Announcement

JUM@P’13: Third Joint Users' Meeting @ PSI

The next users' meeting from the JUM@P series will be held at PSI on September 18-20, 2013. The first day of the meeting will consist of a plenary session with keynote and invited lectures as well as information about PSI and its user facilities. The second day is reserved for topical parallel workshops, poster sessions, and a tour through the PSI user facilities. The award of the second PSI thesis medal will conclude the meeting. http://indico.psi.ch/event/jump13.

2013 PSI Summer School on Condensed Matter Research - August 17-23 / Lyceum Alpinum, Zuoz, Switzerland

This year, the Condensed Matter Research summer school is dedicated to one of the main topics addressed at large-scale synchrotron, neutron and muon user facilities: materials structure and magnetism. Following the school, a practical training is offered at PSI (August 24-26). The number of participants is limited, but the training will provide hands-on experience with each of the state-of-the-art user facilities. http://www.psi.ch/summerschool.

Research highlights

Molecular magnets: Lord of the rings

C. Rüegg, Nature Physics 8, 859 (2012)

Magnets built of molecular rings of magnetic ions are fundamental model systems for studying the complex correlations and dynamics of quantum spins at the atomic scale. A new generation of neutron spectrometers can reveal complete four-dimensional maps of the spin correlations in spin rings. http://www.psi.ch/num/2012.

Three-dimensional electron realm in crystalline solids revealed with soft-X-rays

The wave nature of electrons enables them to propagate by atoms in a periodic crystal lattice without scattering onto them. Further, the cornerstone of the quantum theory of crystalline solids is the dependence of the energy, E, of electrons on their wave-vector, \mathbf{k}, adapted to a periodic media that forms their band structure, $E(\mathbf{k})$. In particular, it answers the question why some materials are metals and others are insulators. The main experimental method to investigate $E(\mathbf{k})$ is angle-resolved photoelectron spectroscopy (ARPES), and it is based on the photoelectric effect. Typical applications of this technique have so far been largely restricted to two-dimensional crystals such as high temperature superconductors. Now, scientists from the Swiss Light Source (SLS) at the PSI have extended the ARPES technique to three-dimensional crystalline systems by using soft-X-rays with photon energies around 1 keV. http://www.psi.ch/sls/scientific-highlights.