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It is said that the microgravity environment positively affects the quality of

protein crystal growth. The formation of a protein depletion zone and an

impurity depletion zone due to the suppression of convection flow were thought

to be the major reasons. In microgravity, the incorporation of molecules into a

crystal largely depends on diffusive transport, so the incorporated molecules will

be allocated in an orderly manner and the impurity uptake will be suppressed,

resulting in highly ordered crystals. Previously, these effects were numerically

studied in a steady state using a simplified model and it was determined that the

combination of the diffusion coefficient of the protein molecule (D) and the

kinetic constant for the protein molecule (�) could be used as an index of the

extent of these depletion zones. In this report, numerical analysis of these

depletion zones around a growing crystal in a non-steady (i.e. transient) state is

introduced, suggesting that this model may be used for the quantitative analysis

of these depletion zones in the microgravity environment.

Keywords: microgravity; transient and homogeneous field; transient and diffusive field;
protein crystal; numerical model; protein depletion zone; impurity depletion zone.

1. Introduction

Protein crystal growth experiments are a promising area in

the usage of microgravity to contribute to structural biology

(McPherson, 1999; Littke & John, 1986; Kundrot et al., 2001;

Vergara et al., 2003). When protein molecules are taken into a

crystal, a spherical area of low protein concentration is formed

around the growing crystal. In the terrestrial environment, a

density-driven flow occurs to supply protein molecules to the

low concentration area, disturbing this area. However, in

microgravity, this density-driven flow does not occur, so the

protein molecules are supplied to the crystal only by thermal

diffusion caused by Brownian motion. Therefore, the low

protein concentration area around the growing crystal is

maintained, resulting in the formation of a protein concen-

tration depletion zone (protein depletion zone, PDZ). The

PDZ helps grow the crystal at a low supersaturation (Chernov,

1998; Otálora et al., 2001), eventually suppressing the disorder

of protein molecules in the crystal. Following similar steps as

the protein molecules, a low-impurity concentration area

around the growing crystal (impurity depletion zone, IDZ) is

formed (Chernov, 1998; Thomas et al., 2000), also suppressing

crystal disorder.

The PDZ and IDZ in microgravity in the steady and

diffusive states have been analyzed and discussed (Tanaka et

al., 2004). A steady state occurs when there is a constant

concentration of the protein in a solution far from a growing

crystal. The diffusive state occurs when the molecules diffuse

in a convection-free environment. We have compared the

extent of PDZ and IDZ formation in steady and diffusive

states with the formations in steady and homogeneous states

and discussed how the PDZ and IDZ affected protein crystal

growth in microgravity (Tanaka et al., 2004; Inaka et al., 2012).

However, in reality, the process of crystal growth in a

conventional protein crystal growth experiment occurs in a

non-steady transient state, decreasing protein concentration in

the solution as the protein molecules are incorporated into the

crystal. Therefore, it would be valuable to have the ability to

employ a mathematical model corresponding to the transient

state to know under what conditions the crystals really grow

and how much impurity is taken into the crystals, quantita-

tively.

Here we introduce a rather simple numerical calculation

model for expressing the transient state. We can compare the

transient and homogeneous state (terrestrial gravity) with the

transient and diffusive state (microgravity), and propose that
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this model can be applied to the examination of the process of

protein crystallization both in microgravity and terrestrial

environments, quantitatively.

2. Calculation model

2.1. Model of the field around a growing crystal

There are many kinds of crystallization methods such as the

vapour-diffusion method, dialysis, and the counter-diffusion

method, etc. In our calculation model, for simplicity, we

assume the batch method is used to crystallize protein because

in this method the precipitant concentration and protein

solubility do not change from the beginning to the end of

crystallization. As for the nucleation, we assume that all nuclei

start growing simultaneously and the final size of the crystal is

the same for all crystals. In this model, we assume that crys-

tallization occurs in a virtual sphere of radius L as shown in

Fig. 1 and that the shape of the crystal is a sphere with a radius

of R to simplify the calculation.

When the final size of the crystal is R(1),

L3
¼ n� Ceð Þ= C 0ð Þ � Ce½ �
� �

R 1ð Þ
3; ð1Þ

where C(0) and Ce are the protein concentration at the

beginning and at the end (solubility) of crystallization,

respectively, and n is the weight density of the crystal.

The velocity of crystal growth is (Chernov, 1998)

dRðtÞ=dt ¼ �! CðtÞ
0
� Ce0

� �
; ð2Þ

where C(t)0 is the number of protein molecules in a unit of

volume (1/cm3) at time t after crystallization has occurred, Ce0

is the number of protein molecules in a unit of volume at the

protein solubility concentration and � is the kinetic constant

of a protein molecule. ! is the volume for one molecule and

can be defined as ! = M/(nNA), where M is the protein

molecular weight and NA is Avogadro’s number.

For experimental purposes, we usually express concentra-

tion as weight per volume at time t, C(t). Therefore, C(t)0 is

expressed as CðtÞ0 = CðtÞNA=M; (2) is

replaced with (Tanaka et al., 2004)

dRðtÞ=dt ¼ � ½CðtÞ � Ce�=n: ð3Þ

Therefore, the weight of protein

attaching to a crystal surface in an iota

of time is

XðtÞ ¼ dVðtÞ n ¼ 4�RðtÞ
2 dRðtÞ n

¼ 4�RðtÞ2� CðtÞ � Ce½ � dt; ð4Þ

where V(t) and R(t) are the volume and

the radius of crystal at time t, respec-

tively.

When an impurity contaminates the

solution, and if the impurity attaches to

the surface of the crystal at a fixed ratio

and the reverse reaction is ignored, the

weight of the impurity attaching to the

crystal surface in an iota of time is

XiðtÞ ¼ 4�RðtÞ
2 �i CiðtÞ dt; ð5Þ

where �i is the kinetic constant of the impurity molecule and

Ci(t) is the impurity concentration on the surface of the crystal

at time t.

2.2. Transient and homogeneous model and transient and
diffusive model

In the transient and homogeneous model (THM) which

represents crystal growth in the terrestrial environment, the

concentration of the protein in the solution around the

growing crystal is uniform and the sum of the total amount of

the protein in the solution and in the crystal is constant.

Therefore the concentration of the protein solution during

crystal growth can be expressed as

CðtÞ ¼ C 0ð ÞL3
� RðtÞ

3
n

� �
= L3
� RðtÞ

3
� �

: ð6Þ

Substituting (6) in (3),

dRðtÞ=dt ¼ ð�=nÞ C 0ð Þ � Ce½ �L3
� ðn� CeÞRðtÞ

3
� �

= L3 � RðtÞ3
� �

: ð7Þ

Therefore, the crystal radius can be obtained from the re-

peated calculation of (7) using the difference equation

(Tanaka et al., 2004),

R t þ�tð Þ ¼ RðtÞ þ ð�=nÞ
�

C 0ð Þ � Ce½ �L3 � ðn� CeÞRðtÞ
3

� �

= L3
� RðtÞ

3
� ��

�t: ð8Þ

Considering the total amount of the impurity in the solution

and in the crystal is constant, the concentration of the impurity

in the solution can be obtained by the following equation,

Ci t þ�tð Þ4� L3 � R t þ�tð Þ
3

� �
=3 ¼

CiðtÞ4� L3 � RðtÞ3
� �

=3� XiðtÞ: ð9Þ
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Figure 1
The conceptual configuration of the numerical model for crystal growth. (a) In actual crystallization,
several crystals are grown in a solution. (b) To simplify this process for the model, a crystal is
assumed to grow spherically in a virtual sphere, of which the radius, L, is related to the amount of
the protein uptake into the crystal [see equation (1)]. To accommodate the diffusive process, the
area between the surface of the crystal and the virtual sphere are sectioned concentrically by N. The
diffusive processes are considered to occur between the inner section and outer section.



Substituting (5) into (9), the impurity concentration in the

solution can be obtained from the repeated calculation of the

difference equation below,

Ci t þ�tð Þ ¼ CiðtÞ L3 � RðtÞ3
� �

� 3RðtÞ2 �i CiðtÞ�t
� �

= L3
� R t þ�tð Þ

3
� �

: ð10Þ

On the other hand, in the transient and diffusive model

(TDM) which represents the microgravity environment, we

have to consider both the diffusion process in the virtual

sphere of radius L and the crystal growth process in the centre

of the virtual sphere. The three-dimensional diffusion equa-

tion is @C=@t = Dr 2C, but in the case of spherical coordinates

the partial differential equation is

@Cðr; tÞ=@t ¼ D @ 2C r; tð Þ=@r 2
�

þ 2=rð Þ @C r; tð Þ=@r½ �
�
: ð11Þ

This can be applied to the area between the surface of the

crystal and the virtual sphere of radius L. For the outer

boundary where r is equivalent to L, no-flux of the material is

assumed. For the boundary conditions on the surface of the

crystal, the process of the crystal growth is

D @Cðr; tÞ=@r½ �jr¼RðtÞ ¼ n� C RðtÞ; t½ �
� �

dRðtÞ=dt; ð12Þ

where C(r, t) is the protein concentration at the position of r

from the centre of the virtual sphere at time t. The diffusion

equation for impurities is the same as that for protein, as

shown below with similar boundary conditions,

@Ciðr; tÞ=@t ¼ Di @ 2Ci r; tð Þ=@r 2
�

þ 2=rð Þ@Ci r; tð Þ=@r�; ð13Þ

and the process of the impurity uptake into the crystal is

Di @Ciðr; tÞ=@r½ �jr¼RðtÞ ¼ Ci RðtÞ; t½ � �i� dRðtÞ=dt½ �; ð14Þ

where Ci(r, t) is the impurity concentration at the position of r

from the centre of the virtual sphere at time t.

To solve these partial differential equations numerically, it

is common to divide a sphere along a radius into the same

intervals to apply difference equations. However, in the case

of a growing crystal, the sections are adsorbed into the crystal

one after another. We may include a conditional judgment on

whether the sections are embedded in the crystal into the

partial differential equation. It has been found that these

calculations may result in intolerant errors caused by the

discontinuity of the protein concentration on the surface of

the crystal when the section is incorporated into the crystal.

Therefore, we divide the sphere into N sections with a

variable length, �r(t), from the surface of the crystal to the

surface of the virtual sphere whose radius is L and examine

the diffusion in those sections. If the crystal radius is R(t) at

time t,

�rðtÞ ¼ ½L� RðtÞ�=N: ð15Þ

The section number i (i = 1, 2, 3, . . . , N) is placed between two

spheres whose radii are RðtÞ þ ði� 1Þ�rðtÞ and RðtÞ þ i�rðtÞ.

The process of the calculation for one time step of the

repeated calculation of the difference equation is the

following:

(i) Calculate the crystal growth: based on (3), we can

calculate the increase of the crystal radius by the following

equation.

�RðtÞ ¼ � Cð1; tÞ � Ce½ �
� �

=n
� 	

�t; ð16Þ

where Cði; tÞ is the concentration of the protein in the ith

section at time t ; and the radius after one time unit �t is

Rðt þ�tÞ ¼ �RðtÞ þ RðtÞ: ð17Þ

(ii) Calculate the protein concentration of the first section

which contacts with the growing crystal: considering (12), the

protein concentration of this section is affected by its

adsorption onto the crystal surface and by the diffusive mass

transfer from the next section. For the first process, the

following relation is conserved, since the amount of protein

which is adsorbed on the crystal is equal to the decreased

amount of it from the section,

4� ½RðtÞ þ�rðtÞ�3 � ½RðtÞ þ�RðtÞ�3
� �� 	

=3
� �

C y 1; t þ�tð Þ

¼ 4� RðtÞ þ�rðtÞ½ �
3
�RðtÞ3

� �
=3

� 	
Cð1; tÞ

� 4� RðtÞ þ�RðtÞ½ �
3
� RðtÞ

3
� �

=3
� 	

n; ð18Þ

where C yð1; t þ�tÞ is the concentration of the protein in the

first section after time �t with the protein adsorption occur-

ring in the first section.

For the second process, the following difference equation is

derived from (11) neglecting the diffusion from the inner

section,

C yð1; t þ�tÞ ¼ ½Cð2; tÞ � Cð1; tÞ�D �t=�rðtÞ
2
þ Cð1; tÞ:

ð19Þ

Therefore, combining these two processes, the protein

concentration of the first section can be expressed as

C yð1; t þ�tÞ ¼ ½RðtÞ þ�RðtÞ�3 � RðtÞ3
� �

½Cð1; tÞ � n�

= ½RðtÞ þ�rðtÞ�3 � ½RðtÞ þ�RðtÞ�3
� �

þ ½Cð2; tÞ � Cð1; tÞ�D�t=�rðtÞ2 þ Cð1; tÞ:

ð20Þ

(iii) Calculate the diffusive protein transfer between the

surface of the crystal to the surface (i = 2 to N) of the virtual

sphere: the difference equation for this process is derived

from (11),

C yði; t þ�tÞ ¼ ½Cði� 1; tÞ � Cði; tÞ�D �t=�rðtÞ
2

� �

� r2
� 2r�rðtÞ

� �
=r2

� �

þ ½Cðiþ 1; tÞ � Cði; tÞ�D�t=�rðtÞ
2

þ Cði; tÞ: ð21Þ

(iv) Calculate the impurity concentration of the first section

which contacts with the growing crystal: considering (14), the

protein concentration of this section is affected by its

adsorption onto the crystal and by the diffusive mass transfer

from the next section. For the first process, the following
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relation is conserved, since the amount of the impurity which

is adsorbed on the crystal is equal to the decrease of it from

the section,

4� ½RðtÞ þ�rðtÞ�3 � ½RðtÞ þ�RðtÞ�3
� �

=3
� 	

Ci yð1; t þ�tÞ

¼ 4� ½RðtÞ þ�rðtÞ�3 � RðtÞ3
� �

=3
� 	

Cið1; tÞ � XiðtÞ; ð22Þ

where Ciði; tÞ is the concentration of the impurity in the ith

section at time t, and Ci yð1; t þ�tÞ is the concentration of the

impurity in the first section after one time unit �t.

For the second process, the following difference equation is

derived from (13) neglecting the diffusion from the inner

section,

Ciyð1; t þ�tÞ ¼ ½Cið2; tÞ � Cið1; tÞ�Di�t=�rðtÞ
2

þ Cið1; tÞ: ð23Þ

Therefore, by combining these two processes the impurity

concentration of the first section can be expressed as

Ciyð1; t þ�tÞ ¼
�
½RðtÞ þ�RðtÞ�3 � RðtÞ3
� �

Cið1; tÞ

� 3RðtÞ
2 �i Cið1; tÞ�t

�

= ½RðtÞ þ�rðtÞ�3 � ½RðtÞ þ�RðtÞ�3
� �

þ ½Cið2; tÞ � Cið1; tÞ�Di�t=�rðtÞ
2

þ Cið1; tÞ: ð24Þ

(v) Calculate the diffusive impurity transfer between the

surface of the crystal to the surface of the virtual sphere: the

difference equation for this process is derived from (13),

Ci yði; t þ�tÞ ¼ ½Ciði� 1; tÞ � Cið1; tÞ�

�Di �t=�rðtÞ
2

� �
½r2
� 2r�rðtÞ�=r2

þ ½Ciðiþ 1; tÞ � Cið1; tÞ�Di�t=�rðtÞ
2

þ Cið1; tÞ: ð25Þ

(vi) Re-sectioning the sphere: after the crystal has grown

during one time unit �t, each section moves slightly to the

outer position. Therefore, we re-divide the sphere into N

sections with variable length �rðt þ�tÞ,

�rðt þ�tÞ ¼ ½L� RðtÞ ��RðtÞ�=N: ð26Þ

The concentration of the new section, whose number is i, is

expressed as Cði; t þ�tÞ, and can be calculated by considering

the conservation of the amounts of the protein and the

impurity,

Cði; t þ�tÞ ¼
�

C yðiþ 1; t þ�tÞ ½Rðt þ�tÞ þ i�rðt þ�tÞ�3
�

� ½RðtÞ þ i�rðtÞ�3
�

þ C yði; t þ�tÞ ½RðtÞ þ i�rðtÞ�3
�

� ½Rðt þ�tÞ þ ði� 1Þ�rðt þ�tÞ�3
��

= ½Rðt þ�tÞ þ i�rðt þ�tÞ�3
�

� ½Rðt þ�tÞ þ ði� 1Þ�rðt þ�tÞ�3
�
; ð27Þ

Ciði; t þ�tÞ ¼
�

Ci yðiþ 1; t þ�tÞ ½Rðt þ�tÞ þ i�rðt þ�tÞ�3
�

� ½RðtÞ þ i�rðtÞ�3
�

þ Ci yði; t þ�tÞ ½RðtÞ þ i�rðtÞ�3
�

� ½Rðt þ�tÞ þ ði� 1Þ�rðt þ�tÞ�3
��

= ½Rðt þ�tÞ þ i�rðt þ�tÞ�3
�

� ½Rðt þ�tÞ þ ði� 1Þ�rðt þ�tÞ�3
�
: ð28Þ

The calculation program was created in Microsoft C++ and

was executed in Windows 7 or Windows XP. N was defined as

240 and �t as 2 � 10�5 (h). The repeated calculation for t =

1000 (h) took about 1500 s with a conventional desktop PC.

After the calculation was finished, the calculated final crystal

size was almost the same as that we actually obtained

(�0.02%). Therefore, we concluded that the program ran with

satisfactory precision for the comparison of crystal growth in

space and on the ground.

3. Lysozyme crystal growth in THM and TDM

3.1. Parameter calculations based on experiment results

To use some realistic parameters, we referenced lysozyme

crystallization using the batch method. Purified lysozyme

(20 mg ml�1) was crystallized using 0.7 M sodium chloride as a

precipitant in 50 mM sodium acetate pH 4.5. The final size of

the crystal [R(1)] and the final protein concentration in the

solution (Ce) were measured, and the kinetic constant of the

protein molecule (�) and the diffusion coefficient of the

protein molecule (D) were estimated as shown in Table 1

(Tanaka et al., 2012).

3.2. Lysozyme crystal growth in THM and TDM

The time course of lysozyme crystal growth is shown in

Fig. 2(a). The solid line is for THM obtained from the repe-

tition of calculation (8) and the dotted line is for TDM

obtained from the repetition of calculation of equations (16),

(17), (20), (21), (26) and (27). This figure indicated that the

crystal growth in TDM is a little slower than in THM. This

might suggest that, in the case of THM, the fast uptake of the

protein molecules into the crystal was accelerated by the

transportation of protein molecules toward the crystal by

convection flow. However, in the case of TDM, the PDZ

deprived the protein molecules from around the growing

crystal and only the diffusive flow could deliver protein

molecules to the crystal, so it kept the protein concentration

diffraction structural biology
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Table 1
Initial parameters for the calculation of the homogeneous and the
diffusive models.

Crystallization
condition

R(1)
(mm)†

Ce
(mg ml�1)‡

�
(mm h�1)

D
(mm2 h�1)

n
(g cm�3)

Salt§ 0.46 4.55 0.34 0.360 0.79

† Average of the final size of the crystal radius. ‡ Average of the final protein
concentration. § 20 mg ml�1 purified lysozyme, 0.7 M sodium chloride, 50 mM sodium
acetate pH 4.5.



around the surface of the crystal lower than in THM and

caused slower crystal growth.

3.3. Average protein supersaturation level

The degree of supersaturation on the surface of the crystal

while it is growing is defined as

�ðRÞ ¼ ½CðRÞ � Ce�=Ce; ð29Þ

where C(R) is the concentration of the protein on the surface

of the crystal when the crystal radius is R. It is said that the

quality of the crystal, indexed by the X-ray diffraction reso-

lution, mosaicity and/or Rmerge, is better if it grows at the lower

supersaturation (McPherson, 1999) although dependency of

those on �(R) has not been verified yet. To know the super-

saturation level on the surface of the crystal while it is

growing, the time course of the protein concentration on the

crystal surface was calculated as shown in Fig. 2(b). The solid

line is for THM obtained from equation (6) and the dotted line

is for TDM obtained from equation (27). Figs. 2(a) and 2(b)

were combined to create Fig. 2(c) using equation (29). The

solid line and dotted line are for THM and TDM, respectively.

It was found that the supersaturation level was high in the

centre of the crystal and gradually became lower toward the

surface of the crystal. Over the full range of crystal growth, the

supersaturation level was slightly lower in TDM than in THM.

At the end of crystal growth, the supersaturation level was the

same as the protein solubility both in THM and TDM.

Since X-ray diffraction intensity depends on the volume of

the protein molecules in a crystal (McPherson, 1999), the

quality of an X-ray diffraction image may depend on the

integrated diffraction images obtained from a certain volume

of the crystal which was grown in changeable supersaturation.

Therefore, as a quantitative index of supersaturation, the

average supersaturation level (ASS) was defined as the inte-

grated � as the crystal grew, averaged by the total volume,

ASS ¼ ð1=VÞ
RRð1Þ

R¼ 0

�ðRÞ dV; ð30Þ

where �(R) is the degree of supersaturation at the surface of

the crystal when the crystal radius is R.

To compare the ASS within one crystal, the crystal was

divided into three sections by volume from the centre of the

crystal. The radius of the inner third of the crystal is 69.3% of

R(1), the middle 87.4%, and the outer 100%. ASS in THM

and TDM are shown in Fig. 3(a). The ASS for a full sphere in

THM was 1.73 and in TDM was 1.50 which was about 87% of

that of the THM. In each third of the crystal volume, TDM

was lower than THM. These findings are consistent with the

estimations obtained by former analyses using the steady state

model (Tanaka et al., 2004; Inaka et al., 2012).
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Figure 2
Calculated results of the lysozyme crystal growth in the salt condition in the homogeneous (solid line) and diffusive (dotted line) model in the transient
state. (a) Time course of the crystal growth. (b) Time course of the protein concentration on the crystal surface. (c) Supersaturation level around the
growing crystal. R(t), R: radius of the crystal (mm); C(t): concentration of the protein on the surface of the crystal (mg ml�1); �(R): supersaturation level;
t: time after the crystal starts growing.

Figure 3
(a) Average supersaturation level, and (b) average impurity concentration in each section for crystallization of purified lysozyme.



3.4. Average impurity concentration

As for impurity, it is not realistic to

qualify and quantify the impurity

molecules in a protein solution. There-

fore, we assumed a contaminating

impurity, whose initial concentration,

Ci(0), was 1% of that of the protein,

C(0), with a diffusion coefficient, Di, the

same (0.36 mm2 h�1) as that of the

protein, D, and a kinetic constant, �i,

ten times (3.4 mm h�1) as large as that

of the protein �. Di was equal to D

because we assumed that the molecular

weight of the impurity and the protein

were the same. A �i ten times larger

meant that the impurity molecule had a

ten times higher affinity to the crystal

than the protein molecule. Actually, when acetylated lysozyme

was an impurity, it was reported that the impurity attached to

the crystal with an affinity several multiples of ten times higher

than the lysozyme protein (Thomas & Chernov, 2001).

The time course of the concentration of the impurity around

the surface of the crystal is shown in Fig. 4(a). The solid line is

for THM obtained from equation (10) and the dotted line is

for TDM from equations (16), (17), (24), (25), (26) and (28).

The concentration of the impurity attached to the crystal

with a radius R from the centre of the crystal [Cicryst(R)] can be

described as

CicrystðRÞ ¼ XiðtÞ=dVðtÞ

¼ �i Cið1; tÞ= �½Cð1; tÞ � Ce�=n
� �

¼ �i Cið1; tÞ�t=�RðtÞ; ð31Þ

where Xi(t) is the weight of the impurity attached to the

crystal surface in a unit of time, and C(t) and Ci(t) are

concentrations of the protein and the impurity on the surface

of the crystal at time t. Generally, if many impurity molecules

attach to a crystal, a highly disordered crystal may grow.

Therefore, to determine the impurity concentration inside the

crystal, Figs. 2(a) and 4(a) were combined and equation (30)

was applied to create Fig. 4(b). The solid and dotted lines are

for THM and TDM, respectively. As shown in Fig. 4(b), if

the radius of the crystal was between 0 and 0.25 mm, the

concentration of the impurity on the surface of the crystal in

TDM was much lower than that of THM. Then, if the radius

was larger than 0.25 mm, the impurity concentration in TDM

became higher than that of THM, but much lower than that at

the beginning of the crystal growth, and the concentration of

impurity around the crystal became zero at the end of crystal

growth.

Similar to the ASS, the average impurity concentration

(AIC) was defined as

AIC ¼ ð1=VÞ
RRð1Þ

R¼ 0

CicrystðRÞ dV: ð32Þ

As in the ASS, the AIC was calculated for a full sphere crystal

and in each of the three sections as in Fig. 3(b). The AIC

of TDM and THM were the same for a full sphere crystal

because all of the impurity was finally adsorbed into the

crystal. In Fig. 3(b), the AIC was high in the inner third of the

crystal and fell as the crystal grew in both TDM and THM. In

the inner third of the crystal the AIC was lower in TDM than

in THM, but in the middle section of the crystal the AIC was

higher in TDM than in THM. In the outer section of the

crystal, the impurity concentration was almost zero in THM

and TDM. These might suggest that, in TDM, the IDZ was

formed around the crystal in the diffusive field and deprived

the impurity molecules around the crystal surface, but, in

THM, the fast attachment of the impurity molecules to the

crystal lowered the concentration of the impurity more

quickly. These findings could not be elucidated by the steady

state model performed previously.

4. Conclusion

From the results of the model calculation, it became clear

quantitatively that all the sections of the crystal grown in THM

and TDM are surrounded by different supersaturation levels

of protein and different concentrations of impurity when they

grow. Therefore, for X-ray diffraction experiments, we

recommend considering how the quality difference within a

whole crystal, caused by the difference in protein super-

saturation and impurity concentration levels during crystal

growth, may affect the quality of the X-ray diffraction

patterns.

As for protein supersaturation, it became clear that, in a

diffusive model such as in microgravity, protein crystals grow

in a lower supersaturation level of protein than in a homo-

geneous field. This may be due to the effects of the PDZ.

Regarding impurity, its concentration is higher in THM

than in TDM when the inner section of the crystal grows.

In the middle section, although the impurity concentration is

higher in TDM than in THM, it is much lower than in the inner

section both in THM and TDM. This may be due to the effects

diffraction structural biology
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Figure 4
Calculation results of the impurity concentration in salt conditions in the homogeneous (solid) and
diffusive (dotted) model in the transient state. (a) Time course of the impurity concentration on the
crystal surface. (b) Impurity concentration around the growing crystal. R: radius of the crystal (mm);
Ci(t): concentration of the impurity on the surface of the crystal (mg ml�1); Cicryst(R): concentration
of the impurity in the crystal at R from the centre of the crystal; t: time after the crystal starts
growing.



of IDZ and the faster uptake of the impurity molecules into

the crystal.

It was reported that the growth of the middle and outer

sections of a crystal are influenced by the molecular order of

the inner section of the crystal as shown with X-ray tomo-

graphy (Sawaura et al., 2011). Therefore, we speculate that the

outer section of crystals grown in TDM may have better

quality because the supersaturation ratios and impurity

concentrations are lower in the inner section of the crystals

grown in TDM than those of the crystals grown in THM. This

may explain the reason why some better quality crystals grew

in microgravity (Tanaka et al., 2007, 2011; Takahashi et al.,

2010). Further examination is required to know the influence

of the ASS and AIC on the X-ray diffraction patterns quan-

titatively.

In this study, we have fixed � as a constant. Actually the

increase of the impurity concentration reduces the velocity of

the crystal growth (Nakada et al., 1999). Thus, for the next

step, we will proceed to analyze numerically how the diffusive

model of protein crystal growth is affected by the increase of

the initial amount of the impurity.

Here we have introduced a practical mathematical model

which can be calculated with an ordinary personal computer.

Using this transient model, further numerical analyses of

higher viscosity of the crystallization solution (lower D) and of

higher homogeneity of the protein sample (higher �) will be

examined for the verification of the effectiveness of these

values on the improvement of crystal quality in microgravity;

and, in the near future, we will use this model on the results

obtained in the JAXA PCG crystallization experiments to

further understand the effects of microgravity.
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