are given in Table 2. As

the main interest in this experiment was the investigation of surface

layers, it was necessary to ensure that the sample was located in the

central region of the gauge volume. This made certain that there was

an equal intensity distribution across the thickness of the sample,

ensuring that the resultant data analysis would not be biased. The

calculation of the length of the central region of the gauge volume

gave an indication as to the tolerances in which our sample alignment

was effective.

4. Conclusion

The equations for the calculation of the dimensions and area of a

gauge volume in an energy-dispersive diffraction experiment where

the detector is collimated by two slits are given. Equations are given

for both equatorially divergent and parallel incident X-ray beams

with negligible axial divergence.

Example values are given for an experiment carried out at

beamline I12-JEEP at the Diamond Light Source. For synchrotron

sources the parallel beam case should be sufficient for most appli-

cations. Implementation of laboratory sources may require the use of

the divergent beam case.
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Table 1
Measured instrument parameters.

Measured parameters Dimension (mm or �)

a 0.15
b 0.20
c 1455
e 553
h 1
’ 5

Table 2
Calculated instrument parameters using the parallel incident beam model.

Calculated parameters Dimension (mm or �)

d 623
f 1.63
g 1.62
n 5.72
p 5.71
� 0.00689
� 4.99
� 174.99
Total length 14.7
Central length �8.18
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