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An integration method is demonstrated for directly determining the average

interface statistics of periodic multilayers from the X-ray scattering diagram. By

measuring the X-ray scattering diagram in the out-of-plane geometry and

integrating the scattered intensity along the vertical momentum transfer qz in an

interval, which is decided by the thickness ratio � (ratio of sublayer’s thickness

to periodic thickness), the cross-correlations between different interfaces are

canceled and only the autocorrelations are reserved. Then the multilayer can be

treated as a ‘single interface’ and the average power spectral density can be

obtained without assuming any vertical correlation model. This method has

been employed to study the interface morphology of sputter-deposited W/Si

multilayers grown at an Ar pressure of 1–7 mTorr. The results show an increase

in vertical correlation length and a decrease in lateral correlation length with

increased Ar pressure. The static roughness exponent � = 0 and dynamic growth

exponent z = 2 indicate the Edwards–Wilkinson growth model at an Ar pressure

of 1–5 mTorr. At an Ar pressure of 7 mTorr, � = 0.35 and z = 1.65 indicate the

Kardar–Parisi–Zhang growth model.

Keywords: X-ray scattering; multilayer; interface morphology; power spectral density;
dynamic scaling.

1. Introduction

X-ray diffuse scattering has become an invaluable tool for

investigating buried interfaces in nanometer thin films with

the advantage of high sensitivity to lateral structures, simpli-

city of non-destructive measurement, high spatial frequency,

and the possibility of in situ experiments (Gibaud & Hazra,

2000; Müller-Buschbaum, 2003; Renaud et al., 2009). The main

issue when using X-ray scattering methods is to extract

statistical properties of the interfaces from a measured scat-

tering diagram. Although theoretical studies (Sinha et al.,

1988; Stearns, 1992; Holý & Baumbach, 1994; de Boer, 1996)

have shown that the scattered intensity is determined by the

autocorrelation and cross-correlation functions of the inter-

faces, the inverse problem is rather intractable. Up to now the

most general method used in X-ray scattering data analysis

of multilayers is model-based parameter fitting. The fitting

method is, however, very ambiguous and tedious. Thus finding

a direct method without ambiguousness is expected to give

more reliable results.

It has been shown (Kozhevnikov & Pyatakhin, 2000) that

the scattered intensity of a single interface is proportional to

the power spectral density (PSD), which is the Fourier trans-

formation of the autocorrelation function. This fact allows us

to unambiguously determine the statistics of a single interface

from X-ray scattering measurements. For thin films with more

than one interface, the cross-correlations between different

interfaces occur in the scattered intensity. A method was

demonstrated (Peverini et al., 2007) to directly determine the

PSDs of both interfaces for monolayer thin films by measuring

both scattering diagrams before and after thin film deposition.

This method utilizes the properties that the coefficient of the

cross-correlation term (there is only one cross-correlation

term for a monolayer) equals zero at specific spatial

frequencies and that the PSD is a smooth function of the

spatial frequency. However, this method cannot be applied to

multilayers which have more than two interfaces because

different cross-correlation terms have different zero points.

Salditt et al. (1994, 1995, 1996) proposed an integration

method for directly analyzing the X-ray scattering diagram of
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periodic multilayers. The integration method involves inte-

grating the scattered intensities along the vertical momentum

transfer qz over one ‘Brillouin zone’, i.e. from ð2m� 1Þ�=� to

ð2mþ 1Þ�=�, where m is a positive integer and � is the

multilayer period. Then the cross-correlations between

different interfaces are expected to cancel and only the

autocorrelations are reserved. Then the multilayer can be

treated as a ‘single interface’ and an average PSD can be

obtained.

The integration method was introduced without proof or

derivation by Salditt and followed by several other studies

(Spizzo et al., 2009; Siffalovic et al., 2010a,b). In this work we

reviewed the integration method and surprisingly found that it

is not generally correct though its basic idea is inspiring.

Salditt’s original integration method can only cancel the cross-

correlations between interfaces with the same type. Here the

type of interface in a periodic A/B multilayer refers to whether

it is A-on-B or B-on-A. Then we revised the integration

method to be able to cancel all the cross-correlations. In our

revised version the integration interval must be chosen

according to the thickness ratio � (ratio of sublayer’s thickness

to periodic thickness). The theoretical derivation and discus-

sion are presented in x2. Then we apply the integration

method to investigate the effect of Ar pressure on the inter-

face morphology of sputter-deposited W/Si multilayers in x3.

In x4 we give a summary of this work and our conclusion.

2. Theory of the integration method

2.1. Theoretical background for X-ray scattering

Fig. 1(a) shows a schematic illustration of the scattering

geometry. Letting the average sample surface be the xy plane

and the incident plane be the xz plane, a rough interface can

then be described by the height deviation from its average

position h rð Þ, r � x; yð Þ. The height–height correlation func-

tions are defined as Ci;jðRÞ = hhiðrÞhjðrþ RÞir, where h. . .ir
denotes the assemble average of r and R is the lateral distance

of two positions. Autocorrelations are described if i = j while

cross-correlations between different interfaces if i 6¼ j. If

q = ks � ki (ki and ks are the incident and scattered wave-

vector, respectively) denotes the momentum transfer, the

diffuse scattering is measured with a non-zero parallel

momentum transfer qk = ðq2
x þ q2

yÞ
1=2. When the grazing inci-

dent angle �0, grazing scattering angle � and the azimuth

scattering angle ’ are small, qx ’ k0ð�
2
0 � �

2 � ’2Þ=2, qy ’ k0’
and qz ’ k0ð�0 þ �Þ where k0 is the wavenumber in a vacuum.

In the out-of-plane geometry (’ = 0), jqyj � jqxj gives qk ’ qy.

In the in-plane geometry (’ 6¼ 0), qk = qx as qy = 0. Thus the

maximum accessible spatial frequency in the out-of-plane

geometry is much larger than in the in-plane geometry.

Another advantage of the out-of-plane geometry is that the

lateral and vertical components of the momentum transfer are

independent of each other and thus sufficiently validate the

usage of the simpler kinetic Born approximation (BA) theory

provided that �0; � > �c where �c denotes the critical angle for

total external reflection (TER). In BA theory, the scattered

intensity is calculated as (Sinha, 1994)

I BA
DIFF /

P
i; j

�"i�"
�
j exp �iqz zi � zj

� �� �
q�2

z

� exp �q2
z �

2
i þ �

2
j

� �
=2

� �

�
R

exp q2
zCi; j Rð Þ

� �
exp �iqkR

� �
d2R; ð1Þ

where �"i is the change in permittivity across the ith interface,

zi is the average position of the ith interface, and �i is the

roughness of the ith interface. Considering the periodic A/B

multilayer illustrated in Fig. 1(b), let N be the periodic

number, � the periodic thickness, and � the thickness ratio

[the thicknesses of A and B are then �A = �� and �B =

ð1� �Þ�]. There are two types of interfaces in this multilayer,

B-on-A and A-on-B, and they are indexed as i = 2u and i =

2u� 1, respectively (u is an integer and 1 � u � N). Then we

can obtain zi¼ 2u = u�, zi¼ 2u�1 = ðu� �Þ�, and �"i = ð�1Þi�"
(�" = "A � "B is the difference in permittivity of the two

materials). If the roughness is small [jq2
zCðRÞj � 1], which is

usually matched at grazing angles in the interested high-

frequency range, the exponential terms in the integration in

equation (1) can be expanded. After adding equation (1) to

itself and pairing the i, j terms with j, i terms, equation (1) is

simplified to

I BA
DIFF /

P
i; j

�1ð Þiþ j exp �q2
z �

2
i þ �

2
j

� �
=2

� �

� cos qz zi � zj

� �� �
Fi; j; ð2Þ

where Fi; j = ð2�Þ�2
R

Ci; jðRÞ expðiqrÞ d2R is the Fourier trans-

formation of the correlation function and the PSD function is

then defined as PSDi = Fi;i. In equation (2) we can see that at

positions qz = n2�=� the cross-correlations between inter-

faces with distance of m� will add in phase (m and n are

positive integers). This property gives rise to the so-called

Bragg sheet or diffuse Bragg-like peak. Multiplying (2) by

expðq2
z�

2
avÞ, where �av is the average value of roughnesses for

all the interfaces in the multilayer, we can further cancel the

exponential term in (2) provided that the roughnesses of

different interfaces do not differ too much. The average

roughness can be prior obtained by X-ray reflectometry.

2.2. Integrating scattered intensity along qz

The essence of the integration method is integrating the

scattered intensity along qz and thus eliminating the cross-
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Figure 1
Illustration of (a) the scattering geometry and (b) the multilayer
structure.



correlation terms with i 6¼ j considering the periodicity of the

cosine term in equation (2). After multiplying the average

roughness term expðq2
z�

2
avÞ and integrating the production

over an interval with center at q0 and width of �q, we obtain

the integrated intensity,

IINT ¼
Rq0þ�q=2

q0��q=2

I BA
DIFF exp q2

z�
2
av

� �
dqz

/
P
i; j

�1ð Þiþ j Fi; j

Rq0þ�q=2

q0��q=2

cos qz zi � zj

� �� �
dqz: ð3Þ

The terms in (3) can be classified into three types according to

the configuration of i and j.

2.2.1. Autocorrelations. The i = j terms represent the

autocorrelation of the interfaces. Substituting zi � zj = 0, we

obtain the integrated intensity,

I
Ið Þ

INT ¼ �q
P

PSDi: ð4aÞ

The autocorrelation of each interface is reserved in the inte-

grated intensity.

2.2.2. Cross-correlations between interfaces with the same
type. The i 6¼ j and i� j = 2k (k is an integer) terms represent

the cross-correlation between two interfaces with the same

type, i.e. the two interfaces are either both A-on-B or both

B-on-A. In this case, zi � zj = k� and

I
IIð Þ

INT ¼ ð2=�Þ
P

i�j¼ 2k

Fi; j ð1=kÞ cos k�q0ð Þ sin k��q=2ð Þ: ð4bÞ

The zero points of equation (4b) are �q = l 2�=� (l is a

positive integer). Using any integration interval of this width

can cancel the cross-correlation terms between interfaces with

the same type. This part agrees with the idea of Salditt.

2.2.3. Cross-correlations between interfaces with different
types. The i 6¼ j and i� j = 2kþ 1 (k is an integer) terms

represent the cross-correlation between two interfaces with

different types, i.e. one interface is A-on-B and the other is

B-on-A. Recall the pairing of the i, j term and j, i term in

equation (1) to derive equation (2). Thus the i, j term and j, i

term are identical since equation (2) and we only consider the

i = 2u and j = 2v � 1 case (u� v = k, u, v are integers and

1 � u; v � N). In this case, zi � zj = ðkþ �Þ� and

I
IIIð Þ

INT ¼ � ð4=�Þ
X

i�j¼ 2kþ1

Fi; j

�1ð Þkl

kþ �

� cos kþ �ð Þ�q0

� �
sin l ��ð Þ: ð4cÞ

There are two conditions for � that either one will make

equation (4c) equal to zero for any k. They are

� ¼ 2n 1ð Þ þ 1
� �

=2m ð5aÞ

and

� ¼ n 2ð Þ=l ð5bÞ

[n(1), n(2) and m are integers]. When equation (5a) is used, an

additional restriction, q0 = m�=�, must be adopted. Choosing

the smallest l = 1, the integration interval is then

ð½m� 1
�=�; ½mþ 1
�=�Þ (m must be no less than 2 to avoid

the TER region). When equation (5b) is used, the integration

interval can be chosen to be ð�=�; ½2l þ 1
�=�Þ considering

the minimal but away from the TER region. Apparently any �
derived from (5a) can match (5b) and the integration interval

using (5a) is smaller than that using (5b), which is an advan-

tage for experimental realisation. Thus (5b) shall be used only

when (5a) fails.

To quantitatively compare the cross-correlation terms with

the autocorrelation terms when � and the integration interval

do not satisfy the above conditions, we have to make some

assumptions which are not necessary for the integration

method. The first assumption is about the cross-correlation.

We introduce a commonly used cross-correlation model Fi; j =

ðPSDi PSDjÞ
1=2 expð�jzi � zjj=�?Þ, where �? is the character-

istic vertical correlation length. The second assumption is that

all the interfaces with the same types have the same PSD, i.e.

all the B-on-A (A-on-B) interfaces have the same PSDA(B).

Then we carry on calculating equations (4a) and (4c) with �q =

2l�=� and q0 = m�=�. After some mathematics we obtain the

integrated intensity,

I
ðIÞ
INT ¼

2N�

�

PSDA þ PSDB

2
ð6aÞ

and

I
ðIIIÞ
INT ¼ � ð4N=�Þ cos m��ð Þ cos l ��ð Þ

�
Xk¼N�1

k¼ 1�N

1� kj j=N

kþ �
�1ð Þk mþlð Þ

� exp � kþ �j j�=�?ð Þ PSDA PSDBð Þ
1=2: ð6bÞ

Considering an extreme situation where the vertical correla-

tion is very weak and only the cross-correlations between

adjacent layers are finite, we calculate the absolute value of

the coefficients in (6a) and (6b) versus � with �? = � and

k = 0, �1. The results for different m (l = 1) are shown in

Fig. 2. Only values in the 0 < � � 1=2 region are plotted

considering the symmetry between � and 1� �. As can be

seen, the integrated cross-correlations between interfaces with

different types (solid lines with symbols) are comparable with

the autocorrelation terms (dashed line) even in very weak

vertical correlation when � does not match (5a) or (5b). These

cross-correlation terms are underestimated by Salditt and are

not negligible. To cancel all cross-correlations we must choose

the integration interval according to �. The value of � can be

deduced by using calibrated deposition rate and deposition

time or from the fitting of specular reflectance.

2.3. Summary of the integration method

As a summary of x2, we have revised the integration method

which can directly determine the average PSD function of

a periodic multilayer from the X-ray scattering diagram

measured in the out-of-plane geometry. By integrating an

interval along qz, the cross-correlation terms in the integrated

intensity cancel and only the autocorrelation terms are

reserved. The validity of this method depends on the thickness

ratio � and carefully choosing the integration interval
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according to �. Theoretically any � with a rational value r/s

(r and s are integers) is valid with the integration interval

(�=�, ½2sþ 1
�=�). If � further matches the condition that r

is an odd integer and s is a larger-than-2 even integer, a more

practical integration interval (½s� 1
�=�, ½sþ 1
�=�) can be

applied. However, the accessible range of qz in real experi-

ments is limited. We plot the values of � that can be used when

qz � 9�=�, which means that the first four Bragg sheets can

be observed in experiments, in Fig. 3. Only values in the

0 < � � 1=2 region are plotted considering the symmetry

between � and 1� �. The vertical position of the thick solid

lines in the figure denotes the corresponding integration

interval. If more than one interval is applicable for a single �
value, the interval with a smaller upper-bond is chosen. As can

be seen from the figure, a variety of � are available for

experimental realisation. If some error of about 0.02 in � is

tolerated, a multilayer with almost any � can be analyzed with

the integration method.

3. Experimental application on W/Si multilayers

In this section, we present the successful application of

the integration method on characterizing the interface

morphology of sputter-deposited W/Si multilayers grown at

different Ar pressure. The W/Si multilayers are important

reflectors for both soft and hard X-rays.

3.1. Experimental details and results

The W/Si multilayers were deposited onto polished silicon

(100) wafers with surface roughness of about 0.3 nm by an

ultrahigh-vacuum direct-current magnetron sputtering system.

The pressure before all depositions was below 3.7� 10�7 Torr.

Four samples were deposited at Ar pressures of 1, 3, 5 and

7 mTorr (designated as S-1, S-2, S-3 and S-4, respectively) with

identical bilayer number N = 10 and similar period thickness

� ’ 7.5 nm. The thickness ratio was chosen to be � = 1/4 (W

layer thickness �W ’ 1.9 nm), and thus gives the integration

interval of (�=�, 3�=�).

After deposition, the multilayers were characterized by low-

angle X-ray reflectometry (XRR). The measurements were

made on a four-circle X-ray diffractometer with a Cu sealed-

tube source and a Si (220) crystal monochromator tuned to the

Cu K� line (� = 0.154 nm). The results are shown in Fig. 4

(plotted as thick black lines). The first seven Bragg peaks can

be distinctly observed for S-1, S-2 and S-3 while only five

peaks for S-4, indicating a much larger roughness for S-4. All

four XRR curves have a vanished fourth-order peak due to

� = 1/4. All the curves were fitted in the Bede REFS program

which uses the well known recursive formula (Underwood &

Barbee Jr, 1981) for calculating the reflectivity and differential
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Figure 3
Available thickness ratio when qz is not larger than 9�=�. The vertical
position of the thick lines denotes the corresponding integration interval.

Figure 2
Absolute value of the coefficients in the integrated intensity versus
thickness ratio. The dashed line is for the autocorrelation terms. Solid
lines are for the cross-correlation terms with different integration
intervals (½m� 1
�=�, ½mþ 1
�=�).

Figure 4
Measured (black solid lines) and fitted (red dashed lines) low-angle X-ray
reflection curves of the four W/Si samples.



evolution algorithm (Wormington et al.,

1999) for parameter optimization. The

fitted curves (plotted as thin red lines)

are in good agreement with the

measured ones. The four fitted � values

are in the range 7.3–7.5 nm and � in the

range 0.25–0.27. The averaged rough-

ness is 0.31, 0.32, 0.36 and 0.48 nm for

S-1, S-2, S-3 and S-4, respectively.

The scattering measurements were

made at beamline BL16B1 of the

Shanghai Synchrotron Radiation

Facility. X-rays were provided from a

bending magnet and tuned to 10 keV

(� = 0.124 nm) by a Si (111) double-

crystal monochromator with an energy

resolution of about 6 � 10�4. High-

order harmonics were suppressed by the

total external reflection cut-off of the

focusing mirror. The light spot size at

the sample stage was about 0.5 mm �

0.5 mm. The scattered X-rays were

recorded by a circular CCD detector

with a diameter of 170 mm (2048 pixels), 2.1 m downstream

from the sample stage. A vacuum tube was mounted between

the sample stage and detector to minimize absorption and a

beamstop was inserted to shade the reflected beam. In the

small grazing incident/scattering angle range, this experi-

mental set-up directly measures the scattering diagram in the

qzqy plane. The scattering diagrams measured at grazing

incident angle �0 = 0.37� for the four W/Si samples are shown

in Fig. 5. The first two Bragg sheets were observed in all four

samples. Between the Bragg sheets, the scattered intensity is

also modulated along qz at low qy. This effect is analog to the

Kiessig fringes and implies that the interfaces are correlated to

a large extent at low frequencies. S-1 and S-2 have similar

scattering diagrams. S-3 has longer (in the qy direction) Bragg

sheets and S-4 the longest.

3.2. Analyses and discussion

Now we apply the integration method to analyze the

measured diagrams. The scattered intensity is multiplied by

the average roughness term expðq2
z�

2
avÞ and integrated along

qz in the (�=�, 3�=�) interval as � = 1/4. The integrated

intensity is proportional to the average PSD function which

is the Fourier transformation of the autocorrelation function.

The most general model for autocorrelation is the isotropic

self-affine model (Sinha et al., 1988) with CðRÞ =

�2 exp½�ðR=�kÞ
2�

, where � is the root mean square (r.m.s.)

roughness, �k the characteristic lateral correlation length, and

� the static roughness exponent (also called the fractal

exponent) with the value 0 < � � 1. For R � �k, CðRÞ ! 0.

For R� �k, an asymptotic behavior CðRÞ ’ A� BR2� (A and

B are constants) is presented. Thus the PSD function follows

the asymptotic behavior PSD / q
��
k at high frequencies qk �

2�=�k with the exponent � = 2 + 2�. Other autocorrelation

models also feature this basic asymptotic behavior as it is

generally observed and predicted within the theory of kinetic

roughening (Barabási & Stanley, 1995; Krug, 1997).

The deduced PSDs of the four samples are shown in Fig. 6

as open symbols. The profiles of S-1, S-2 and S-3 are similar.

They all show a linear feature in the log–log plot at high qy

values, thus confirming the power-law asymptotic behavior.

The exponent � was found to be 1.95, 1.97 and 2.03 for S-1, S-2

and S-3 by power-law fit. The exponents are approximately

associated with � ’ 0. The behavior of S-4 is quite different

from the others at low qy, but the power-law asymptotic

behavior is also observed at high qy with the exponent � =

2.70. This exponent is associated with � = 0.35. The difference

in the roughness exponent � reveals different growth mode.

Another significant statistic, lateral correlation length �k, can

be obtained from the integrated intensity. Considering the

different asymptotic behavior between R� �k and R� �k, the
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Figure 5
Measured X-ray scattering diagrams of the four W/Si samples.

Figure 6
PSDs (open symbols) of the four W/Si samples versus qy. Solid lines are
the power-law fit. Arrows denote the critical point for the change of slope.



change of slope in Fig. 6 gives a measure of �k. The critical

points are marked with arrows in Fig. 6 and the corresponding

�k are 54.0, 42.0, 25.8 and 12.6 nm for S-1, S-2, S-3 and S-4,

respectively.

The vertical correlation length can also be determined in a

simple way. According to Stearns (1992), the full width at half-

maximum (FWHM) of the mth Bragg sheet is inversely

proportional to Neff, the number of effectively correlated

multilayer periods, i.e. FWHM ’ 2m�=Neff�. We measured

the FWHM of the first Bragg sheet for the four samples. The

results and corresponding Neff are shown in Fig. 7. At low qy,

Neff of four samples are about 9–10, which are limited by the

finite periodic number N = 10. At higher qy, Neff reduces with

qy. The multilayer grown at higher pressure has larger Neff,

indicating more roughness replication. Salditt et al. (1994,

1996) showed that the FWHM follows the scaling law

FWHM ’ qz
y, where z is the dynamic growth exponent. We

performed a fit of FWHM = aþ bqz
y to determine z, and the

resulting z is 2.08, 2.05, 1.97 and 1.65 for S-1, S-2, S-3 and S-4,

respectively. However, the error �z ’ �0.2 is quite large

because the power term is smaller than the constant term

which is induced by the finite periodic number. The dynamic

growth exponent z together with the roughness exponent �
can identify the universality class of the growth process.

Collating the obtained values with the known classes, we

conclude that S-1, S-2 and S-3 belong to the Edwards–Wilk-

inson (EW) class (� = 0, z = 2) and S-4 the Kardar–Parisi–

Zhang (KPZ) class (� = 0.38, z = 1.58) (Edwards & Wilkinson,

1982; Kardar et al., 1986). The effects of sputter pressure on

thin-film microstructure have been widely studied (Clemens,

1987; He et al., 1991; Gómez et al., 2002). Our results show that

the morphology and the underlying growth process of W/Si

multilayers change significantly at sputter pressures between

5 mTorr and 7 mTorr.

4. Summary and conclusions

In conclusion, we have demonstrated the integration method

which can directly determine the average PSD function of

a periodic multilayer from the X-ray scattering diagram

measured in the out-of-plane geometry. In using this method,

the measured scattering intensities are multiplied by an

average roughness term expðq2
z�

2
avÞ and integrated along qz in

an interval which is decided by the thickness ratio. After these

procedures, we can eliminate the contribution of cross-corre-

lations to the integrated intensity without assuming any cross-

correlation model and only the autocorrelations are reserved.

Then the multilayer can be treated as a ‘single interface’ and

the average PSD function can be obtained.

We have applied the integration method on the interface

characterization of sputter-deposited W/Si multilayers grown

at Ar pressures of 1, 3, 5 and 7 mTorr. The asymptotic beha-

vior of the resulting PSD functions at high frequencies

suggests a static roughness exponent of � = 0 for the three 1–

5 mTorr multilayers and � = 0.35 for the 7 mTorr multilayer.

The critical point of slope change in the log–log plot of the

PSD functions indicates a lateral correlation length of 54.0,

42.0, 25.8 and 12.6 nm for the 1, 3, 5 and 7 mTorr multilayers,

respectively. The FWHM of the Bragg sheets gives a measure

of the vertical correlation length. The vertical correlation

lengths of the four samples are limited by the finite period

number at low frequencies and decay with the frequency. At

high frequencies the sample grown at higher pressure has a

larger vertical correlation length. The frequency-dependent

behavior of the FWHM suggests a dynamic growth exponent

z = 2 for the three 1–5 mTorr multilayers and z = 1.65 for

the 7 mTorr multilayer. The static roughness exponent and

dynamic growth exponent uniquely determine the universality

class of the growth process. We have found that the samples

grown at 1–5 mTorr agree with the EW class and the 7 mTorr

sample agrees with the KPZ class.
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