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A spot-integration method is described which does not require prior indexing of

the reflections. It is based on statistical analysis of the values from each of the

pixels on successive frames, followed for each frame by morphological analysis

to identify clusters of high value pixels which form an appropriate mask

corresponding to a reflection peak. The method does not require prior

assumptions such as fitting of a profile or definition of an integration box. The

results are compared with those of the seed-skewness method which is based on

minimizing the skewness of the intensity distribution within a peak’s integration

box. Applications in Laue photocrystallography are presented.
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1. Introduction

Treatment of Laue diffraction data has frequently attracted

attention, in particular since the development of time-resolved

pump–probe diffraction techniques, in which the Laue method

has specific advantages (Ren et al., 1999; Anderson et al., 2004;

Kamiński et al., 2010). The renewed interest in the Laue

technique has resulted in the development of several

computer programs. Notable are the Daresbury Laue Soft-

ware Suite (Helliwell et al., 1989), LaueView and Precognition

(Ren, 2010; Šrajer et al., 2000), and LaueGui (Messerschmidt

& Tschentscher, 2008).

In the commonly used Laue data processing procedures the

reflection’s position on the detector is predicted and a box is

established that encloses the area where the diffraction signal

is expected. Subsequent integration of the identified spots is

performed either by two-dimensional profile fitting (Helliwell

et al., 1989; Šrajer et al., 2000; Moffat, 2001) or by selecting a

mask on the detector surface using statistical criteria as in the

seed-skewness method (Bolotovsky et al., 1995; Bolotovsky

& Coppens, 1997). Although the latter does not in principle

require information on the predicted spot position, the prac-

tical implementation of the method relies heavily on this

information (Messerschmidt & Tschentscher, 2008). The

above processing sequence cannot be accomplished without

a priori knowledge of crystal orientation with respect to a

diffractometer-based coordinate system; in other words,

without successful indexing of the Laue pattern, which may be

time-consuming.

In Laue crystallography the Ewald sphere is replaced by a

shell of varying thickness, often referred to as the Ewald

region. As a result the diffraction spot profile is affected not

only by the sample’s mosaic spread and incident beam diver-

gence but also by the X-ray bandwidth. Therefore reflection

3D profile reconstruction is not possible with existing software

and integration is typically accomplished on a frame-by-frame

basis, followed by appropriate corrections, scaling and wave-

length deconvolution procedures (Šrajer et al., 2000; Ren &

Moffat, 1995).

The RATIO method (Coppens et al., 2009), as used in

pump–probe photocrystallography, avoids the spectral

deconvolution step. As the interest is in the ratios of the

light-ON and light-OFF intensities, collected sequentially in

consecutive frames, wavelength-dependent effects such as the

spectral distribution of the beam and the absorption and

detector response effects are essentially eliminated. Small

shifts in spot positions may occur if the cell dimensions are

affected by the excitation, an effect that may be pronounced

when conversion percentages are appreciable. However, for

the low conversion percentages of �6% or less achieved in

many studies including our own (Benedict et al., 2011; Makal et

al., 2011; Collet et al., 2012), cell dimension changes are not

significant.

In the previous paper on the LaueUtil toolkit we proposed a

method for a rapid orientation matrix determination in Laue

crystallography (Kalinowski et al., 2011). Here we focus on the

task of efficient Laue data integration. The presented method

combines identification of the diffraction spots and their

integration into a single algorithm. The complete set of images

is treated as a single dataset with ‘frame by frame’ or ‘pixel by

pixel’ views used in tandem. The method explicitly uses a

statistical approach and requires temporal stability of the

source and some simple assumptions on the noise distribution

in the background. No prior information about the crystal
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orientation, sample cell parameters or their stability in the

course of experiments is required.

2. The method

2.1. Assumptions and outline

Our integration method does not imply uniformity of the

background across the surface of a diffraction spot. It requires

a series of diffraction images at subsequent values of the ’
scan angle. For application to data collected at X-ray free-

electron laser sources it would require at least modifications to

allow for scaling of subsequent frames.

The method consists of three steps. First, for each of the

pixels, intensity values are collected from all frames, leading

to one-dimensional arrays which are statistically analyzed to

estimate the background contributions for each of the indi-

vidual pixels. The idea is illustrated in Fig. 1. In the second step

the mask is defined for each of the frames from the pixel

background values previously estimated, and optimized.

Finally, the processed masks are analyzed to determine the

footprints of each of the reflections which are subsequently

integrated to obtain the corresponding intensities.

2.2. Pixel statistics

The measured values of a pixel on all frames can be

regarded as a sample of the pixel background intensity which

can include an unknown number of outliers corresponding to

the presence of spots. The estimate of the background on the

frames is then achieved by exclusion of the outliers in per-

pixel samples of values. The simplest approach is to assume

that a certain percentage (usually about 20–30%) of the

highest values along a pixel line (i.e. all values of a specified

pixel on the successive frames) represent spot contributions.

Fig. 2 shows an example of such a pixel-sample analysis. The

remaining values are used to estimate, for each pixel, the

parameters of its background distribution such as the mean,

the variance, the median or the interquartile distance, the

latter being defined as the difference between the 25th-

percentile and the 75th-percentile statistics of a pixel. Then,

from the knowledge of the pixel-by-pixel background char-

acteristics, we use a simple condition to identify which pixels

contribute to spots and thereby define a raw mask on each

frame. For the jth image, the condition applied to the ith pixel

is

Iði; jÞ � hIiibackground > c �ðIiÞbackground; ð1Þ

where I(i, j) is the ith pixel value in the jth image, hIiibackground

and �(Ii)background are, respectively, the mean value and the

standard deviation of the ith pixel background, and c is a

positive adjustable parameter with a default value of 3.0.

This simple approach, henceforth referred to as the

constant-fraction approach, though reasonably successful,

suffers from two drawbacks. The first is that the background

tends to be underestimated for pixels which contribute to

reflections only in a few frames. The second is that some

intense reflections located close to the origin of reciprocal

space can be present on many adjacent frames, in some cases

spanning a range of over 25� in the ’ scan angle and contri-

buting to the values of some pixels on a significant portion of

the frames which shows up as spot-like features in the

reconstruction of the background as discussed in x3.1. As all

the statistical descriptors are available for immediate inspec-

tion in the output file, a user can decide on the trade-off
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Figure 1
Construction of a statistical sample of values for a chosen pixel: the values
for a given pixel are collected for all frames in data collection sequence.

Figure 2
Example of statistical analysis performed using the constant-fraction
method on the pixel (657, 1014) of dataset 2; (a) sorted pixel values; (b) a
plot of pixel values as a function of frame indices in the dataset. In all
images, blue dots correspond to values identified by the method as
background contributions, and red dots as outliers.



between a global underestimate of the background due to too

large a removed fraction versus a local background over-

estimate due to an incomplete filtering of the signal.

2.3. Advanced pixel statistics for redundant measurements

We consider a pump–probe experiment in which, for each

goniometer setting, a series of repeated measurements is

made, both with or without the laser pump pulses (referred to

below as the ON and OFF frames). In our experiments,

measurements are made ten times in both situations, giving for

each pixel a block of 20 frames for a single goniometer setting.

This allows an improved statistical analysis. We consider the 20

values in each block as independent statistical samples. We

then test whether all block samples are from the same back-

ground distribution, or whether some of them, so-called ‘block

outliers’, are from distributions with higher median value as a

result of the presence of diffraction spots.

We use the non-parametric Kruskal–Wallis (K–W) test

(Kruskal & Wallis, 1952; Corder & Foreman, 2009) which

checks whether samples originate from the same distribution

(see Appendix A). For each pixel, all blocks of 20 values are

sorted by their median. Then the one with the highest median

value is recursively eliminated until the remaining samples

pass the K–W test using the �2
�:n�1 approximation for K–W test

critical values, where n is the number of remaining blocks and

� is a user-selected significance, with a default value of 5%.

Fig. 3 illustrates the K–W analysis performed on a given pixel’s

series of blocks. Like in the constant-fraction method, for each

pixel the remaining samples are combined and used to esti-

mate the distribution parameters listed earlier. This method

allows efficient detection of block outliers. However, it is not

designed to identify erratic singular outliers which are related

to noise. To avoid any bias in the subsequent mask definition

caused by these outliers, we apply a similar criterion as in the

constant-fraction method but using the estimated median and

interquartile distance, which are more robust to erratic

outliers.

For the ith pixel the criterion for acceptance as part of a

mask is

Iði; jÞ �medianðIiÞbackground > d iqðIiÞbackground; ð2Þ

where I(i, j) is the ith pixel value in the jth image,

median(Ii)background and iq(Ii)background are, respectively, the

estimated median value and interquartile distance of the ith

pixel background, and d is a positive adjustable parameter

with a default value of 3.0.

2.4. Filtering masks

The procedure described above is carried out on a pixel-by-

pixel basis and is completely insensitive to the spatial rela-

tionships of the pixels. We expect, however, that spots have a

non-negligible size and some definite shape though not

necessarily as simple as circular or elliptical. The next step is

therefore based on a frame-by-frame analysis and mask

filtering applying binary morphological operations in two

steps (Pierre, 2003). First, erosion operations are applied to

remove isolated pixels or lines from a mask. Then, dilation

operations are used to add back some relevant pixels lost

during erosion operations and also to add a margin to spot

footprints. Assuming no bias in the background estimate, we

expect that the only adverse effect of the latter operation on

the resulting intensities may be an increase in their variances.

The benefit of applying dilations is a possible correction of

pixel omissions from the previous phase, which may occur at

the edge of the spots where the increase of intensity is below

the threshold for the pixel-by-pixel outlier detection (Fig. 4).

The numbers of erosion and dilation operations are adjustable

parameters with default values of 1 and 2, respectively.

The erosion-dilation method produces an improved mask

for each frame. These masks can be used directly in the

integration step, or can be merged per ON/OFF pair or per

block by performing a logical OR operation to obtain a mask

shared by the corresponding pair or block of frames. This

prevents possible bias due to differences in spot footprints in

calculating the ON/OFF intensity ratios. Masks resulting from

both types of merging are compared in Fig. 5.

The number of spot candidates produced by the method is

generally larger than the number of Bragg reflections that

could occur on a given frame. This results from high-intensity

noise that may be indistinguishable from spots or from

possible splitting of very elongated spots by the erosion

operation. We do not consider an excessive number of spots a

significant issue as they are effectively filtered by subsequent
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Figure 3
Example of statistical analysis performed using the K–W method on the
pixel (679, 1039) of dataset 1 (subset 1): (a) plot of pixel values as a
function of frame indices in the dataset; (b) the pixel values histogram. In
all images, dots and histogram bars in blue correspond to values identified
by the method as background contributions, and in red as outliers. In (a)
the orange segments correspond to the block median values.



application of the LaueUtil indexing routine. It should also be

noted that in some cases too many dilations can cause merging

of particularly extended spots; therefore it is advisable to

visually inspect the resulting masks to verify the choice of

morphological operations.

2.5. Final integration and implementation details

The resulting frame masks are scanned to identify reflection

footprints which are assigned a unique numerical label l. Their

integrated intensities are calculated as

Il ¼
P

ði; jÞ 2Ml

Iði; jÞ � Bði; jÞ½ �; ð3Þ

where Ml is a list of pixels belonging to spot l, I(i, j) is the

intensity of pixel (i, j) and B(i, j) is the estimated mean, or

median in the K–W method, of the background intensity

distribution.

The presented method does not directly provide an estimate

of intensity errors (‘�I’) for each of the reflection intensities.

Instead, sample statistics based on the redundant measure-

ments are used to estimate the errors.

Following the general design of the LaueUtil suite, inte-

gration results are stored in HDF5 files together with masks

and collected statistics. This choice allows for easy inspection

and analysis of the data using general purpose HDF5 data

visualization programs like HDFView (The HDF Group,

2010) or advanced statistical toolkits like R (R Development

Core Team, 2010).

The automatic data integration procedure, including

retrieval of the experimental data from frames and storing

them in HDF5 format (with compression), takes from 5 min

for 90 frames, 0.7 GB standard data collection, 20 min for a

short-diagnostic 20� scan with ten ON/OFF frame pairs per

angle (420 frames, 3.3 GB), up to about 90 min for a full 90�

photocrystallographic dataset with ten ON/OFF frame pairs

per angle (1800 frames, 14.5 GB). Tests were performed on a

standard desktop computer, i.e. a Linux machine using a single

core of an AMD Phenom II X6 1090T processor. The running

times should be compared with the time required to perform

sole data compression with standard system tools (tar -z)
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Figure 5
Results of obtaining common masks for a set of raw frames. The 1st and 8th pair of frames from the 18th block of dataset 1 (subset 1), i.e. frames 340, 341,
354 and 355, were selected for the presentation; the detector region was X: 760–810; Y: 808–858 pixels. Raw images are colored by intensity; outlines of
filtered masks for each frame are presented in black; outlines of common masks for each ON/OFF pair are overlaid in green in the upper row; outlines of
a common mask for each block are overlaid in magenta in the lower row. Certain variation of the final mask shape between the frames is visible. A
common mask per block allows for incorporation of a reflection tail, too weak to be recognized as a signal on some frames.

Figure 4
Application of binary morphological operations on the initial spot masks:
on the left a magnified fragment of frame 366 from dataset 1 (subset 1)
containing the registered signal and an outline of an initial reflection
mask drawn in black; on the right the same outline of the initial mask is
drawn in dark grey; pixels remaining in the spot mask after erosion
operations are drawn in blue; pixels added to the reflection mask after
dilation operations are drawn in orange. Singular pixels included in the
initial spot mask have been removed by the morphological operations.



which are, respectively, 1 min,

4 min, 21 min and network transfer

times: 19.3 min for 14.5 GB at a

theoretical maximum speed of

100 Mbps Ethernet connection.

The algorithm is suitable for

reimplementation in a high-

throughput processing system,

with several optimizations envi-

sageable, including parallelization,

direct connection with data collection software, in-memory

processing of whole datasets, limited usage of compression

and storage of intermediate data. However, such develop-

ments would exceed our current needs and would require

sufficient support from the computing infrastructure used for

data collection.

3. Results and discussion

Application of the method is illustrated with two datasets,

representative of the data collected in our photocrystallo-

graphic experiments.

Dataset 1 is a set of five short 21� scans (subsets 1–5)

consisting of 21 blocks of ten ON/OFF frame pairs collected at

1� ’ spacing. All five scans have the exact same ’ range. Such

scans are typically acquired in order to test crystal response to

various laser powers or pump–probe delay times. The former

was tested in the case presented here.

Dataset 2 consists of 90 OFF frames, routinely collected at

1� ’ spacing in order to assess general crystal quality. It is also

a typical example of a standard crystallographic dataset.

The datasets were collected for crystals of two solvates of

Cu(I) organometallic complexes listed in Table 1. All data

were collected at the 14-ID beamline of the BioCARS station

at the Advanced Photon Source with an undulator setting of

15 keV and a MARCCD-165 CCD detector at fixed position,

used in several of our photocrystallographic Laue experi-

ments.

Datasets were processed in parallel with the LaueUtil and

LaueGui integration software, the latter utilizing the seed-

skewness method (Bolotovsky et al., 1995; Bolotovsky &

Coppens, 1997; Coppens et al., 2010).

3.1. Background reconstruction for a complete dataset

Background mean values obtained for dataset 2 with the

constant-fraction method are presented in Fig. 6. These values

correctly reconstruct the beamstop shadow as well as the

increased background at low scattering angles and a slight

conical shadow of the copper mount, which partly obstructs

the X-ray beam. The background decreases at higher scat-

tering angles. Also visible are differences between the back-

ground on the four quadrants of the detector. The background

estimate even in the constant-fraction approach will correct

for variations in noise intensity of the different detector

regions and can serve as a diagnostic tool for the character-

istics of the detector.

The background variance for each pixel is similarly

presented in Fig. 6. In addition to the radial dependence

observed for the mean or median and the difference between

separate CCD quadrants, the statistic reproduces the Moiré

pattern predicted for the variance of the background pixel

values for CCD detectors with optical taper, as described by

Waterman & Evans (2010). As noted in their work, this effect

can significantly bias integration routines utilizing profile

fitting.

Comparison of the background estimates with the constant-

fraction and K–W approaches can be best illustrated for any

subset of dataset 1. These subsets have a relatively short

angular range and a block of repetitive frames at each ’ angle.

As a result, the contributions from the reflections constitute a

significant part of the counts for certain pixels. Application of

the constant-fraction approach in such a case leads to ‘spot-

like’ contamination on the reconstructed background, as

evident in Fig. 7(a). The more sophisticated K–W method

effectively reconstructs the proper background (Fig. 7b). The

difference in detection of outliers is shown for a pixel located

in the spot-like feature [Figs. 7(c) and 7(d)].

3.2. Statistical distribution of the background intensities

A Poisson distribution of the background signal is often

assumed in X-ray data integration algorithms to calculate

standard deviations (Bolotovsky et al., 1995). The sources of

background noise result from specifics of the detector design,

as well as external sources such as diffuse scattering by air.

Assuming that the fluctuations of the noise are independent of
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Table 1
Description of test datasets.

1: complex [CuI(phen)(PPh3)2][BF4][EtOH]; 2: complex [CuI(phen)(PPh3)2][BF4].

Dataset
Crystallographic
system

Space
group

Cell parameters
(Å, �)

Temperature
(K)

ON/OFF
data

1 Monoclinic P21/n 12.0520 (10), 21.1930 (18), 17.2507 (14),
90, 93.952 (2), 90

180 YES

2 Triclinic P�11 12.8340 (11), 17.4719 (15), 19.3926 (17),
106.466 (2), 99.421 (2), 95.440 (2)

180 NO

Figure 6
The background mean values (left) and standard deviations (right)
around the detector center obtained using the constant-fraction method
for dataset 2 and mapped on the detector plane. A Moiré pattern is
exposed in the visualization of the standard deviation. A magnified view
containing a 600 � 600 pixel subset close to the detector center is
presented for the sake of clarity.



time and there is no Bragg signal, the average event rate for

each pixel unambiguously belonging to the background will be

constant, and simple counting statistics should be applicable.

In order to verify the nature of the background signal distri-

bution in the current case, the statistical distributions of the

pixel background values in dataset 2 were examined after the

LaueUtil processing with the constant-fraction approach. The

background samples tend to exhibit a symmetrical almost-

Gaussian distribution (Fig. 8). The assumption of a Poisson

distribution can be tested by examining the relation between

the mean values of the background intensities and the corre-

sponding variances, selecting only pixels which are not part of

spots on any of the frames. Fig. 9 shows that for almost all of

these pixels the estimated intensity variances are smaller than

their estimated intensity means. There is no obvious depen-

dence of the variances on the average intensities, whereas the

Poisson law implies the definite relationship of �2(Ibackground) =

hIibackground. A possible explanation is that the numerical data

collected on raw frames are not necessarily an exact repre-

sentation of events at the detector surface (Waterman &

Evans, 2010). The information from the detector is processed

to convert optical signals into electronic ones and enhanced

prior to storage. This preliminary step can lead to non-
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Figure 8
A histogram of background pixel values for a selected background pixel
(310, 400) from dataset 2. (The inset presents pixel values in the order in
which they were acquired.) The experimental distribution is plotted by a
dashed red line, and the best-fitting Poisson distribution is presented by a
dotted blue line.

Figure 7
Background obtained using the constant-fraction method (a) and (c), and
the K–W method (b) and (d). (a) and (b) represent the background mean
on the fragment of the detector, while (c) and (d) represent the pixel
(679, 1039) value for each consecutive frame of dataset 1 (subset 1). The
location of the pixel is specified by a green circle. Blue dots correspond to
values identified by each method as background contributions, and red
ones as outliers.

Figure 9
Variance of the background for each pixel of dataset 2 plotted against its
estimated mean value. The dashed line has a 45� slope.



Poisson-distributed numerical data, depending on the detector

specifications and setting.

3.3. Comparison with the seed-skewness integration

Reflection intensities resulting from LaueGui software

(Messerschmidt & Tschentscher, 2008; Peters, 2003) were

compared with the outcome of the constant-fraction LaueUtil

results on dataset 2 and K–W results for dataset 1. In both

instances a simple linear relationship exists between the

intensities processed by the two methods, which therefore in

principle should not affect the response ratios. The intensities

from the LaueGui method are systematically lower than those

obtained with the current approach. Fig. 10 illustrates the

correlation of intensities integrated using LaueUtil and

LaueGui. A magnification of the low-intensity range (I �

10000) is also plotted and confirms the linear relation between

the LaueUtil and LaueGui intensities. A major source of the

discrepancy between the two groups of intensities is due to the

difference in the background calculations. Fig. 11 illustrates

the discrepancies between the two methods. Each reflection is

represented by a mark colored as a function of the differences

between the average background intensities (normalized per-

pixel) estimated by the LaueUtil and LaueGui programs. In a

first approximation, the closer the reflection to the beam

center the more significant the difference between the two

methods. The LaueUtil algorithm provides a lower estimate of

the background in the majority of cases. This difference of

average background can be significant for reflections less than

half way from the beam center to the edge of the frame. The
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Figure 10
Correlation plot of intensities from (a) dataset 2 and (b) dataset 1 (subset
1), integrated by LaueUtil and LaueGui. Intensity dots are colored
according to the distance of the spot from the beam center on the
detector surface. Distances are given in pixel side length. The insets
illustrate the low-intensity region.

Figure 11
Differences between the average background intensities (normalized per-
pixel) processed with LaueUtil and the LaueGui integration methods
illustrated at the reflection’s position on the detector (a) on the dark
dataset 2 and (b) on the ON/OFF dataset 1 (subset 1). Only intensities
from the first frame of each block are shown for the purpose of clarity.
Negative differences are marked as crosses and positive differences as
circles. The greatest negative discrepancies can be observed for a few
strong low-order reflections. The color scale was truncated for negative
values at the level of �20 (a) or �30 (b).



maximum difference, excluding the

edge of the detector, is about 79%.

The discrepancy likely results from

the lack of accuracy of the footprint

definition in LaueGui. Part of the

reflection tail is sometimes included in

the background count, as illustrated

in Fig. 12, which shows the relation

between the normalized background

difference and the surface of the

reflection footprint. Almost all spots

with background differences larger

than 20 are very strong and located in

the vicinity of the beam center, with

the LaueGui background being larger.

Only a few reflections on the edge

of the detector have opposite background differences. The

background estimate method used in LaueGui allows inclu-

sion of pixels located outside the actual active detector area in

the background calculation, which explains this background

underestimate relative to LaueUtil. In all instances the back-

ground estimate in the LaueUtil method appears more

reliable.

3.4. Prompt signal analysis during pump–probe experiments

No information on the unit-cell parameters or crystal

orientation is required for data integration with the LaueUtil

tool. As a result, data can be integrated without the time-

consuming indexing of the Laue pattern. It allows prompt

evaluation of the light-induced signal. The intensities for any

spot on any frame can be analyzed (plotted or otherwise

processed) to ascertain whether or not there are systematic

ON versus OFF differences. The method is especially advan-

tageous when unit-cell parameters are not known, or when the

sample is twinned. The only necessary condition is that cell

parameters do not change significantly upon laser exposure.

This can be immediately verified by analysis of the spots

positions on consecutive ON and OFF frames. Table 2

presents the experimental ON to OFF ratios for selected spots

in the five subsets of dataset 1, which differ in applied laser

power. Data were integrated using a common mask for each

20 frames in a block. Ratios of intensities were obtained for all

ON/OFF frame pairs, their averages calculated and standard

deviations estimated from the ten repeated measurements.

Fig. 13 shows a reasonable agreement between ratios obtained

applying LaueUtil and LaueGui software on dataset 1

(subset 1).

4. Conclusions

A new approach to Laue X-ray data integration from CCD

detectors is presented. The method uses simple statistical tools

for identification of the background values for a given pixel on

all frames in a scan.

Two particular approaches are described, their applicability

depending on the X-ray measurement strategy. The constant-

fraction approach is best suited for conventional data collec-

tion strategies, in which the crystal orientation and the
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Figure 12
Differences between the average background yielded by LaueUtil and the
LaueGui integration method with respect to the spot area as estimated in
LaueUtil (dataset 2). Intensity dots are colored according to the distance
of the spot from the beam center on the detector surface.

Table 2
Examples of reflections with ION /IOFF experimental ratios (R) and their variation with the laser power
applied during ON exposure.

The X-ray to laser pulse delay time was 100 ps.

Laser power (mJ pulse�1)

24.7 37.1 49.5 61.9 74.2

Spot position (1102, 984)
Label 221 217 216 207 214
Rave 1.18 1.44 1.4 1.2 1.08
�(R) 0.1 0.12 0.12 0.07 0.05
�/�(�) 1.89 3.8 3.3 2.7 1.66

Spot position (1162, 1070)
Label 248 244 244 228 209
Rave 1.07 1.22 1.18 1.13 1.07
�(R) 0.03 0.07 0.08 0.07 0.06
|(R � 1)|/�(R) 2.39 3.1 2.3 1.9 1.17

Figure 13
Correlation plot of ratios averaged within constant ’ angle calculated
from dataset 1 (subset 1) using LaueUtil and LaueGui. The dots are
colored according to the largest standard deviation in the two methods,
max(�LaueUtil ; �LaueGui), the LaueGui standard deviation being generally
larger.



resulting pattern are being changed from frame to frame. In

the photocrystallographic experiments, the total range of

crystal orientations may be limited. However, at each crystal

orientation a batch of frames can be measured. In such case

the K–W method is more suitable and yields superior results in

terms of identification of the pixels belonging to the back-

ground and therefore leads to more reliable values of the

Bragg intensities.

As the method is strictly based on statistical analysis of the

pixel values, it does not depend on a data indexing routine,

and thus allows monitoring X-ray intensities and light-induced

changes even when cell parameters are not known. In the case

of ultra-fast photocrystallographic experiments in which cell

parameters, and hence reflection positions, do not vary

significantly between ON and OFF exposures, the response

ratios can be calculated promptly. As no integration box is to

be defined or profile is to be fitted, the method is also more

suitable for dealing with reflections of elongated shape, as

often observed in such experiments.

In its current implementation the method presented here

is applicable mainly to data from photocrystallographic

synchrotron experiments, although conventional data can also

be processed with the constant-fraction approach. The only

limitation of the method is the stability of the background

levels during the experiments, depending on the X-ray source

stability and diffuse scattering from the crystal support. When

the stability criterion is fulfilled, the method yields prompt

response ratios for subsequent photocrystallographic analysis.

APPENDIX A
The K–W test

The K–W test is a non-parametric method for testing whether

two or more independent samples of values share a similar

population distribution. In contrast to the one-way analysis

of variance, ANOVA, the K–W test does not require an

assumption about the nature of sample distribution, such as

normality. The null hypothesis of this test is that the popula-

tions from which the samples originate share the same prob-

ability distribution. Like many other non-parametric tests the

K–W test is based on the calculation of sample ranks. The test

consists of five steps.

Let us assume a series of M samples with Ni the number of

values in the ith sample and N the total number of values in

this set:

(a) Sort all values from all samples together, and assign a

rank to each value from 1 to N. If there are subsets of tied

values, the average value of their ranks must be calculated and

assigned to all of them.

(b) For each ith sample, calculate its average rank �RRi,

�RRi ¼

Pk¼Ni

k¼1 rði;kÞ

Ni

; ð4Þ

where rði;kÞ is the rank of the kth value of the ith sample.

(c) Deduce the statistical test coefficient K defined as

K ¼ ðN � 1Þ

Pi¼M
i¼1 Nið

�RRi �
�RRÞ2Pi¼M

i¼1

Pj¼Ni

j¼1 ½rði; jÞ �
�RR�2
; ð5Þ

with �RR = (N + 1)/2 the average rank of the full set.

K can be rewritten as follows,

K ¼
12

NðN þ 1Þ

Xi¼M

i¼1

Ni
�RRi

2

" #
� 3ðN þ 1Þ: ð6Þ

(d) If there are some tied values in the total set, divide the K

value by a tie-correction factor T to obtain Kcorrected. This

factor is given by

T ¼ 1�

Pk¼L
k¼1 p3

k � pk

N3 � N
; ð7Þ

where L is the number of tied value sequences and, for each

sequence k, pk is its size.

(e) Approximate Kcorrected by a �2 distribution with M � 1

degrees of freedom and calculate the corresponding prob-

ability p-value Prð�2
M�1 	 KÞ. This approximation is reason-

able if the samples are larger than 5. Depending on the desired

� level, the null hypothesis is rejected if the p-value � �.
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