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X-ray scattering from a liquid using the spectrum from the undulator

fundamental is examined as a function of the bandwidth of the spectrum. The

synchrotron-generated X-ray spectrum from an undulator is ‘pink’, i.e. quasi-

monochromatic but having a saw-tooth-shaped spectrum with a bandwidth from

1 to 15%. It is shown that features in S(q) are slightly shifted and dampened

compared with strictly monochromatic data. In return, the gain in intensity is

250–500 which makes pink beams very important for time-resolved experiments.

The undulator spectrum is described by a single exponential with a low-energy

tail. The tail shifts features in the scattering function towards high angles and

generates a small reduction in amplitude. The theoretical conclusions are

compared with experiments. The r-resolved Fourier transformed signals are

discussed next. Passing from q- to r-space requires a sin-Fourier transform. The

Warren convergence factor is introduced in this calculation to suppress

oscillatory artifacts from the finite qM in the data. It is shown that the

deformation of r-resolved signals from the pink spectrum is small compared with

that due to the Warren factor. The q-resolved and the r-resolved pink signals

thus behave very differently.
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1. Introduction

The distortion of signals due to imperfect recording devices is

omnipresent in experimental sciences. This is particularly well

known in optical spectroscopy, where spectral lines are

deformed by the finite slit width of the spectrometer. This

deformation may be large enough to compromise the inter-

pretation of the observed data. Similar problems are present

in X-ray physics. Some of them are due to the finite duration

of the probing X-ray pulses, and may be treated employing

deconvolution techniques (Jansen, 1997). They were discussed

in some detail in our recent paper, called in what follows

Paper 1 (Bratos & Leicknam, 2012). Another imperfection is

not only that the pulse duration may be too long but also that

the raw synchrotron-generated X-ray spectrum is never

strictly monochromatic; this holds true even for the funda-

mental emission line from an undulator which at modern

synchrotrons has an asymmetric shape with a relative band-

width of 1–15% (FWHM) peaked at EM. Problems of this sort

merit careful examination. A short review covering the field

was published recently by Guerin et al. (2012). The pertur-

bations of q-resolved signals were explored first by Haldrup et

al. (2009). The incident beam was described as a superposition

of a number of strictly monochromatic beams, and standard

formulas were employed to calculate the corresponding

signals. Superposing them then provides the final signal, which

may be compared with experiment. This approach turned out

to be relatively satisfactory, although some details escaped the

analysis. The perturbation of r-resolved signals turned out to

be much more difficult; it was studied very recently, both

theoretically and experimentally (Lee et al., 2013). Here, too,

the incident X-ray beam was considered as a superposition of

a number of monochromatic beams. It was then shown that the

scattering data of a polychromatic beam remain a weighted

sum of monochromatic data even in real space. It was next

shown how, knowing the signal for a given value of r, for

example r = r0, all signals, whatever r, can be deduced from the

signal calculated for r = r0. This last signal was determined by

attributing to it an arbitrary, but flexible, functional form with

a sufficient number of adjustable parameters; the latter were

fixed employing mean square optimization techniques. The

difficulty with this method is its numerical accuracy, the effects

under consideration being very small.

Although basically interested in time-dependent problems,

we decided here to consider systems in thermal equilibrium. In

fact, the distortion of signals due to the use of pink radiation is

expected to be small when modern synchrotron X-ray sources

are employed; it is thus most conveniently explored in the

absence of perturbations, i.e. for systems in thermal equili-

brium. It should be emphasized that the polychromatic
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correction problem can be treated in a completely clean way.

Once statistical properties of the noisy component of the

incident X-ray radiation have been defined, the rest of the

paper is free of any theoretical or computational approxima-

tion. Note finally that similar problems occur also with free-

electron laser sources, due to the shot-to-shot fluctuations of

recorded signals. The present study thus represents a contri-

bution to the general theory of X-ray radiation.

2. Deformation of X-ray signals in q-space

As just stated, the system under consideration is a diluted

liquid solution in thermal equilibrium. In principle the system

is probed with monochromatic radiation. In reality the X-ray

spectrum is pink, i.e. only quasi-monochromatic. At the

European Synchrotron Radiation Facility, the spectral width

��/� of the U17 undulator used for fast time-resolved

experiments is 3.5% (full width at half-maximum), but at other

beamlines and synchrotrons the bandwidth can vary from 2 to

15% depending of the collimation of the electron beam. Our

problem here is to explore the consequences of this deviation

from an ideal monochromatic source. Our theory rests on the

assumption that the undulator-generated pink X-ray wave

is an incoherent superposition of fully monochromatic X-ray

waves (Schotte et al., 2002). The intensity distribution of the

latter was found to be exponential: I(E) = I0 exp[�� 0(EM �

E)] if E < EM and I(E) = 0 for E > EM, where EM is the cut-off

energy and � 0 is the bandwidth (Fig. 1). The relation between

the FWHM, called �EM, and � 0 is defined by �EM = ln(2)/� 0.
The line-width comes from the Doppler-shifted off-axis

radiation from the undulator collected in a finite-size aperture.

It is more convenient for the present purposes to replace E

in the expression I(E) by the quantity q 0 = 4�/�. This variable

q 0 has the dimensions of a wavevector but is proportional to

the energy E. One finds easily

E ¼ h� ¼ hðc=�Þ ¼ ðh=4�Þcð4�=�Þ ¼ 1=2h- cq 0: ð1Þ

The relation between the quantity q 0 just introduced and the

wavevector q of the theory of X-ray diffraction is q = q 0 sin�.

Expressing the energy E in terms of a quantity q 0 having the

dimensions of inverse length may surprise, but note that in

spectroscopy the energy is currently expressed in units of

cm�1. It is then possible to write I(q 0) = I0 exp[��(qM� q 0)] if

q 0 < qM, and I(q 0) = 0 if q 0 > qM where qM is the cut-off value of

q 0 and � the bandwidth. As E and q 0 are proportional to each

other, these two expressions are strictly equivalent. The decay

constants � and � 0 are simply related, i.e. � = 1/2h- c� 0. Then, if

SP(�) is the intensity of the scattered pink radiation expressed

in electronic units, 2� the scattering angle and if iP(�) = SP(�)�
�i fi

2 is its reduced scattering intensity from which the single

atom contribution �i fi
2 was subtracted (Warren, 1990), there

results

iPð�Þ ¼
�

1� exp ��qMð Þ

ZqM

0

exp �� qM � q 0ð Þ
� �

iM q 0; �ð Þ dq 0 ð2Þ

where

iM q 0; �ð Þ ¼
X
i 6¼ j

fi fj

�
sin q 0rij sinð�Þ
� ��

q 0rij sinð�Þ
�
:

Here, the symbol iM(q 0, �) indicates the reduced scattered

X-ray intensity at a precisely defined value of q 0, qM is the cut-

off value of q 0 and fi designates the atomic scattering factor

of the atom i. The factor �[1 � exp(��qM)]�1 is the normal-

ization factor for the undulator spectrum. Finally, the

subscripts M and P refer to monochromatic and pink incident

X-ray beams, respectively. This integral is not simply expres-

sible in terms of familiar functions, but can easily be calculated

numerically. Note that, if the incident X-ray radiation is not

strictly monochromatic, the wavevector q is ill-defined, and

speaking of q-resolved signals is not rigorous. On the contrary,

the �-dependent pink signals SP(�) remain precisely defined.

Nevertheless, for commodity of language we will continue

speaking about q-resolved signals, but one should keep in

mind this precaution. This expression for the signal iP(�) can

be used to explore the signal deformation if a pink, rather than

a strictly monochromatic X-ray radiation, is used in an

experiment. The two parameters playing a basic role here are

the cut-off wave length vector qM and the bandwidth � = �qM/

qM = �EM/EM of the X-ray spectrum. (i) The dependence of

the q-resolved X-ray signal on the beam width � is illustrated

in Figs. 2(a)–2(c). If qM is of the order of 8 Å�1 and � ’ 1%,

the monochromatic and pink curves coincide. The X-ray

radiation, although pink, can then be treated as monochro-

matic. If � increases to 3% with qM = 8 Å�1, the difference

between the monochromatic and pink signals is no longer

totally negligible. It is relatively important if � ’ 6%. More-

over, as shown in these figures, the nodal points of the pink

signals shift more rapidly with increasing angle � as in a

monochromatic signal. Finally, the intensity of pink signals is

smaller than that of monochromatic signals. These simple

calculations give an idea about the effect of the poly-

chromaticity of synchrotron-generated pink X-rays on q-

resolved signals. These results are in good agreement with

experiment (Guerin et al., 2012; Haldrup et al., 2009).
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Figure 1
The shape of the synchrotron-generated X-ray intensity I(q 0) as a
function of the variable q 0 = (4�/�); this quantity is proportional to the
beam energy E. Moreover, qM is the cut-off value of q 0. Note that EM =
19 keV.



The results can be understood using simple hand-waving

arguments. In fact, let us consider a diatomic molecule of

equilibrium length r0 and replace the above distribution of

wavevectors by two infinitely sharp lines placed at qM and

qM � 1/�; here 1/� mimics the width of the real q 0 vector

distribution. The resulting signals are sin(qM r0 sin�)/

(qMr0 sin�) and sin[(qM � 1/�)r0 sin�]/[(qM � 1/�)r0 sin�].

They vanish at sin� = n�/qMr0 and sin� = n�/(qM � 1/�)r0,

where n = 1, 2, 3 . . . . It results that the signal corresponding

to � 6¼ 0 (the ‘pink’ signal) precedes the signal where � =1

(the ideal monochromatic signal), and that this separation

increases with increasing n. This is the essence of the results

described above. Note, however, that the above conclusions

must be refined if other perturbation mechanisms are active.

For example, the signal-to-noise ratio of the measured signal

may be affected by the asymmetric shape of the incident X-ray

radiation. Unfortunately, studying these effects requires

detailed knowledge of statistical properties of such perturbing

mechanisms. This knowledge is rarely available at the present

time.

The effects of pink X-rays have

until now been studied theoretically.

However, they can also be explored

experimentally, symmetrizing the initi-

ally asymmetric undulator spectrum.

A symmetric spectrum approaches the

Dirac pulse �(q � qM), although it still

remains pink. This result was obtained

using specially constructed multilayer

monochromators (Guerin et al., 2012).

A long-lasting effort was made at ESRF

to realise satisfactory achievements.

A first-generation multilayer mono-

chromator was installed in the optics

hutch in 2004. A double-crystal multilayer stage was attached

to the cryogenic monochomator and was cooled by liquid

nitrogen. This multilayer stage never worked well due to low-

temperature stress from the Cu absorbers and vibrations in the

cooling pipes that excited the second crystal. With the instal-

lation of the heat-load chopper in 2009, a modified multilayer

stage, the in-focus multilayer monochromator, was installed

1.0 m from the sample. This stage is water-cooled. The

performance is clearly superior due to the 1000 times lower

heat load and the shorter distance to the sample. The first

substrate is cooled by spring-loaded Cu absorbers. Both

substrates have two coating stripes that can be moved into the

beam. The first coating is a ruthenium coating with composi-

tion [Ru/B4C]51, giving a 3.2% bandwidth, and an iridium

[Ir/Al2O3]100 coating, generating a 1.6% bandwidth. The

diffraction is dominated by the high-Z metals and the inter-

layer distances are 39.20 Å for Ru and 25.66 Å for Ir. The

usable Bragg angles are 0.45–0.90� which gives 10–20 keV for

Ru and 16–30 keV for Ir. Symmetric X-ray pulses obtained in

this way are illustrated in Fig. 3, whereas one-pulse multilayer

fluxes are shown in Table 1 which permits these fluxes to be

compared with traditional silicium generated fluxes.

3. Deformation of X-ray signals in r-space

This part of the present study refers to the r-resolved signals

and is noticeably more complicated than that of the q-resolved

signals. This problem has also been explored by other authors;

see, for example, Lee et al. (2013). The following introductory

remarks seem appropriate. Normally, the q-dependent signals

S(q) are measured experimentally using nearly monochro-

matic X-rays; structural information about the system can then

be extracted by Fourier sine transforming them. The atom–

atom distribution functions gij(r) of the system can be

research papers

J. Synchrotron Rad. (2014). 21, 177–182 S. Bratos et al. � Liquid X-ray scattering 179

Figure 3
The blue curve shows the spectrum of the single-harmonic undulator measured with a Si
monochromator. The red curve shows the spectrum monochromated by an Ir multilayer with a 1.6%
bandwidth. In this figure the undulator beam intensity is expressed in terms of the energy E and not
in terms of the variable q 0.

Figure 2
�-resolved signals corresponding to different bandwidths of the incident
X-ray beams (red squares). The blue curves represent signals generated
by strictly monochromatic beams. The bandwidths are � = 1% in (a), 3%
in (b) and 6% in (c).

Table 1
One-pulse multilayer fluxes (photons pulse�1).

15 keV (U17, harm 1) 25 keV (U20, harm 3)

Pink, 5% bw 2.7 � 109 Pink beam
Ru, 3.2% bw 4.3 � 108 Ir, 1.6% bw 3.3 � 107

Si(111), 0.014% bw 5.9 � 106 Si(111), 0.014% bw 8.1 � 105



obtained in this way. The purpose of the present study is

different: it consists of investigating the effect of small changes

of (supposedly known) atom–atom distribution functions gij(r)

on the scattered intensity. These changes may have a physical

origin (e.g. thermal expansion of the system); they may also be

introduced for mathematical convenience, for example the

Warren correction (Warren, 1990). The basic equations for

X-ray scattering from a liquid can then be written

iðqÞ ¼ SðqÞ �
X

i

f 2
i

¼
X
i 6¼ j

fi fj exp �iqrij

� �	 


¼
X
i 6¼ j

fi fj=V
� � Z1

0

4�r 0 2 gijðr
0Þ � 1

� � sinðqr 0Þ

qr 0
dr 0: ð3Þ

As earlier, S(q) is the intensity of the scattered radiation

expressed in electronic units, and i(q) is its reduced form from

which the single atom contribution was subtracted (Warren,

1990). Moreover, fi is the scattering factor of the atom i, gij(r 0)

is the distribution function of the atoms i and j in a liquid

solution and V is the volume of the liquid sample. Equation (3)

by no means introduces a basic novelty into the theory of

X-ray diffraction.

In the following we shall focus our attention on a diluted

solution of diatomic molecules in an inert solvent. In fact,

procedures exist to eliminate the solvent part of the experi-

mentally measured signals (Cammarata et al., 2006). What

remains is a weighted sum of terms associated with the atom

pairs AA, AB, AC, etc., where A denotes the solute atoms and

B, C, . . . stand for solvent atoms. As these contributions

usually peak in separate regions of the r-space, the signal of

the AA pair can often be isolated. If this is the case, studying

atoms A alone may suffice.

3.1. Warren correction

As the determination of gij(r) invariably requires the

Warren correction (Warren, 1990), the errors introduced by it

are studied prior to the ‘pink’ effect. The main characteristics

of this correction are as follows. The starting point is the

observation that i(q) approaches zero with increasing

value of q due to the decrease in the values of sin(qr 0)/qr 0 with

increasing q. At a maximum value in q, called in the following

qm, the quantity i(q) becomes too small to be measured, and

one can say that the intensity curve has converged. However,

according to the basic theory of X-ray radiation (Warren,

1990), passing from q- to r-space requires a Fourier transfor-

mation of the function qi(q) and not of the function i(q) alone;

this quantity may not be negligible even for the values of q

larger than qm, where i(q) is no longer measurable. In addi-

tion, terminating qi(q) at the highest value of qm retained in

this calculation produces false satellites. The Warren correc-

tion was invented (Warren, 1990) to overcome these difficul-

ties and is of current use. It consists of introducing a

convergence factor exp(�	2q2) and shifting the integration

limit in q from 1 to a limiting wavevector qm in the Fourier

transformation; this last step may be accomplished employing

the step function �(x) equal to 1 if x < 0 and 0 if x > 0. Then

introducing the usual normalization factor M(q) =

½�i 6¼ j fiðqÞ fjðqÞ�
�1, one can write

iWðr; qmÞ ¼
1

2�2r

Z1

0

qMðqÞiðqÞ exp �	2q2
� �

�� qm � qð Þ sinðqrÞ dq

¼
1

2�2rV

X
i 6¼ j

Z1

0

4�r 0 gijðr
0
Þ � 1

� �
dr 0

�

Zqm

0

h
fiðqÞ fjðqÞ

�P
i 6¼ j

fiðqÞ fjðqÞ
i

� exp �	2q2
� �

sinðqrÞ sinðqr 0Þ dq: ð4Þ

This equation will now be simplified by neglecting the q-

dependence of fi(q) and abbreviating Fi = ð�i 6¼ j fi fjÞ
�1=2. This

simplification is introduced for reducing the following

presentation to the essential physical dependence. In fact, we

also performed calculations where this q-dependence of fi(q)

was taken into account, but the resulting signals remain

unchanged up to the precision of our calculations. Then, as

sin(qr)sin(qr 0) = (1/2)cos[q(r � r 0)] if (r + r 0)q � 1, there

results

iWðr; qmÞ ¼
1

�rV

X
i 6¼ j

Fi Fj

�

Z1

0

r 0 gijðr
0Þ � 1

� �
sW r� r 0; qmð Þ dr 0; ð5aÞ

sW r� r 0; qmð Þ ¼

Zqm

0

exp �	2q2
� �

cos q r� r 0ð Þ½ � dq

¼
ffiffiffi
�
p

=2	
� �

exp � r� r 0ð Þ
2
=4	2

h i

� Re
n

erf 2	2qm � Irþ Ir 0
� �

=2	
� �o

: ð5bÞ

The error function entering in the above equation depends on

a complex argument, I, indicating the imaginary unit. The

intensity iW(r,qm), modified by the Warren correction, is given

by the green curve in Fig. 5 whereas the blue curve in Figs. 4

and 5 indicates the ‘true’ signal written in the form

gAA(r 0) � 1 = (1/V)exp[�A(r 0 � r0)2] , the distance r0 being

the equilibrium A–A distance. The deformation of the signal

due to the Warren correction is seen to be very important.

However, the maximum of the corrected signal is not shifted

too much, which means that molecular geometry remains

predicted correctly within this approximation. On the

contrary, great care is necessary if this procedure is applied in

studying molecular dynamics in liquids. Not only the position

but also the shape of the signal plays a role in these circum-

stances.
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Another aspect of this problem also merits attention. As

shown in equation (5), the deformed Warren signal iW(r,q 0)

appears as a convolution of
P

i 6¼ j fFi Fj r 0 ½ gijðr
0Þ � 1�g with

sW(r � r 0, q 0). It can thus be discussed in terms of the widely

known convolution theory (Jansen, 1997). Convolution theory

was initially employed in optics to describe the deformation of

spectral shapes due to the finite slit width of spectrometers. It

is extensively employed in treatments of images; compare with

Paper 1 (Bratos & Leicknam, 2012) of this series. In convo-

lution theory the convolution integral is generally written in

the form i(x) =
R

dx 0s(x � x 0)o(x 0), and the following termi-

nology is widely adopted: the quantity i(x) is called ‘intensity’,

s(x � x 0) is the ‘point spread’ or ‘apparatus’ function, whereas

o(x 0) is the ‘object’. In spectroscopy, x, x 0 are frequencies, i(x)

is the observed band intensity at frequency x, s(x � x 0) is the

apparatus function and o(x 0) is the true band intensity, free of

any deformation. In X-ray diffraction, x and x 0 are interatomic

A–A distances r and r 0, i(x) is iW(r, q 0), sW plays the role of the

apparatus function, and o(x 0) =
P

i 6¼ jfFi Fjr
0 ½ gijðr

0Þ � 1�g is

basically the weighted sum of non-deformed atom–atom

distribution functions gij(r 0)� 1. These notions should be kept

in mind to compare the deconvolution problems in spectro-

scopy and X-ray diffraction.

3.2. Pink signal in the r-space

Once the unavoidable jump over the Warren correction has

been accomplished, we can return back to one of our main

objectives, i.e. to the study of the pink X-ray signal SP(r), or of

the reduced pink signal iP[r] = S[r] � �i fi
2. This can be done

by simply averaging the Warren signal iW of equation (5) over

the distribution of the limiting wavevectors qm. Note that q =

q 0 cos(�) and that qm = q 0. Then

iPðr; qMÞ ¼
�

1� expð��qMÞ

ZqM

0

exp �� qM � q 0ð Þ
� �

sW½q
0; r� dq 0

¼
1

�rV

X
i 6¼ j

Fi Fj

Z1

0

r 0 gijðr
0
Þ � 1

� �
sP r� r 0; qMð Þ dr 0: ð6Þ

sP r� r 0; qMð Þ ¼
�

1� exp ��qMð Þ

�

ZqM

0

exp �� qM � q 0ð Þ
� �

sW½r� r 0; q 0� dq 0: ð7Þ

The integrals present in (6) and (7) are all expressible in terms

of elementary functions, mainly products of Gaussians and

error functions of complex argument. Note that the expres-

sions for iW(r,q 0) and iP(r,qM) are both convolutions, differing

from each other only in their apparatus functions sW(r� r 0,q 0)

and sp(r � r 0,qM).

The calculated signals iP[r,qM] are reproduced in Figs. 4 and

5. (i) If the cut-off wavevector qM = 19.3 A�1 and if the

bandwidth of the pink beam is � = 3%, the true signals and the

pink signals, i(r,qM) and ip(r,qM), coincide completely (Fig. 4).

Note that current values of qM attainable in practice are of the

order of 10 A�1; this figure thus describes conditions at which

the undulator-emitted X-rays can be considered to be ‘infi-

nitely’ sharp. (ii) The discussion is very different if the Warren

expression I(q)exp(�	2q2)�(qM � q) is employed to pass

from the q-resolved to the r-resolved signals (Fig. 5). In this

case, the Warren correction covers largely the effects of pink

X-ray radiation. This can be seen easily comparing the blue

curve corresponding to the true signal, the green curve which

is Warren corrected with 	 = 0.173 A and qm = 8 A�1, but

where the X-ray radiation still is monochromatic, and the

curve indicated by red squares where the radiation is pink, but

the Warren parameters remain the same as above. The final

parameters are qM = 8 A�1, � = 3% and 	 = 0.173 A. They are

not arbitrary, but are inspired by those describing a dilute

I2/CCl4 solution (Plech et al., 2004). The smallness of the effect

of pink radiation should not astonish. If the extension of the

signal in the r-space is of the order of 1 Å, then, according to

the relation �r�q ’ �, the extension of the signal in the q-

space is of the order 3 Å�1. It is then not essential to realise

the Fourier inversion by integrating over q up to 1, up to
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Figure 5
Comparing r-resolved signals generated by monochromatic and pink
incident X-ray beams. The blue line corresponds to a truly monochro-
matic beam, the green line corresponds to the Warren deformed signal in
the absence of polychromatic correction, whereas the red squares include
both the effect of the Warren and that of the polychromatic correction.
The perturbation of the signal due to the pink radiation is very small
compared with that due to the Warren correction.

Figure 4
Comparing the r-resolved X-ray signals generated by monochromatic and
pink incident X-ray beams. The blue line corresponds to a truly
monochromatic beam, the red squares to a pink beam with bandwidth
� = 3%, and the black crosses to a pink beam with � = 15%. Contrary to
the q-resolved signals, the r-resolved signals are hardly affected by the
polychromaticity of the incident X-ray beams. Compare with Fig. 2.



8 Å�1 or up to 8(1 � 1/�) ’ 7 Å�1. Using pink rather than

monochromatic X-rays thus generates small effects difficult to

study in the r-space.

4. Conclusions

The following conclusions may be drawn from this work. In

q-space the signals generated by pink X-rays differ distinctly

from their monochromatic analogues. These perturbations,

although fairly small, are detectable and can be studied using

multilayer monochromators; they can also be calculated

theoretically. This statement no longer holds true in r-space.

The Warren correction needed to pass from the q-space to the

r-space introduces errors which cover the pink beam effect

almost completely. Studying these effects on r-resolved X-ray

signals i(r) thus remains difficult at the present time and

requires the development of more accurate data analysis and

new strategies when coming to the refinement of high-reso-

lution structural features from X-ray scattering data.
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