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The evaluation of uncertainty in temperature-dependent EXAFS measurements

is discussed, considering the specific case of a recent experiment performed on

CdTe. EXAFS at both Cd and Te K-edges was measured at different times and

at different beamlines in a temperature range from 5 to 300 K. Attention

is focused on the nearest-neighbours parameters: bond thermal expansion,

parallel and perpendicular mean-square relative displacements and the third

cumulant. Different causes of uncertainty, a comparison of experimental results

with theoretical models, the difference between EXAFS and crystallographic

thermal expansions and the meaning of the third cumulant are discussed.

Keywords: EXAFS; thermal expansion; mean-square relative displacements; Einstein model;
Debye model.

1. Introduction

The widespread use of EXAFS as a structural tool by a large

number of researchers belonging to different research fields

and with different scientific backgrounds, accompanied by a

spread of quality levels of published papers, stimulates the

effort to develop effective standardization criteria (Ascone et

al., 2012). A key step towards standardization is the agreement

on the methods for evaluating and possibly increasing the

accuracy of structural parameters obtained from EXAFS. A

sound evaluation of accuracy, necessary to guarantee the

reliability of results and to avoid incorrect interpretations, is

generally far from trivial, since it requires a careful investi-

gation of the various sources of errors and uncertainties in

both experimental activity and data analysis procedure.

In the last few years a fundamental contribution has been

given by Chantler and co-workers, who developed a suite of

experimental techniques and procedures (the so-called X-ray

extended-range technique, XERT) for the accurate measure-

ment of the X-ray mass attenuation coefficient (Chantler et al.,

2001, 2012a,b). Recently, the accuracy of the absolute values

of structural parameters from EXAFS has been addressed too

(Glover et al., 2010).

One can expect that a wider application of XERT, or of

similar approaches, to selected model compounds contributes

to the calibration of EXAFS measurement methods. On the

other hand, XERT is still far from a standard routine method

and its extension to most of the typical EXAFS experiments,

for which a reasonable compromise has to be found between

the complexity of samples, the extent of new sought infor-

mation, the accuracy of the results and the available

synchrotron radiation beam time, seems at present to be out of

the question. Besides, a good deal of actual EXAFS experi-

ments aim at seeking relative values of structural parameters

(e.g. as a function of temperature or pressure), and can

achieve higher accuracy than absolute measurements with less

stringent requirements for both experimental set-ups and data

analysis procedures.

Accuracy of the order of the femtometer was obtained for

the distance variation caused by magnetostriction in an iron–

cobalt thin film, by means of an X-ray-dispersive spectrometer

(Pettifer et al., 2005). The possibility of detecting differences in

interatomic distances of the order of 10 fm by a conventional

transmission apparatus was demonstrated by the measure-

ment of isotopic effects in the Debye–Waller factor and in the

thermal expansion of the germanium first shell (Purans et al.,

2008). Differences of a few 10 fm are routinely detected in

bond thermal expansion studies and have allowed the

measurement of the difference between bond and lattice

thermal expansions (Fornasini et al., 2004; Abd el All et al.,

2012) as well as the study of the anomalously small thermal

expansion of Invar alloys (Yokoyama & Eguchi, 2011).

A thorough investigation of the accuracy attainable in

relative EXAFS measurements performed on standard

synchrotron radiation beamlines to solve a realistic scientific

problem may be helpful to many EXAFS practitioners and

contribute to the debate on the improvement of experimental

data quality. This kind of bottom-up approach should be
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considered as complementary to and not substitutive of the

top-down approach of XERT. Within this framework we

discuss here in some detail the evaluation of the accuracy in

a recent study of the temperature dependence of EXAFS of

CdTe (Abd el All et al., 2012). The main aim of that experi-

ment was to investigate the local dynamical behaviour of

CdTe, in terms of bond thermal expansion and parallel and

perpendicular mean-square relative displacements (MSRDs),

and to compare it with the average dynamical behaviour,

characterized by a lattice thermal expansion that is negative at

low temperatures and positive at high temperatures.

The experiment performed on CdTe is particularly suited

for the present investigation on the origin and extent of

uncertainties and errors. The measurements were performed

at the two edges of Cd and Te at different times and at

different beamlines; the data analysis was independently

carried on by different researchers; for the first-shell analysis,

two intrinsically different procedures were used and

compared, the ratio method and the non-linear fit to theore-

tical simulations.

We focus our attention here on the results obtained for the

nearest-neighbour Cd–Te distance, for which a better resolu-

tion and accuracy of bond thermal expansion can be achieved

with respect to the outer shells. The experimental details are

discussed in x2. x3 is dedicated to a critical appraisal of the

data analysis. The main results, consisting of the temperature

dependence of the first four cumulants, are presented in x4. In

x5 the discussion is focused on the evaluation of uncertainty,

on the comparison of experimental data with theoretical

models, on the difference between EXAFS and crystal-

lographic distances and on the meaning of the third cumulant.

x6 is dedicated to conclusions.

2. Experimental considerations

Transmission EXAFS measurements have been performed at

ESRF, Grenoble, on CdTe powders, 99.999% pure. EXAFS at

the Cd K-edge was measured at the ESRF-BM29 beamline in

2008. EXAFS at the Te K-edge was measured at the ESRF-

BM23 beamline in 2011. The BM23 beamline is actually an

upgrade of BM29: the two beamlines basically differ with

regard to the location of the emitting bending magnet along

the storage ring, some mechanical details of the mono-

chromator assembly and the cryostat. The storage ring elec-

tron energy and average current were 6 GeV and about

190 mA, respectively, for both experiments.

2.1. Sample homogeneity

Two different samples had been prepared for the two sets

of measurements (Cd and Te edges) by precipitating the

CdTe powders on polytetraflouroethylene membranes from

suspensions in methyl alcohol. The samples’ homogeneity was

checked by measuring the intensity of the transmitted photon

beam as a function of the vertical and horizontal position. The

EXAFS measurement position was chosen in the middle of a

region where the transmitted intensity was constant. The size

of the beam incident on the sample was about 4 mm � 1 mm

and 1 mm � 1 mm for the Cd K-edge and the Te K-edge

measurements, respectively. The edge jump ��x was about

1.0 and about 0.8 for the Cd K-edge and the Te K-edge,

respectively. The impinging position of the beam on the

samples was re-calibrated after each temperature variation.

The spread of the edge jump values for different spectra at

different temperatures was within 4% and 2% for the Cd and

Te samples, respectively.

2.2. Photon energy

In both experiments the X-ray beam was monochromatized

by two silicon crystals with flat (311) parallel reflecting faces

(2d = 3.17404 Å), thermalized at a temperature of 110 K,

where the thermal expansion coefficient of silicon is |�|� 15�

10�6 K�1. The relative influence of harmonics was reduced

below 10�5 by total reflection from two Pt-coated mirrors

(incidence angle 2 mrad). The X-ray energy was scanned in

the ranges E = 26400–28230 eV (for Cd) and E = 31500–

33800 eV (for Te), with the �E step varying from 0.5 eV in the

near-edge region to 5 eV at the end of the spectra, in order to

obtain a uniform wavevector step �k = 0.025 Å in the EXAFS

region. There was no detuning of the two monochromator

crystals, one always worked at the maximum of the rocking

curve using feedback based on a lock-in amplifier (Prestipino

et al., 2011).

According to the Bragg law the variations of the mono-

chromator temperature T influence the X-rays energy as

�E ¼ E��T; ð1Þ

and the relation between Bragg angle variations and energy

variations is

�E ¼ E �� = tan � : ð2Þ

Equation (2) accounts both for the spread of the angular

values (owing to source size, slits apertures, monochromator

Darwin width), which contributes to the energy resolution,

and for the shift of the angular position, which reflects the shift

of the energy axis. The energy resolution was estimated at

about 5 eV for Cd and 7 eV for Te, smaller than the respective

core level widths. The shift of the energy axis is discussed

below, in x3.

The incoming and outgoing photon fluxes were measured

by two ionization chambers filled with krypton gas, at

respective pressures of 140 and 500 mbar. The total flux inci-

dent on the samples was estimated to be of the order of a few

109 photons s�1 for both experiments.

2.3. Temperature

For the Cd K-edge EXAFS, the temperature was varied

from 19 to 300 K, in 25 K steps below 150 K and in 50 K steps

above 150 K, using a helium gas flow cryostat. For the Te K-

edge EXAFS, the temperature was varied from 4 to 300 K in

10 K steps below 100 K and in 25 K steps above 100 K, using a

liquid-helium cryostat (Steinmann & van der Linden, 2006).

The sample was pressed between the two plates of the sample
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holder, which was in turn fixed to the cryostat cold head by a

M4 bronze screw, screwed with a torque of at least 1 N m.

Both sample holder and cold head were gold plated with a

5 mm-thick layer. The temperature difference between the

cold head and the sample was less than 1 K. The power load

owing to the beam was well below 1 mW. The temperature

uncertainty of measurements was evaluated to be no larger

than 1 K. The reliability of the temperature scales has been

a posteriori checked by the agreement with theoretical

expectations of the temperature dependence of the leading

cumulants, in particular of the second one (the EXAFS

Debye–Waller factor), as well as by the good agreement

between the results from Cd and Te edges.

A minimum of two and a maximum of five spectra were

recorded at each temperature, to allow a reasonable evalua-

tion of the experimental uncertainty (see below).

3. Data analysis

The data analysis procedure has been summarized by Abd el

All et al. (2012). Here we focus our attention on the issues

most relevant to the accuracy evaluation.

3.1. Extraction of the EXAFS signal

The extraction of the EXAFS signals �(k) from the

experimental spectra was performed according to a well

established procedure (Vaccari et al., 2007). A straight line

best fitting the pre-edge signal was preliminarily subtracted

from the spectra.

For each of the two sets of measurements (Cd and Te edges)

the values of the photoelectron wavevector k were calculated

with respect to an edge energy Es, conventionally set at the

maximum of the first derivative of one of the spectra, chosen

as reference. The energy axes of all other spectra were then

shifted to achieve the best superposition with the reference

spectrum in the edge region, and the edge energy Es of each

spectrum was determined accordingly. No variation of the

edge shape was observed as a function of temperature.

The variation of the nominal edge position Es with respect

to the real edge position is a good test of the energy axis

stability; ideally it should be zero. Fig. 1 shows the variation

with time of the Es values for the Cd K-edge. The spread of Es

values is smaller than the 0.5 eV acquisition step. The overall

variation is too large to be attributed to temperature effects

on the monochromator planar spacing [equation (1)]. From

equation (2), for the Cd K-edge one finds �E [eV] ’ 1.85 �

105�� [rad]. It is reasonable to attribute the edge energy shift

to a variation of the monochromator Bragg angle, caused by

long-period instabilities of the beam and mechanical and

thermal instabilities of the different components of the optical

apparatus.

From Fig. 1 one can infer that the maximum energy shift

during the acquisition of a single spectrum is about 0.05 eV.

Such a shift, distributed along the 1500 eV range of an EXAFS

signal, would correspond to a stretch of the wavevector k axis

leading to an error of about 5 � 10�5 Å for the nearest-

neighbours distance of 2.8 Å.

The EXAFS signal was obtained as �(k) = (� � �1)/�0,

where � is the experimental absorption coefficient, �1 is a

spline polynomial best fitting the average behaviour of �, and

�0 is a Victoreen-type function with absolute values normal-

ized to the experimental absorption jump of the spectra. This

choice was made to minimize the effects of the difference in

the average behaviour of different files at high energy. The

alternative choice, �(k) = (� � �1)/�1 (denominator equal to

the best-fitting spline), was checked in any case. The differ-

ences between the two procedures on the final values amount

to 3 � 10�5 Å for the first cumulant, 1 � 10�5 Å2 for the

second cumulant and less than 10�7 Å3 for the third cumulant,

significantly smaller than the discrepancies between different

files at the same temperature. A good agreement was found

also with the relative values of cumulants obtained using the

normalization procedure ‘autobk’ of the Athena package

(Ravel & Newville, 2005). Examples of k2�(k) functions are

shown in Fig. 2.
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Figure 1
Variation of the nominal Cd K-edge position as a function of time. Each
point corresponds to a spectrum corresponding to 50 min of acquisition
time.

Figure 2
EXAFS signals k2�(k) at the K-edges of Cd (top) and Te (bottom) at
selected temperatures.



The k-weighted EXAFS signals k2�(k) were Fourier

transformed from kmin = 1.8 to kmax = 19 Å�1, after multi-

plication by a Gaussian function whose amplitude at the

extrema of the wavevector interval was 10% of the amplitude

at the centre.

The Fourier transforms at selected temperatures are shown

in Fig. 3. The peak due to the nearest-neighbours single-

scattering contribution (four atoms at 2.8 Å) appears well

isolated at all temperatures. Only the quantitative analysis of

the first-shell contribution is considered here. To that purpose,

the corresponding signal in real space (from 1.6 to 3.2 Å in

Fig. 3) was back-transformed to k space. The possible leakage

of longer scattering paths on the first-shell contribution has

been checked (see below).

3.2. Quantitative analysis

As in previous works (Fornasini et al., 2004; Vaccari et al.,

2007), quantitative results for the first shell have been

obtained by both the ratio method and the non-linear fit of

calculated to experimental spectra. A partial discussion of the

relative merits of the two procedures has been made by

Vaccari et al. (2007).

3.2.1. Ratio method. The ratio method (Bunker, 1983;

Dalba et al., 1993) consists of the separate analysis of phase

and amplitude of the EXAFS signal at each temperature,

taking a low-temperature spectrum as reference. The ratio

method is well suited to accurate studies of the variations of

first-shell parameters induced by temperature or pressure

variations, because it does not require theoretical inputs and

allows a direct, though quite conservative, visual estimate of

the quality of data. Moreover, it avoids the statistical corre-

lation between even and odd cumulants which can instead

affect the non-linear fitting procedures (the correlation

introduced by the Fourier filtering procedure cannot be

disentangled).

For each of the two sets of measurements (Cd and Te

edges), the first-shell EXAFS signals were obtained by Fourier

back-transforming the corresponding peak in real space.

Phases and amplitudes of the filtered signals at the different

temperatures (s) were then compared with the phase and

amplitude of the average of the signals at 19 K (Cd K-edge) or

20 K (Te K-edge), taken as reference (r).

In principle, the ratio method is sensitive to the relative

values �Cn = Cn,s � Cn,r of the cumulants of an effective

distribution P(r, �) = �(r)exp(�2r/�)/r2, where �(r) is the real

distribution of distances and � is the photoelectron mean free

path.

If the logarithm of the amplitude ratios is plotted against k2

(Fig. 4), the linear slope is proportional to the difference of the

second cumulants �C2 = C2,s � C2,r , and the difference of the

fourth cumulants �C4 = C4,s � C4,r is reflected in a slight

deviation from linearity. The plot allows a visual evaluation of

the quality of signals: different files at the same temperature

should give the same plot; the spread with respect to the

average behaviour is a measure of uncertainty, and the fitting

interval has been chosen as the interval where the different

files at the same temperature have a reasonably similar

behaviour (for example, below k2 = 200 Å�2 in Fig. 4). Note

that the logarithm strongly enhances the differences at high k

values, where the amplitudes are smaller and the signal-to-

noise ratio becomes critical.
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Figure 3
Fourier transforms of the EXAFS signals at the K-edges of Cd (top) and
Te (bottom) at selected temperatures.

Figure 4
Logarithms of amplitude ratios plotted against k2 for some EXAFS
spectra at the Te K-edge. The reference r is the average of the spectra
measured at 20 K. The different bundles of lines refer to the signals s at
(in order of increasing slope) 50, 100, 150, 200, 250 and 300 K.



If the difference of phases divided by 2k is plotted against k2

(Fig. 5), the vertical intercept gives the difference of the first

cumulants �C1 = C1,s� C1,r and the linear slope is proportional

to the difference of the third cumulants �C3 = C3,s � C3,r.

Again, the plot allows a visual evaluation of the quality of

signals. In general, the quality of signals is more critical for

phase plots than for amplitude plots: the spread of the

different files at a given temperature with respect to the

average behaviour is larger than for amplitudes, and the

choice of the fitting interval requires particular care. The

spread is particularly evident not only at high k2 values, where

the signal-to-noise ratio is poorer, but also at low k2 values,

where the differences introduced by the procedure of back-

ground subtraction are boosted by the 1/k factor in the vertical

axis. Also for the phase analysis, the fitting interval has been

chosen as the interval where the different files at the same

temperature have a reasonably similar behaviour.

The fitting procedure substitutes the cumulant series by

finite polynomials. From the ratio method one obtains the

relative values of a few polynomial coefficients � ~CCn, typically

n � 4. The correspondence between the polynomial coeffi-

cients � ~CCn and the leading cumulants �Cn of the effective

distribution depends on the convergence properties of the

cumulant series. This issue has been experimentally investi-

gated by Crozier et al. (1988) and Dalba et al. (1993). In the

present case of CdTe, the adequacy of the polynomial coeffi-

cients was a posteriori confirmed by their temperature

dependence (see below).

The evaluation of the uncertainties on the relative values of

cumulants was performed, independently for the Cd and Te

edges, according to the following procedure.

(i) As a first step, the spectra measured at the reference

temperature (19 K for Cd, 20 K for Te) were averaged, to

obtain a unique reference spectrum; the comparison of the

different spectra at the reference temperature with their

average spectrum represents a good test of short-term

reproducibility. The relative cumulant values from different

spectra were considered as the results of independent

measurements, sampling a Gaussian population, and their

uncertainty estimated as the standard deviation of the mean:

	(�C1) ’ 2 � 10�4 Å, 	(�C2) ’ 2 � 10�5 Å2, 	(�C3) ’ 1 �

10�6 Å3.

(ii) At each temperature, all the spectra were compared

with the average reference spectrum; different fitting ranges in

k space were attempted for both phases and amplitudes,

within k intervals where the curves of different spectra shared

a reasonably regular behaviour. Typical intervals ranged from

kmin = 4 to kmax = 13–15 Å�1. Again, the relative cumulant

values from different spectra for the same fitting interval were

considered as the results of independent measurements,

sampling a Gaussian population, and their uncertainty was

estimated as the standard deviation of the mean. The values

from different fitting intervals were considered as sampling a

uniform distribution, and the corresponding uncertainty was

estimated as the standard deviation of the rectangular distri-

bution, �(�Cn)/(12)1/2 (Fornasini, 2008).

(iii) The total uncertainty of the relative values �Cn of the

cumulants at a given temperature was obtained by the quad-

ratic sum of the three contributions: reference, different

spectra and different fitting intervals.

At the end of the procedure of data analysis by the ratio

method, the cumulants of the real distribution, C �n , were

calculated from the cumulants of the effective distribution, Cn,

according to the recursion formula (Vaccari et al., 2007),

C �n ’ Cn þ 2Cnþ1 1=C1 þ 1=�ð Þ for n ¼ 1; 2; 3: ð3Þ

Since the ratio method cannot take into account the k

dependence of the electron mean free path �(k), three

different constant values � = 6, 9, 12 Å were used in (3). The

corresponding uncertainty, evaluated as the standard devia-

tion of a rectangular distribution, was quadratically summed

to the uncertainty of the effective relative cumulants �Cn to

obtain the uncertainty of the real relative cumulants �C �n . The

difference between the cumulants of the real and effective

distributions is significant only for the first cumulant (average

distance).

As an example of uncertainty evaluation, the relative values

of the cumulants from Te K EXAFS are shown in Table 1 for

selected temperatures.

One can see that the uncertainty caused by the loose

assumption on the mean free path only slightly increases the

uncertainty of the first real cumulant �C �1 (�0.07 � 10�2 Å)
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Figure 5
Difference of phases divided by 2k plotted against k2 for the EXAFS
spectra at the Te K-edge. The reference r is the average of the spectra
measured at 20 K. The bundles of continuous and dashed lines refer to
the signals s at 100 K and 300 K, respectively.

Table 1
Relative values of the first cumulants of the effective distribution and of
the first three cumulants of the real distribution of nearest-neighbours
distances and corresponding evaluated uncertainties at selected tempera-
tures for the Te K-edge.

�C1 (10�2 Å) �C �1 (10�2 Å) �C �2 (10�2 Å2) �C �3 (10�4 Å3)

100 K 0.187 � 0.06 0.265 � 0.07 0.089 � 0.006 0.21 � 0.04
200 K 0.448 � 0.06 0.713 � 0.07 0.281 � 0.003 0.79 � 0.1
300 K 0.704 � 0.06 1.17 � 0.07 0.45 � 0.005 1.6 � 0.18



with respect to the first effective cumulants �C1 (�0.06 �

10�2 Å).

3.2.2. Non-linear best fit. In the second procedure, back-

scattering amplitudes, phase shifts and inelastic terms were

calculated by the FEFF6 code (Rehr et al., 1992; Ankudinov et

al., 1998) and a non-linear best fit of calculated to experi-

mental spectra was then performed by the IFEFFIT code

(Newville, 2001) using the graphical interface Artemis (Ravel

& Newville, 2005).

The values of e0 (mismatch between theoretical and

experimental origin of k scales) and S 2
0 (amplitude reduction

factor) were left free in a first trial analysis; average values

were then calculated and maintained fixed in a further

analysis. To allow a direct comparison with the results from the

ratio method, the relative values of cumulants were calculated

by taking the lowest temperature as a reference.

The non-linear fit approach allowed us also to check the

possible leakage of longer scattering paths on the first-shell

contribution (see below).

4. Results

The main results of the first-shell analysis are summarized in

Fig. 6. The results from the Cd K-edge (left-hand panels) can

be directly compared with the results from the Te K-edge

(right-hand panel). Some significant parameters are listed in

Table 2.

The top plots in Fig. 6 show the relative values of the first

cumulant �C �1 of the real distribution, corresponding to the

bond thermal expansion: full circles and open circles are from

the ratio method and from FEFFIT, respectively. The

continuous line is the bond expansion �Rc proportional to the

lattice expansion measured by Bragg diffraction or dilato-

metric techniques (Touloukian et al., 1977). The difference

between the two thermal expansions corresponds to the

temperature variation of the perpendicular MSRD (Fornasini,

2001),

�C �1 � �Rc ¼ �h�u2
?i=2Rc: ð4Þ

To check the possible effects due to the leakage of the outer-

shells contributions on the first-shell signal, an alternative

analysis was performed on the filtered signal including the

single-scattering contributions of the first three coordination

shells and the most relevant multiple-scattering paths (Fourier

back-transform from 1.6 to 5.7 Å in Fig. 3). The results for the

first cumulant at the Cd K-edge are summarized in Fig. 7,

where solid circles and open symbols are from the ratio

method and the non-linear fitting procedures, respectively.

Open circles refer to the analysis of the filtered first-shell

signal (as in Fig. 6) made with a fixed energy shift e0 = 3.4 eV,

obtained as the average value over a first trial analysis. Open

triangles refer to the analysis of the signal including the first

three shells and the relevant MS paths: up triangles for e0 =

3.4 eV, as for the analysis limited to the first shell, down

triangles for e0 = 4.5 eV, obtained as the average value over

a first trial analysis. Fig. 7 suggests that leakage effects are

negligible for the case of CdTe.

This conclusion cannot be simply generalized to other

systems. Leakage effects cannot be a priori excluded by a
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Figure 6
Results of the first-shell analysis for CdTe. Left-hand and right-hand
panels refer to the Cd and Te edges, respectively. Top row: bond thermal
expansion from EXAFS (full circles from the ratio method, open circles
from non-linear fitting) and from Bragg diffraction and dilatometry
(continuous line). Second row: parallel MSRD �u2

k (circles) and halved
perpendicular MSRD �u2

?=2 (diamonds); the dashed lines are the best-
fitting Einstein models. Third row: third cumulant (full circles from the
ratio method, open circles from non-linear fitting); the dashed line is the
best fit by equation (5). Bottom row: fourth cumulant; the dashed line is
the best fit by equation (6).

Table 2
Comparison of the main parameters obtained from the Cd and Te
EXAFS analyses: best-fitting Einstein frequencies for the parallel and
perpendicular MSRDs, third-order force constant and zero point value of
the third cumulant.

Cd K-edge Te K-edge


k (THz) 3.9 � 0.03 3.88 � 0.005

? (THz) 1.84 � 0.02 1.82 � 0.02
k3 (eV Å�3) �1.92 � 0.03 �2.07 � 0.03
C �3 at 0 K (Å3) (0.33 � 0.05) � 10�5 (0.42 � 0.04) � 10�5



simple visual inspection of the Fourier transform plots. Non-

linear fitting including outer coordination shells is not neces-

sarily a conclusive check, since its reliability can be affected by

the evaluation of multiple-scattering effects and by correlation

effects. Besides, in case of discrepancy, no obvious reference

for calibration is at disposal, in view of the difference between

bond and lattice thermal expansions (see below, x5.3).

Leakage effects have been found to be significant when the

nearest neighbour (first shell) is a relatively weak scatterer

and the next nearest neighbour (second shell) is a relatively

strong scatterer as in InP (Schnohr, 2012).

The plots in the second row in Fig. 6 represent the parallel

MSRD h�u2
ki and the halved perpendicular MSRD h�u2

?i=2

(projected along one direction for example). The relative

values of the parallel MSRD correspond to the relative values

of the second cumulant �C �2 ; the relative values of the

perpendicular MSRD have been obtained from equation (4).

Absolute values of both parallel and perpendicular MSRDs

have been evaluated by fitting correlated Einstein models to

the temperature dependence of the experimental relative

values (Vaccari & Fornasini, 2006). The corresponding

Einstein frequencies are listed in Table 2. The agreement

between the Cd and Te results is very good. The second

cumulants of the real and effective distributions, C �2 and C2,

respectively, are connected by equation (3); the Einstein

frequencies for the effective distribution are 1% higher than

for the real distribution.

The plots in the third row in Fig. 6 represent the third

cumulants C �3 . The absolute values have been evaluated by

fitting the quantum perturbative model (Frenkel & Rehr,

1993; Yokoyama, 1999),

C �3 ’ �
2k3	

4
0

k0

z2 þ 10zþ 1

ð1� zÞ
2

; ð5Þ

to the experimental relative values. In equation (5), 	 2
0 =

h- =2�!, z ¼ expð��h- !Þ, ! = (k0/�)1/2, � is the reduced mass,

and ! = 2�
k and k0 are the Einstein angular frequency and

the force constant determined from the second cumulant. The

visual agreement between the Cd and Te values can be

considered to be quite good. A quantitative evaluation is given

by the parameters listed in Table 2. The 8% discrepancy

between the Cd and Te values of the force constant k3 is larger

than the combined error bars. The discrepancy is instead

consistent with the error bars for the asymptotic zero Kelvin

values. In the previous paper (Abd el All et al., 2012), the force

constants k0 and frequencies ! best fitting the second cumu-

lant C2 of the effective distribution were used in (5) (instead of

the second cumulant C �2 of the real distribution), so that

slightly different values of k3 were quoted (�2.09 and

�2.17 eV Å�3).

The lower plots in Fig. 6 represent the fourth cumulants C �4 .

The best fit of the Te data with the quantum perturbative

model (Yokoyama, 1999)

C �4 ¼ �
12 k4	

8
0

h- !

z3 þ 9z2 þ 9zþ 1

ð1� zÞ
3

�
144 k4	

8
0

kBT

z2

ð1� zÞ
4

þ
12 k2

3	
10
0

ðh- !Þ2
5z3 þ 109z2 þ 109zþ 5

ð1� zÞ
3

þ
720 k2

3	
10
0

h- !kBT

z2

ð1� zÞ
4

ð6Þ

(dashed line) gives a fourth-order force constant k4 = (�0.36

� 0.03) eV Å�4 and a zero point value 0.2 � 10�6 Å4. The

model best fitting the Te data is consistent with the Cd data.

5. Discussion

5.1. Uncertainty evaluation

A sound assessment of the uncertainty of EXAFS results

requires a careful evaluation of random fluctuations and

systematic errors in both experimental and data analysis

procedures.

The influence of counting statistics is generally negligible in

transmission measurements at third-generation synchrotron

radiation sources. A number of other factors, however, should

be taken into account: temperature fluctuations of the sample;

temperature fluctuations and mechanical instabilities of

monochromator, mirrors and their supports; calibration and

resolution of the monochromator angular encoder; electron

beam fluctuations. All these factors can lead to non-negligible

uncertainties of the photon energy and, on a non-perfectly

homogeneous sample, to variations of the amplitude of

EXAFS, not to mention possible systematic errors, related for

example to the sample temperature calibration, photon beam

energy calibration, sample deterioration, and so on.

Not all of these factors can reasonably be under complete

control of the synchrotron radiation users or even of the

beamline scientists. Suitable experimental strategies and data

analysis procedures, joined to a critical discussion of results,
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Figure 7
Comparison of nearest-neighbours bond expansions from different
procedures of Cd K EXAFS analysis: ratio method (full circles) and
non-linear fit (open symbols), limited to the first shell (open circles),
including the second and third shells (up and down triangles) for two
different e0 values. The uncertainty bars have been omitted for clarity.



can lead to a sound a posteriori evaluation of uncertainties and

of their most relevant causes.

As a general rule of experimental practice, EXAFS

measurements under given conditions (e.g. on a given sample

at a given temperature) should be repeated a convenient

number of times, typically at least three times. When this

happens, the different spectra are frequently summed to

obtain an average EXAFS function �(k). We consider it

preferable to analyse each spectrum separately. The resulting

cumulants represent a restricted sample of a parent popula-

tion of values generated by short-term fluctuations. It is

reasonable to account for these fluctuations by evaluating the

uncertainty as the standard deviation of the distribution of

mean values; this contribution to uncertainty decreases when

the number of spectra increases.

As a numerical example, let us consider the phase analysis

of seven files measured at 300 K at the Te K-edge and

compared with the average reference file at 20 K (Fig. 5,

dashed lines). For the fitting interval k = 4–14 Å�1, the values

of the odd cumulants of the effective distribution were �C1 =

(0.73 � 0.04) � 10�2 Å and �C3 = (1.65 � 0.11) � 10�4 Å3.

A second source of uncertainty is connected to the data

analysis procedure. Different windows and k weights in

Fourier transform and back-transform, as well as different

fitting intervals in k-space, lead to different values of cumu-

lants. In this respect the ratio method, based on the separate

analysis of phases and amplitudes, is far less affected by

statistical correlation effects than the non-linear fitting

procedures. The different values of cumulants obtained by

different choices of data analysis parameters cannot be

considered as independent samples of a parent distribution:

increasing the number of fitting intervals cannot decrease the

final uncertainty. The different values can be considered as

sampling a uniform distribution, and the corresponding

uncertainty can be evaluated as the standard deviation of the

distribution, 	n = �(�Cn)/(12)1/2. The point here is not the

repetition of the fitting procedure over a large number of

fitting intervals but a sound choice of the width �(�Cn) of the

uniform distribution, which in turn depends on the choice of

the extrema kmin and kmax of the fitting intervals. In the ratio

method the largest fitting interval can be chosen as the interval

where the phase differences (Fig. 5) or the logarithms of

amplitudes ratios (Fig. 4) of different files measured under the

same conditions show a reasonable agreement. The visual

choice suffers from some arbitrariness, but leads generally to

quite conservative estimates of uncertainty, in view of the

large sensitivity of the phase and amplitude plots to tiny

discrepancies of the spectra.

As a numerical example, let us consider again the phase

analysis of the seven files measured at 300 K at the Te K-edge

(Fig. 5, dashed lines) and focus on the first cumulant. The three

fitting intervals from kmin = 4 to kmax = 13, 14 or 15 Å�1

give different average values of the first cumulants �C1 =

0.678, 0.73 and 0.8 � 10�2 Å; the contribution to the total

uncertainty is 0.035 � 10�2 Å.

An important contribution to the evaluation of uncertainty

is represented by the comparison of independent measure-

ments performed on the same system, for example in different

laboratories or on samples of different thicknesses and

possibly at two different absorption edges. From Fig. 6 one

can appreciate the extent of the differences between the

measurements performed on different edges, at two different

beamlines, in different times, on samples with different

thicknesses.

A last point for the evaluation of the quality of results is the

comparison of the temperature dependence of the cumulants

with a reasonably smooth behaviour. An interesting example

is given by the sequence of cumulants obtained from the Te

and Cd edges between 50 and 150 K (Fig. 6). In the right-hand

panels of Fig. 6 (Te K-edge) the quantities derived from the

phase analysis (odd cumulants and perpendicular MSRD) are

characterized by a tiny deviation from the expected smooth

temperature dependence; this effect is absent in the left-hand

panels of Fig. 6 (Cd K-edge). In the present case the discre-

pancies between the results from Te and Cd edges are

consistent with the uncertainty bars: one can reasonably

assume that, had a larger number of spectra been measured at

each temperature, the Te data would have been in better

agreement with a smooth temperature dependence. We

cannot, however, exclude the possibility that the observed

kinks are due to long-period fluctuations of the experimental

apparatuses or to occasional systematic errors, which escaped

our direct detection anyway; in such a case they can be

considered as a measure of the extent of long-term reprodu-

cibility of a routine experiment performed on a standard

beamline.

5.2. Comparisons with theoretical models

The agreement between the results from EXAFS measured

at two different edges and the smooth temperature depen-

dence of cumulants are internal self-consistency experimental

checks. External accuracy checks can rely on the comparison

of experimental results with theoretical models.

The simplest approach consists of comparing the tempera-

ture dependence of structural and dynamical quantities from

EXAFS with parametrized models, for example the correlated

Einstein or the correlated Debye models for the parallel and

perpendicular MSRDs (Vaccari & Fornasini, 2006) and more

refined anharmonic models, such as equations (5) and (6) for

high-order cumulants (Frenkel & Rehr, 1993; Yokoyama,

1999). The agreement of experimental data with parametrized

models is generally a good check that there are no significant

systematic experimental errors and that the cumulant series

converges fast enough, so that the polynomial coefficients ~CCn

are good approximations of the corresponding cumulants C �n
(Dalba et al., 1993). A non-negligible disagreement could be

attributed to different causes, such as the low quality of

experimental data, the non-convergence of the cumulant

series and the presence of phase transitions. The evaluation of

the soundness of experimental cumulants through a compar-

ison of their temperature dependence with theoretical models

is a sensible practice, in view of the relatively limited range of
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validity of the cumulant expansion (Crozier et al., 1988; Dalba

et al., 1993; Filipponi, 2001).

The Einstein and Debye models are different at low

temperatures, owing to the different approximations to the

density of vibrational states (VDOS), the Debye VDOS being

in principle more realistic. The difference can, however, be

barely appreciated when fitting to experimental data, in view

of the data uncertainty and of the anharmonicity contribu-

tions. The Debye model is recommended for monatomic

Bravais crystals, for which the Debye temperature is very

similar for the different coordination shells and comparable

with the Debye temperatures from other techniques (Forna-

sini et al., 2004). For non-Bravais crystals the Debye

temperatures can be very different for different coordination

shells. The Einstein frequencies are different for different

coordination shells too; an advantage of the Einstein model is

that the Einstein frequencies are directly connected to effec-

tive force constants, k0 = 4�2�
2
k, which measure the effective

strength of the bond between absorber and backscatterer

atoms. The discrepancy between the best-fitting Einstein

model and the MSRDs calculated by dynamical simulations on

different crystalline structures has been estimated recently

(Sanson, 2008), and found to be no larger than 5% and 10%

for the parallel and perpendicular MSRDs, respectively.

The comparison of the third and fourth cumulants with the

quantum perturbative models of equations (5) and (6) is a

more refined test. For CdTe, the agreement is good for the

third cumulant, and satisfactory for the fourth (Fig. 6).

Full lattice dynamical calculations (Baroni et al., 2001) in

harmonic approximation can in principle reproduce the

MSRDs, both parallel (Beni & Platzman, 1976; Strauch et al.,

1996) and perpendicular (Vaccari & Fornasini, 2006), provided

a good evaluation of the phase relations between eigenvectors

of the dynamical matrix is achieved. Anharmonicity effects

(including third cumulant and anharmonic corrections to the

MSRDs) can be obtained by a perturbative approach (Birner

et al., 2001).

Classical molecular dynamics (MD) simulations intrinsically

take into account anharmonicity. The high-temperature

behaviour of the EXAFS cumulants has been well reproduced

for copper (Edwards et al., 1997), germanium (Sanson, 2010)

and CdSe (Sanson, 2011). Classical MD, however, cannot

reproduce low-temperature quantum effects caused by zero-

point energy in thermal expansion, MSRDs and the third

cumulant. A purely classical treatment of the experimental

third cumulant, supported by classical MD calculations, can

lead to subtle inconsistencies in the analysis and interpretation

of EXAFS results. An interesting example is the negative shift

of the effective pair potential when temperature increases,

hypothesized for AgI and CdSe to explain the results of the

classical treatment (Dalba et al., 1994, 1998; Sanson, 2011).

More effective, though more complex, approaches, rely on

ab initio MD (Vila et al., 2012) or on the path-integral tech-

nique, based on Monte Carlo sampling (PIMC) or on the use

of an effective classical potential (Miyanaga et al., 2000). A

good reproduction of the experimental data for copper has

been obtained by PIMC (a Beccara et al., 2003; a Beccara &

Fornasini, 2008), including the perpendicular MSRD and the

relation between the third cumulant and thermal expansion

(see below).

5.3. EXAFS and crystallographic distances

The ratio method only gives relative values of the first-shell

cumulants with respect to the reference temperature. In

principle, absolute values can be obtained by a non-linear fit of

simulated spectra to the experimental ones (Rehr et al., 1992;

Ankudinov et al., 1998; Newville, 2001). However, the accuracy

of the absolute values of distances and Debye–Waller factors

critically depends on the accuracy by which backscattering

amplitudes, phase shifts and inelastic terms are calculated, and

can be assessed only by comparison with known standards.

The comparison with standards is far from trivial

concerning the nearest-neighbours bond distance, in view of

the non-negligible difference between EXAFS and crystal-

lographic values C �1 = hri and Rc, respectively,

C �1 ¼ Rc þ h�u2
?i=2Rc: ð7Þ

A calibration of EXAFS simulations against crystallographic

distances can be misleading if accuracies of the order of some

0.001 Å are sought (Chantler et al., 2012a).

The ratio method allows a direct evaluation of the

temperature dependence of the bond distance, without refer-

ence to the crystallographic distance. In the top row of Fig. 6,

the variations �C �1 and �Rc, independently measured, are

compared assuming a common zero value for T = 0 K. Once

the absolute values of the perpendicular MSRD have been

estimated by the best-fitting Einstein model (Fig. 6, second

row), the difference between EXAFS and crystallographic

bond distances can be calculated through equation (4). Fig. 8

shows that the difference for CdTe is of the order of 0.002 Å at

low temperatures and increases up to 0.011 Å at 300 K. The

discrepancy between EXAFS and crystallographic distances

depends on the intensity of relative vibrations perpendicular
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Figure 8
Bond expansion measured by EXAFS (circles and diamonds are from Te
and Cd edges, respectively) compared with the crystallographic bond
expansion (continuous line). The zero of the vertical axis has been
arbitrarily set in correspondence of the crystallographic bond length
at 0 K.



to the bond. Three different situations are compared in Table 3

in order of increasing intensity of perpendicular vibrations:

copper (Fornasini et al., 2004), germanium (Dalba et al., 1999)

and CdTe (present).

5.4. Third cumulant

The inclusion of the third cumulant in the analysis of the

first shell is necessary to obtain reliable information on

distances. As an example, let us consider a typical plot of

phase differences, such as Fig. 5: neglecting the third cumulant

corresponds to fitting the phase difference with a horizontal

straight line. In the case of CdTe at 300 K this would corre-

spond to underestimating the difference in nearest-neighbour

distances between 300 and 0 K by about 0.003 Å (assuming a

fit interval from 4 to 13 Å�1). The error decreases when the

temperature is lowered.

The third cumulant measures the asymmetry of the distri-

bution of distances, which is connected to the asymmetry of

the effective pair potential. Contrary to the case of two-atomic

molecules, it has been experimentally observed that in many

atomic systems the expansion of the nearest-neighbour

distance is not completely accounted for by the asymmetry of

the effective pair potential (Dalba et al., 1999; Fornasini et al.,

2004; Vaccari et al., 2007; Abd el All et al., 2012; Yokoyama &

Eguchi, 2011). An additional rigid shift of the effective pair

potential with temperature has to be assumed in order to

reproduce the expansion measured by the first cumulant.

The presence of a rigid shift of the maximum of the distance

distribution, corresponding to the minimum of the effective

pair potential, has been confirmed for Cu by path-integral

Monte Carlo simulations (a Beccara & Fornasini, 2008) and

for Ge by MD simulations (Sanson, 2010). In both cases the

simulations further show that the contribution of the potential

asymmetry to thermal expansion is much smaller for the outer

shells than for the first shell. The outer-shell distributions are

to a good approximation Gaussian, and the thermal expansion

of their average distances is accounted for mainly by their

rigid shift. In conclusion, no reliable information on thermal

expansion can be obtained from the third cumulant. From a

practical point of view, the reduced asymmetry of the outer-

shells distributions suggests that the inclusion of the third

cumulant, which is mandatory for accurate first-shell analyses,

is much less important for the outer shells.

6. Conclusions

The evaluation of the accuracy of temperature-dependent

EXAFS measurements performed at standard synchrotron

radiation beamlines has been discussed with reference to the

results of a recent experiment on CdTe, where the Cd and Te

edges have been independently measured at different beam-

lines.

Attention has been focused on the relative values of the first

four cumulants of the nearest-neighbour distribution of

distances. The analysis has been performed by both the ratio

method and the non-linear fit procedure based on the FEFFIT

software: the results of the two methods are in good agree-

ment. The non-linear fit procedure has allowed us to check

that the leakage of longer paths on the first-shell contribution

is negligible for the present case of CdTe.

The accuracy of experimental results has been evaluated by

separately considering the contributions of the differences

between repeated measurements at the same temperature and

the different data analysis procedures (including different

fitting intervals). The results from the Cd and Te edges are in

good agreement up to the fourth cumulant and consistent with

a smooth temperature dependence of cumulants.

A difference between EXAFS and crystallographic nearest-

neighbour distances of about 1.8 � 10�3 Å at 5 K and 11.5 �

10�3 Å at 300 K was found. These differences are larger than

the differences previously found for Cu and Ge.

Possibilities and limitations of accuracy checks based on the

comparison of experimental results with theoretical predic-

tions have been discussed on general grounds, including the

relative merits of the phenomenological Einstein and Debye

models as well as of the molecular dynamics and of more

sophisticated simulation techniques based on path-integral

methods.
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