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An X-ray dynamical diffraction Fraunhofer holographic scheme is proposed.

Theoretically it is shown that the reconstruction of the object image by visible

light is possible. The spatial and temporal coherence requirements of the

incident X-ray beam are considered. As an example, the hologram recording as

well as the reconstruction by visible light of an absolutely absorbing wire are

discussed.
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1. Introduction

In an earlier work by Aristov & Ivanova (1979), X-ray holo-

graphic schemes were analyzed. It was indicated that X-ray

holography schemes can be constructed on the basis of the

methods of X-ray diffraction optics. Nowadays, various X-ray

holographic schemes are proposed: holographic methods in

X-ray crystallography (Szöke, 1998; Anduleit & Materlik,

2003; Hau-Riege et al., 2004), X-ray atomic-resolution holo-

graphy (Novikov et al., 1998), X-ray fluorescence holography

(Chukhovskii & Poliakov, 2004), X-ray holography for mosaic

crystals (Korecki et al., 2004), X-ray diffuse-scattering holo-

graphy (Kopecký, 2004) and grating-based holography

(Nygård et al., 2010).

In the visible-light optics various holographic schemes are

used: Fresnel holography methods of in-line (Gabor) and off-

axis holographies, Fraunhofer holography, Fourier holography

and interferometric holography (Caulfield, 1979; Hariharan,

2002). The corresponding analogues in the hard X-ray region

nowadays are presented [in all the hard X-ray holographic

methods the reconstruction can be performed using visible

light or numerical (mathematical) methods of reconstruction]:

X-ray interferometric holography (Egiazaryan & Bezir-

ganyan, 1980; Egiazaryan, 1998; Egiazaryan et al., 1998, and

references therein), X-ray in-line holography (Snigirev et al.,

1995; Nugent et al., 1996; Paganin, 2006, and references

therein), X-ray Gabor and Fourier holography (Leitenberger

& Snigirev, 2001; Watanabe et al., 2003; Iwamoto & Yagi, 2011,

and references therein). According to the method of X-ray

interferometric holography, a three (Egiazaryan & Bezir-

ganyan, 1980; Egiazaryan, 1998) or four block (Egiazaryan et

al., 1998) X-ray Laue case interferometer must be used. An

object is placed in one of the arms of the interferometer. The

beam passing along the other arm of the interferometer is the

reference wave. The hologram is recorded in one of the beams

emerging from the third or fourth block of the interferometer.

The subsequent illumination of the hologram by the light

reconstructs the image of the object. In Momose’s technique

(Momose, 1995) the image reconstruction is performed by

Fourier-transform mathematical methods of reconstruction.

Gabrielyan (1990) proposed a method of reconstruction of the

visible image of an X-ray point source. According to this

method the crystal-diffraction X-ray image of a point source,

placed on the entrance surface of a plane-parallel perfect

crystalline plate, must be used. Two branches of a dispersion

surface must be taken into account. The intensity of the

diffraction pattern in the diffracted field (Kato’s spherical

pendelosung fringes) is recorded on a photographic plate. By

illuminating this photographic plate by a wave of visible light,

one reconstructs the X-ray point-source visible image. In the

works of Leitenberger & Snigirev (2001) and Watanabe et al.

(2003), the necessary X-ray point reference source is obtained

as a result of focusing by an X-ray zone plate. X-ray Fourier

and Gabor holograms are recorded in a vacuum. The recon-

struction can be performed by X-rays, by visible light or using

numerical methods of reconstruction. In the work of Iwamoto

& Yagi (2011), hard X-ray Fourier holography for imaging

nanoscale objects is used. Nanoscale objects have low scat-

tering amplitudes. To overcome this problem the authors used

arrays of such objects each with its own reference. Balyan

(2010) pointed out the possibility of an X-ray dynamical

diffraction Fourier holographic scheme based on double-slit

dynamical diffraction.

In general, holograms can be recorded in a medium using

radiation with any wavelength and can be reconstructed in

another medium using radiation with another wavelength.

The scheme presented in this paper (Fig. 1) can be regarded

as an X-ray dynamical diffraction Fraunhofer holography

method. The hologram is recorded using hard X-ray dyna-

mical diffraction in a perfect plane-parallel crystalline plate.

The subsequent reconstruction can be performed using

visible-light illumination of the hologram or numerical
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(mathematical) methods of reconstruction. The theoretical

background of the scheme is given and the proposed scheme is

investigated theoretically.

2. X-ray dynamical diffraction Fraunhofer holography

For the holographic scheme of Fig. 1, the reference wave is a

plane wave. The object is placed in the path of the incident

plane wave. In the crystal, under the condition of two-wave

dynamical Laue-case symmetrical diffraction, the reference

plane wave and the object wave interfere and on the exit

surface of the crystal an interference pattern is formed. By

recording this interference pattern in the diffracted field, one

obtains an X-ray hologram of the object. Illuminating the

hologram by visible light or using numerical methods, the

reconstruction of the object image is obtained.

2.1. X-ray Fraunhofer hologram recording

In the two-wave approximation the amplitude Eh of the

diffracted wave of an X-ray beam in a crystal for the Laue

symmetric case of diffraction can be presented as (Authier,

2001; Pinsker, 1982)

Eh ¼
Rþ1
�1

Gðx� x 0; zÞE iðx 0; yÞ½1� Sðx 0; yÞ�

� expðik cos �0��x 0Þ dx 0; ð1Þ

where

Gðx; zÞ ¼ ik�hCJ0 � cot �0 z2 tan2 �0 � x2
� �1=2

=�
h i

� exp½ik�0z=ð2 cos �0Þ�Hðz tan �0 � jxjÞ

=ð4 sin �0Þ ð2Þ

is the point-source function (the case of spherical-wave

dynamical theory), E iðx 0; yÞ is the amplitude of the incidence

wave, S(x, y) = 1 � t(x, y) is the scattered amplitude of the

object, t(x, y) is the complex amplitude transmission coeffi-

cient of the object, � is the wavelength of X-rays, k = 2�/� is

the wavenumber, � = � cos �0=½Cð�h� �hhÞ
1=2
�, C is the polariza-

tion factor (C = 1 for �-polarization and C = cos2�0 for �-

polarization), �0, �h, � �hh are the crystal dielectric susceptibility

Fourier components corresponding to the zero and h reflec-

tion, �0(�) is the Bragg exact angle for the wavelength �, H(x)

is the step function, H(x) = 1 if x > 0, H(x) = 0 if x < 0, and J0 is

the zero-order Bessel function. In Fig. 1 the coordinate system

Oxyz, with Oy axes perpendicular to the diffraction plane, is

shown. The diffraction vector h is anti-parallel to the Ox axis,

� is the angle between the direction of the incident beam and

the reflecting planes, and �� = � � �0(�) is the deviation from

the exact Bragg angle for given �. S(x, y) is defined in the

range x 2 ð�1;1Þ, y 2 ð�1;1Þ and is equal to 0 outside

the object x =2 ð�a; aÞ. The formula (1) can be presented as the

sum of two terms. The first term in (1) is the wavefield

amplitude Eh ref without any object (reference-wave ampli-

tude) and the second term is the influence Eh obj of the object

on the amplitude of the wavefield (object-wave amplitude).

Thus,

Eh ¼ Eh ref þ Eh obj: ð3Þ

The intensity distribution over the exit surface of the crystal

(z = T)

Ih ¼ Eh

�� ��2¼ Eh ref

�� ��2þEh refE
�
h obj þ E �h refEh obj þ Eh obj

�� ��2: ð4Þ
Recording the intensity distribution (4) on a photographic

plate gives the so-called hologram of the object.

2.2. X-ray reference wave

According to (1) and (3),

Eh ref ¼ iE i
0�h exp ik�0T=ð2 cos �0Þ

� �
expðik cos �0��xÞ

� sin kT �h� �hh þ��2 sin2 2�
� �1=2

=ð2 cos �0Þ

h i

= �h� �hh þ��2 sin2 2�
� �1=2

; ð5Þ

where E i
0 is the amplitude of the incident plane wave and T is

the thickness of the crystal. Hereafter E i
0 = 1 is taken.

Without loss of generality, for definiteness, the case of a

centre-symmetrical crystal is considered. It is assumed that

�0 = �0r + i�0i, �h = � �hh = �hr + i�hi, �0r < 0, �hr = � �hhr < 0, �hi =

� �hhi > 0, �hi << j�hrj, �hi ffi �0i > 0. In the case �T >> 1, where � =

k�0i is the normal linear absorption coefficient of the cryatal,

only the weakly absorbing branch of the dispersion surface for

�-polarization can be taken into account. Thus, the amplitude

of the reference wave can be written in the form

Eh ref ¼ � exp ik�0rT=ð2 cos �0Þ
� �

exp ��dð pÞT=ð2 cos �0Þ
� �

� exp ik cos �0��xð Þ exp i�T 1þ p2
� �1=2

=�r

h i

= 2 1þ p2
� �1=2

h i
; ð6Þ

where �dð pÞ = �½1� ð�hi=�0iÞ=ð1þ p2Þ
1=2
� is the diffraction

linear absorption coefficient for the weakly absorbing branch,

�r = Re � is the extinction length, p = �� sin 2�=j�hrj.

2.3. X-ray hologram of a point object

According to (1) and (3),

Eh obj ¼ �
R1
�1

Gðx� x 0;TÞSðx 0; yÞ expðik cos �0��x
0Þ dx 0:

ð7Þ
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Figure 1
X-ray dynamical diffraction Fraunhofer hologram recording scheme. RP,
reflecting planes. PhP, photographic plate. The axes of the coordinate
system are shown.



In the case of X-ray diffraction, the object can be regarded as a

point object if a << j�j tan �0=� (Slobodetskii & Chukhovskii,

1970). In this case, according to (7),

Eh obj ¼ �2a ~SSð yÞGðx;TÞ; ð8Þ

where ~SSð yÞ =
R1
�1

Sðx 0; yÞ expðik cos �0��x
0Þ dx 0=ð2aÞ. In the

case k cos �0��a << �,

~SSð yÞ ¼
R1
�1

Sðx 0; yÞ dx 0=ð2aÞ: ð9Þ

In the visible-light optics one of the simple and classical

objects for holography is a completely absorbing wire, Sðx; yÞ=

1 for x 2 ð�a; aÞ and Sðx; yÞ = 0 for x =2 ð�a; aÞ (Caulfield,

1979).

For the case �T=j�j >> 1 the well known asymptotic

behaviour of Bessel function J0ðxÞ ’ ð2=�xÞ1=2 cosðx� �=4Þ

can be used. Using the identity cosðx� �=4Þ = {exp½iðx� �=4Þ�

+ exp½�iðx� �=4Þ�}/2 as well as the approximation

ðT 2 tan2 �0 � x2Þ
1=2
’ T tan �0½1� x2=ð2T 2 tan2 �0Þ� and taking

into account only the weakly absorbing mode of �-polariza-

tion, the following expression from (8) can be obtained,

Eh obj ’ 2a
2

T�r

� �1=2

expði�=4Þ cot �0
~SSð yÞ exp

i�T

�r

� �

� exp
ik�0rT

2 cos �0

� �
exp �

�dð0ÞT

2 cos �0

� �

� exp �
i�x2

2T�r tan2 �0

� �
exp �

�x2�

2T�r tan2 �0

� �

�HðT tan �0 � jxjÞ=4; ð10Þ

where � = �hi=j�hrj. According to (6) and (10), the intensity

distribution (4) on the hologram is

Ihð p; x; yÞ ¼ Að pÞ
h

1� 2aU �ð pÞ ~SS
�
ð yÞ exp i�þ

� �
� 2aUð pÞ ~SSð yÞ exp i��ð Þ

þ 4a2�ð pÞ ~SS
�
ð yÞ ~SSð yÞ exp

	
�

�x2�

T�r tan2 �0


i
; ð11Þ

where �� = ��x2ð1� i�Þð2T�r tan2 �0Þ
�1
� k cos �0��x. The

notations A(p) = exp½��dð pÞT cos�1 �0�½4ð1þ p2Þ�
�1, Uð pÞ =

�1=2ð pÞ expði�=4Þ exp½�i�Tuð pÞ��1
r �, uð pÞ = ð1þ p2Þ

1=2
� 1,

	dð pÞ = �dð0Þ � �dð pÞ, �ð pÞ = ð1þ p2Þ exp½�	dð pÞT cos�1 �0�

cot2 �0ð2T�rÞ
�1 are also used. The hologram is recorded in the

region jxj < T tan �0.

In Fig. 2, using (5) and (7), the numerical calculated

intensity distribution (4) for a completely absorbing wire, with

the axis perpendicular to the diffraction plane, is shown. The

case of Si(220) reflection, � = 0.71 Å (17.46 keV) radiation,

�� = 0, T = 5 mm, a = 5 mm, �-polarization is taken, �T = 7.3.

In Fig. 3 the hologram of a wire of size 2a = 1 mm is presented.

The contrast is worse since the wire of size 2a = 1 mm has lower

scattering amplitude than the wire of size 2a = 10 mm. The

necessary data are taken from Pinsker (1982).

2.4. X-ray Fraunhofer hologram of an object

If the condition a	 j�j tan �0=� is not fulfilled, in (7) one

can use the approximation

T 2 tan2 �0 � ðx� x 0Þ
2

� �1=2
’ T tan �0

�
1� x2=ð2T 2 tan2 �0Þ

þ xx 0=ðT 2 tan2 �0Þ

� x 0 2=ð2T 2 tan2 �0Þ
�
:

The quadratic on x 0 term can be neglected if

�a2=ð2T�r tan2 �0Þ 	 �. This approximation is equivalent to

the well known approximation in the Fraunhofer zone of

diffraction in visible-light optics. Using this approximation,

similarly to (10), one can write

Eh obj ’
2

T�r

� �1=2

expði�=4Þ cot �0
~SSðx; yÞ exp

i�T

�r

� �

� exp
ik�0rT

2 cos �0

� �
exp �

�dð0ÞT

2 cos �0

� �

� exp �
i�x2

2T�r tan2 �0

� �
exp �

�x2�

2T�r tan2 �0

� �

�HðT tan �0 � a� xj jÞ=4; ð12Þ

but now
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Figure 2
Intensity distribution of a completely absorbing wire on the dynamical
diffraction hologram. The size of the wire 2a = 10 mm.

Figure 3
Intensity distribution of a completely absorbing wire on the dynamical
diffraction hologram. The size of the wire 2a = 1 mm.



~SSðx; yÞ ¼
Ra
�a

Sðx 0; yÞ exp½i�xx 0=ðT�r tan2 �0Þ�

� expðik cos �0��x 0Þ dx 0;

i.e. as in the visible-light optics ~SSðx; yÞ is the Fourier transform

of Sðx; yÞ. Inserting (6) and (12) into (4) for the intensity

distribution on the hologram we have

Ihð p; x; yÞ ¼ Að pÞ
h

1� U �ð pÞ ~SS
�
ðx; yÞ exp i�þ

� �
� Uð pÞ ~SSðx; yÞ exp i��ð Þ

þ �ð pÞ ~SS
�
ðx; yÞ ~SSðx; yÞ exp

	
�

�x2�

T�r tan2 �0


i
:

ð13Þ

The hologram is recorded in the region jxj < T tan �0 � a.

This formula is equivalent to the Fraunhofer hologram

intensity distribution in visible-light optics (Caulfield, 1979).

2.5. Requirements of temporal and spatial coherence of the
incident X-ray beam

The formulae above are written for a monochromatic beam

and for a source with zero size. Real incident beams are not

monochromatic and real sources have finite sizes. The coher-

ence requirements can be obtained by the method described

by Mocella et al. (2000). The polychromaticity and the source

size do not change the intensity profile on the hologram if

2T tan �0 sin �0 	 �2=ð2��mÞ ¼ lc; ð14Þ

2T sin �0 l 	 �Ls; ð15Þ

where lc is the longitudinal coherence length,

�m ���m < � < �m þ��m, l is the source size in the

diffraction plane and Ls is the mean distance of the source

from the crystal.

3. Reconstruction by visible light using an X-ray
Fraunhofer hologram

For reconstruction the hologram is placed in the path of visible

light. We assume a linear recording range of the hologram

recording process. Also the amplitude transmittance of the

hologram is a linear function of the intensity registered by the

hologram (Hariharan, 2002). The light passing through the

hologram and diffracting in a vacuum can give the real and the

virtual images of the object. In the visible-light optics at a

certain distance from the hologram the second term of (4)

gives the real direct image of the object and can be registered

without any lens; meanwhile the third term gives the virtual

image of the object and reconstructs the field of the object

with its amplitudes and phases. This part of the reconstructed

field can be registered visually or by using a lens. In the X-ray

case, when only the weakly absorbing branch of �-polarization

is taken into account, the real image is formed by the third

term of (4). This assumption is clearly seen from (11) and (13).

In this section the coordinates x; y; z are parallel to the

corresponding coordinates connected with the crystal, but now

z is counted perpendicular to the hologram plane (z = 0). We

assume that the disturbance incident on the hologram wave

is a scalar monochromatic spherical wave with amplitude

exp½ik0ðx
2 þ y2Þ=ð2L0Þ�=L0, where L0 is the distance of the

source from the hologram. The wave propagates along the Oz

axis perpendicular to the hologram plane. According to the

Huygens–Fresnel principle the amplitude of the light at a

distance z = L is given as a convolution,

Erec ¼
1

L0

Zþ1

�1

P x� x 0; y� y 0;Lð Þ

� exp ik0

x 0 2 þ y 0 2

2L0

� �
Ihðx

0; y 0Þ dx 0 dy 0; ð16Þ

where the integration is performed along the plane of the

hologram (the constant amplitude of the incident wave is

taken as 1) and Pðx; y; zÞ = �ik0ð2�zÞ
�1 exp½ik0ðx

2 þ y2Þ=ð2zÞ�

is the Fresnel propagator (Paganin, 2006), k0 = 2�=�0 is the

wavenumber and �0 is the wavelength of visible light.

3.1. Reconstruction by visible light using a point object X-ray
hologram

In this case formula (11) can be used. Inserting the first term

of (11) into (16) and performing integration one obtains the

reconstructed reference wavefield amplitude (propagating

along Oz) at a distance z = L,

Erec1 ¼
Að pÞ

ðLþ L0Þ
exp ik0

x2 þ y2

2ðLþ L0Þ

� �
: ð17Þ

Here the subscript 1 means the reconstructed field amplitude

of the first term of (11). For the amplitude of the reconstructed

field of the third term of (11), one can find

Erec3 ¼ � 2aAð pÞUð pÞ ~SS3ð y;LÞ
exp ik0ðx

2=2LÞ
� �

L
1=2
0 ð1� L=Lf þ i�L=FÞ

1=2

� exp �ik0

ðxþ Lk cos �0��=k0Þ
2

2Lð1� L=Lf þ i�L=FÞ

� �
; ð18Þ

where

~SS3ð y;LÞ ¼ expð�i�=4Þ
k0

2�LL0

� �1=2 Zþ1

�1

Za

�a

Sðx 0; y 0Þ

� exp ik0

ð y� y 0Þ
2

2L
þ

y 0 2

2L0

� �
 �
dx 0 dy 0=ð2aÞ; ð19Þ

F ¼
2T tan2 �0 cos �0

�hr

�� �� �

�0

; ð20Þ

1=L0 þ 1=Lf ¼ 1=F: ð21Þ

If Sðx; yÞ is a slowly varying function of y then integration over

y 0 can be performed by the stationary phase method and

finally

research papers

752 Minas Balyan � Fraunhofer holography J. Synchrotron Rad. (2013). 20, 749–755



~SS3ð y;LÞ ¼
1

Lþ L0

� �1=2

exp ik0

y2

2ðLþ L0Þ

� �

�

Za

�a

S x 0; yL0=ðLþ L0Þ
� �

dx 0=ð2aÞ: ð22Þ

The term (18) corresponds to the real direct image of the

object. The real image geometrically is focused at the distance

Lf , defined in (21). The xf coordinate of the focused image on

the geometrical focusing plane is defined by the relation

xf ¼ �ð�=�0ÞLf cos �0��: ð23Þ

The focus spot size on the geometrical focusing plane is

�xf ¼ ðLf=FÞð�F=k0Þ
1=2: ð24Þ

The minimum size of the focus point is reached at the distance

L0f ¼
Lf

1þ �2ðLf=FÞ
2
: ð25Þ

According to (25) the distance L0f is approximately equal to Lf

when ðLf=FÞ
2
	 1=�2. Since � ’ 10�2 then for Lf 
 102F the

distance L0f can significantly differ from Lf . The focus spot size

at the distance L0f is defined by the expression

�x 0f ¼
Lf

F 1þ �2ðLf=FÞ
2

� �1=2

�F

k0

� �1=2

: ð26Þ

If any other point object is placed along Ox at the distance �x

from the first one, then the focus coordinate of the second

object will be

xf1 ¼ �ð�=�0ÞLf cos �0�� þ Lf�x=F: ð27Þ

Thus the image is direct and the distance between the images

is xf1 � xf ¼ Lf�x=F. The magnification

M ¼ ðxf1 � xfÞ=�x ¼ Lf=F: ð28Þ

As can be seen from (18), the centre of the real image

propagates along the direction which forms with Oz an angle

 ¼ �ð�=�0Þ cos �0��: ð29Þ

If �� 6¼ 0, the real image and the reconstructed reference

wave are separated.

Similarly, for the amplitude of the reconstructed field of the

second term of (11) we find

Erec2 ¼ � 2aAð pÞU �ð pÞ ~SS2ð y;LÞ

�
exp ik0 x2=2Lð Þ

� �
L

1=2
0 1� L=Lf2 þ i�L=Fð Þ

1=2

� exp �ik0

ðx� Lk cos �0��=k0Þ
2

2Lð1� L=Lf2 þ i�L=FÞ

� �
; ð30Þ

where

1=L0 þ 1=Lf2 ¼ �1=F ð31Þ

and

~SS2ð y;LÞ ¼
1

Lþ L0

� �1=2

exp ik0

y2

2ðLþ L0Þ

� �

�
Ra
�a

S � x 0; yL0=ðLþ L0Þ
� �

dx 0=ð2aÞ: ð32Þ

The distance Lf2 is the distance of the reconstructed virtual

image of the object and Lf2 < 0. The virtual image coordinate is

defined as

xf2 ¼ ð�=�0ÞLf2 cos �0��: ð33Þ

According to (33) the reconstructed virtual image centre

propagates along the direction which, with Oz, forms an angle

� . Thus the angle between the directions of propagation of

the real and virtual images is 2j j. This means that, in the case

�� 6¼ 0, the proposed holographic scheme is an off-axis

scheme.

Since the focus spot size (24) and the magnification (28) are

proportional to Lf=F, the resolution of the scheme for the

hologram with infinite size can be estimated as

�res ’ 2ð�F=k0Þ
1=2: ð34Þ

The reconstructed field amplitude of the fourth term of (11) is

proportional to 4a2 and is small compared with the first,

second and third terms (the second and third terms are

proportional to 2a) of the reconstructed field. This term of the

reconstructed field has a Gaussian form and propagates along

Oz. The half-width of the Gaussian increases with increasing L

and the amplitude decreases. In visible-light optics this term is

the so-called autocorrelation of the object image. This term is

not considered below.

For the example considered in x2.2 and for �0 = 0.65 mm,

using (20) one can estimate F = 19.8 mm ’ 20 mm. Since F is

sufficiently small, significant magnification can be achieved.

The resolution (34) can be estimated, �res ’ 8 mm. In Figs. 4

and 5 the numerically calculated intensity distributions jErecj
2

[see (16)] in the focusing plane (z = F) corresponding to the

cases in Figs. 2 and 3 are shown. It is assumed that the image is

reconstructed by a monochromatic scalar plane wave. As seen

in Figs. 4 and 5, the image of the wire is completely recon-

structed. It is interesting to compare Figs. 2, 3 and Figs. 4, 5

with the corresponding results in visible-light optics (Caulfield,

1979). The comparison shows the obvious analogy between

the results.

3.2. Reconstruction by visible light using a Fraunhofer X-ray
hologram

In this case we must use the formula (13). Instead of the

formula (18) now we obtain

Erec3 ¼ � Að pÞUð pÞ ~SSðx; y;LÞ

�
exp ik0ðx

2=2LÞ
� �

L
1=2
0 1� L=Lf þ i�L=Fð Þ

1=2
; ð35Þ

where
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~SSðx; y;LÞ ¼
1

Lþ L0

� �1=2

exp ik0

y2

2ðLþ L0Þ

� �

�
Ra
�a

S x 0; yL0=ðLþ L0Þ
� �

expðik cos �0��x 0Þ

� exp �ik0

ðxþ Lk cos �0��=k0 � x 0L=FÞ
2

2Lð1� L=Lf þ i�L=FÞ

� �
dx 0:

ð36Þ

One can perform the integration over x 0 taking out under the

integral sign the value of Sðx 0; y 0Þ at the point x 0 =

ðxþ Lk cos �0��=k0ÞF=L. After performing the integration

over x 0 for Erec3, one finds

Erec3 ¼ �
2�L

k0L0

� �1=2
F

L
Að pÞUð pÞ

� expð�i�=4Þ exp ik0

x2

2L

� �
S3ðx; y;LÞ; ð37Þ

where

S3ðx; y;LÞ ¼
1

Lþ L0

� �1=2

exp ik0

y2

2ðLþ L0Þ

� �

� exp ik cos �0��
Fðxþ Lk cos �0��=k0Þ

L

� �

� exp ik0

ð1� L=LfÞðkF cos �0��=k0Þ
2

2L

� �

� exp �
ð�resk cos �0��Þ

2

2

� �

� S½Fðxþ Lk cos �0��=k0Þ=L; yL0=ðLþ L0Þ�:

ð38Þ

The expressions (37) and (38) are valid near the real image

distances L ’ Lf . The centre of the real image propagates

along the line x = �Lk cos �0��=k0 = L . In the same way,

Erec2 ¼ �
2�L

k0L0

� �1=2
F

L
Að pÞU �ð pÞ expð�i�=4Þ

� exp ik0

x2

2L

� �
S2ðx; y;LÞ; ð39Þ

where

S2ðx; y;LÞ ¼
1

Lþ L0

� �1=2

exp ik0

y2

2ðLþ L0Þ

� �

� exp ik cos �0��
Fðx� Lk cos �0��=k0Þ

L

� �

� exp ik0

ð1� L=Lf2ÞðkF cos �0��=k0Þ
2

2L

� �

� exp �
ð�resk cos �0��Þ

2

2

� �

� S �½�Fðx� Lk cos �0��=k0Þ=L; yL0=ðLþ L0Þ�:

ð40Þ

The centre of the virtual image propagates along the line x =

Lk cos �0��=k0 = �L . The scheme is an off-axis holographic

scheme, since the real and virtual images are separated when

�� 6¼ 0. The formulae (39) and (40) are valid near the

distances of the virtual image distance Lf2. For any distance L

the field (39) propagates according to the Huygens–Fresnel

principle (16).

4. Conclusions

In this paper an X-ray dynamical diffraction Fraunhofer

holography scheme is proposed and theoretically investigated.

An object is placed in the path of a plane X-ray beam incident

on the entrance surface of a crystal. In the Laue symmetrical

two-wave diffraction case on the exit surface of the crystal the

interference pattern of the reference plane wave and the

object wave is formed. By recording this interference pattern

in the diffracted field the hologram of the object is obtained.

Two cases are discussed: the case of a point object and

Fraunhofer hologram recording. The coherence requirements

of the incident beam are discussed. The illumination of the

hologram by visible light reconstructs the real and the virtual

images of the object. Expressions of the focusing distance of

the real and virtual images as well as of magnification are

obtained. It is shown that in the case �� 6¼ 0 the proposed

scheme is an off-axis holographic scheme. Expressions of the

focus spot size and resolution are presented. Since the focal

distance is sufficiently small, significant magnification can be

obtained. As an example, X-ray hologram recording and
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Figure 4
Intensity distribution on the focusing plane of the real image of the wire
reconstructed by visible light. The size of the wire 2a = 10 mm.

Figure 5
Intensity distribution on the focusing plane of the real image of the wire
reconstructed by visible light. The size of the wire 2a = 1 mm.



visible-light reconstruction for an absolutely absorbing wire

are considered theoretically. Numerical calculations show that

the object real image on the focusing plane is completely

reconstructed. The obtained results are compared with the

corresponding results in visible-light optics. The comparison

shows the obvious analogy between the results.

The reconstruction can be performed also using numerical

(mathematical) methods of reconstruction. The proposed

scheme can be used in X-ray microscopy. Experimental

realisation can be performed using synchrotron X-ray sources.

It would be interesting to investigate the influence of the

asymmetry factor on the properties of the discussed scheme,

i.e. on the resolution, on the hologram size, on the coherence

requirements, etc. Another development of the X-ray dyna-

mical diffraction holographic scheme can be a Fourier holo-

graphic scheme based on double-slit dynamical diffraction

(Balyan, 2010). In this case an object and a narrow slit must be

placed in front of a crystal in the way of a collimated incident

X-ray beam. The recorded interference pattern of an object

wave and the wave emerged from the slit can be regarded as

an X-ray Fourier hologram of the object. The subsequent

reconstruction must be performed by visible-light or by

numerical (mathematical) methods of reconstruction.

The author is grateful to Dr K. T. Gabrielyan for useful

discussions which have stimulated this work.
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