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Obtaining sub-10 pm spatial resolution by extended X-ray absorption fine

structure (EXAFS) spectroscopy is required in many important fields of

research, such as lattice distortion studies in colossal magnetic resistance

materials, high-temperature superconductivity materials etc. However, based on

the existing EXAFS data analysis methods, EXAFS has a spatial resolution limit

of �/2�k which is larger than 0.1 Å. In this paper a new data analysis method

which can easily achieve sub-10 pm resolution is introduced. Theoretically, the

resolution limit of the method is three times better than that normally available.

The method is examined by numerical simulation and experimental data. As a

demonstration, the LaFe1–xCrxO3 system (x = 0, 1/3, 2/3) is studied and the

structural information of FeO6 octahedral distortion as a function of Cr doping

is resolved directly from EXAFS, where a resolution better than 0.074 Å is

achieved.

Keywords: EXAFS; spatial resolution; atom distribution function.

1. Introduction

EXAFS (Sayers et al., 1971) is a powerful technique for

probing the local structure around absorbing atoms, which has

been widely applied to material science, chemical engineering,

environmental science and engineering, life science etc.

However, there is still an unsolved limitation of EXAFS:

insufficient spatial resolution. Based on the existing EXAFS

data analysis methods, EXAFS has a resolution limit of �r �

�=2�k (Lee et al., 1981; Teo, 1986), where �r is the spatial

resolution and �k is the wavenumber in the EXAFS data. For

the typical case of oxygen as the nearest neighbours, �k is

usually less than 15 Å�1, so the best spatial resolution is larger

than 0.1 Å. Exceeding this limit may lead to unreliable results.

Stern (2001) also emphasized that ‘any claim of a higher

resolution (higher than 0.1 Å) of �r for two O atoms should

be suspect’.

However, sub-10 pm spatial resolution is required in many

important fields of research, such as lattice distortion studies

in colossal magnetic resistance (CMR) materials (Sen et al.,

2010), high-temperature superconductivity materials (Saha et

al., 2009), antiferromagnetic materials (de la Cruz et al., 2010)

and multiferroic materials (Gupta et al., 2013). It is believed

that the lattice distortion plays an important role in the special

properties of these materials and a detailed structural analysis

can help to better understand the physics of these materials.

Scientists have applied EXAFS to these materials. However,

due to the insufficient resolution, they have to guess the

number of atom shells for curve fitting (Haas et al., 2004;

Pandey et al., 2006) which may lead to ‘suspect’ results (Stern,

2001). Alternatively, they have to assume only one shell exists

and focus on the Debye–Waller factor (DWF) (Booth et al.,

1998; Sundaram et al., 2009; Chu et al., 2013), losing important

structural information.

Indeed, EXAFS is the ideal method to study lattice

distortion because it is an element-sensitive method for crys-

talline and non-crystalline samples. Furthermore, it has an

accuracy of 0.01–0.001 Å (Dalba et al., 1999) for interatomic

distance determination. The key issue is how to improve the

spatial resolution. Several attempts to improve the resolution

have been carried out using the regularization method

(Tikhonov & Arsenin, 1981; Babanov et al., 1981; Yang &

Bunker, 1996; Rossberg & Funke, 2010) and the wavelet

method (Funke et al., 2007; Penfold et al., 2013). However, the

improved resolution does not surpass the 0.1 Å limit. In one

of the latest works, Rossberg & Funke (2010) attempted to

resolve two peaks with �r = 0.15 Å using the regularization‡ These authors contributed equally to this work.
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method; however, they were unable to resolve these peaks

directly. Although the regularization method has a higher

spatial resolution than the Fourier transform (FT) method

because it can reduce the peak broadening in r space caused

by limited data in k-space, it cannot provide a spatial resolu-

tion better than 0.1 Å. The neutron/X-ray pair distribution

function (PDF) method (Toby & Egami, 1992) is a powerful

method for obtaining the PDF of samples with high spatial

resolution, with the resolution limit of the PDF method being

�r � 2�=Qmax (Fábián et al., 2007), where Q = 4� sinð�Þ=�. In

most cases, Qmax is smaller than 60 Å�1 so it is difficult to

obtain sub-10 pm resolution using the PDF method.

The regularization method cannot provide a sub-10 pm

resolution due to the DWF. In the existing EXAFS data

analysis models, the DWF is coupled with the structural

information, broadening the peak of each atom shell in r-space

significantly and, therefore, affecting the spatial resolution. In

this paper, we raise a model which separates the DWF from

the structure information, and propose an algorithm based

on the gradient descent algorithm to solve this model. This

algorithm is a non-parametrical algorithm which allows us to

obtain structural information directly from EXAFS data

without assuming the number of fitting parameters. Our

method is tested by numerical simulation and experimental

data of the LaFe1–xCrxO3 system (x = 0, 1/3, 2/3). As a result,

sub-10 pm spatial resolution is achieved.

2. Modelling and algorithm description

The general EXAFS integral equation has the following form,

�ðkÞ ¼
R1
0

Aðk; rÞgðrÞ dr; ð1Þ

where gðrÞ is a function which contains all structural infor-

mation of the EXAFS spectrum, including coordination

numbers, bond lengths and DWF. The kernel function A is in

the form

Aðk; rÞ ¼
S2

0ðkÞFðk; rÞ

kr2
exp �2r=�ðkÞ½ � sin 2krþ ’ðk; rÞ½ �;

in which Fðk; rÞ is the effective backscattering amplitude, S2
0 is

the amplitude reduction factor, �ðkÞ is the mean free path of

the photoelectron, k is the photoelectron wavevector, r is the

interatomic distance, ’ðk; rÞ is the phase shift due to the

atomic potentials and �ðkÞ is the EXAFS function.

For the regularization method, gðrÞ is the target to be

solved. As mentioned previously, gðrÞ contains all the struc-

tural information and the DWF. Therefore, the spatial reso-

lution will be significantly decreased. Hence, we will separate

the DWF from gðrÞ, which will theoretically lead to a signifi-

cantly higher spatial resolution than the regularization

method.

Assuming that gðrÞ satisfies a Gaussian model (Rossberg &

Funke, 2010),

gðrÞ ¼
Xshells

j¼ 1

nj

2��2
j

� �1=2
exp �ðr� rjÞ

2=2�2
j

� �
: ð2Þ

Thus, the integral in (1) can be resolved analytically and, using

justified approximations, is reduced to the EXAFS equation

for a given number of coordination shells (Sayers et al., 1971),

�ðkÞ ¼
Xshells

j¼ 1

njS
2
0ðkÞFjðkÞ

kr2
j

exp �2�2
j k2

� �

� exp �2rj=�ðkÞ
� �

sin 2krj þ ’jðkÞ
� �

; ð3Þ

in which nj is the coordination number and �2
j is the DWF of

the backscattering atoms in the jth shell. Converting to the

integral form, (3) becomes

�ðkÞ ¼
RR
0

Aðk; rÞ exp �2�ðrÞ2k2
� �

nðrÞ dr: ð4Þ

This is a new integral equation based on the Gaussian model.

In (4), nðrÞ is named the atom distribution function (ADF).

The ADF consists of one or more peaks. The position and area

of each peak are the bond length and coordination number,

respectively. Theoretically, the ADF should be a � function;

however, in our case this convergence does not occur due to

the restricted amount of data. Hence, the spatial resolution

limit of this method is �r � 1=2�k, following the uncertainty

principle.

In this paper, we focus on the structural analysis of lattice

distortions through the nearest shells to absorbing atoms (we

name these atom shells as subshells in this contribution). The

advantage is that EXAFS data of the nearest subshells often

have a better signal-to-noise ratio than high coordination

shells and do not have multiple scattering signals. These atoms

usually have the same atom species, close bond lengths and

similar surrounding conditions. Therefore, all subshells can be

assumed to have the same kernel function Aðk; rÞ expð�2�2k2Þ

in (4).

The remaining task is to reconstruct nðrÞ from the kernel

function and EXAFS data �. For convenience, we rewrite (4)

in a compact form,

�ðkÞ ¼ ðKnÞðkÞ; ð5Þ

where K is the operator of the kernel function that maps the

distribution function into the observation space, and n is the

ADF. Note that experimental EXAFS data � may contain

noise; therefore, to solve for nðrÞ, a constrained minimization

problem is proposed,

min
n

1

2
kKn� �k2; ð6Þ

subject to
n � 0; ð7Þ

0:1 > �2 > 0: ð8Þ

To solve (6) subject to (7) and (8), the Lagrangian multiplier

method or gradient descent method with projection could be

applied. Here, we introduce an algorithm based on the

gradient descent algorithm (Wang, 2007).
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We denote f ðnÞ = ð1=2ÞkKn� �k2. To maintain non-nega-

tivity of n, we let n = expðxÞ. Therefore, f ½expðxÞ� =

ð1=2ÞkK expðxÞ � �k2. This setting directly leads to the explicit

non-negative constraints. The gradient can be deduced using

the formula

d

d�
f ðxþ �zÞj�¼ 0;

which leads to the gradient formula

gðnÞ ¼ n :� KT
ðKn� �Þ

� �
;

where .* denotes the component-wise product of two vectors.

The gradient descent algorithm is based on the following

formula,

nkþ1 ¼ nk þ 	kdk;

where dk = �gk and 	k is the step length such that 	k =

argmin	 > 0 f ½expðxkÞ þ 	dk�. Solving the minimization

problem 	k yields

	 a
k ¼

dk;K TðKnk � �Þ
� �

dk;K TðKdkÞ
� � ;

where [ . . . , . . . ] denotes the inner product of two vectors.

Note that, for the non-negativity constraints, we require

	 2 {	 > 0 : nk þ 	dk � 0}, yielding

	 b
k ¼ min �

nkðiÞ

dkðiÞ
: dkðiÞ< 0

� �
:

Therefore, the final step length should be 	� = minf	 a
k ; 	

b
k g.

The stopping criterion is based on the norm of the gradient

and the maximum iteration number. A description of the

algorithm is shown below.

2.1. Algorithm

(1) At the kth step, compute the gradient of the new

objective function f ½expðxÞ� = ð1=2ÞjjK expðxÞ � �jj2: gk =

nk :� ½K
TðKnk � �Þ�, where nk = expðxkÞ and :� denotes the

component-wise product of two vectors.

(2) Generate the negative gradient direction: dk = �gk.

(3) Calculate the step length 	k = argmin	 > 0 f ½expðxkÞ +

	dk� such that 	�k = maxf	 > 0 : nk þ 	dk � 0g, where argmin

means the one-dimensional line search for the parameter 	.

(4) Update the iterative points nkþ1 = nk þ 	
�
kdk until

convergence.

The final values of n and �2 are obtained at the global

minimum of equations (6)–(8).

3. Method testing

3.1. Numerical simulation

To test the resolution and reliability of our method, a

numerical simulation was performed first. The parameters of

this simulation were chosen based on the LaFeO3 structure

(Sangaletti et al., 2001) to ensure that our method can work

properly for LaFe1–xCrxO3 experimental data which will be

applied in a later test.

The procedure to execute the numerical simulation is as

follows.

(1) Build a simulated gðrÞ using equation (2).

(2) Calculate the simulated EXAFS data �ðkÞ using equa-

tion (1) and add noise to �ðkÞ.
(3) Reconstruct the ADF using the noised data.

In the simulation, gðrÞ was built using a sum of three

Gaussian peaks with n1 = n2 = n3 = 2, r1 = 1.923 Å, r2 = 2.013 Å,

r3 = 2.086 Å. So, the minimum bond length difference is

0.074 Å. The DWF was fixed at 0.005. The backscattering

amplitude FðkÞ, the phase shift ’ðkÞ and the mean free path of

the photoelectron �ðkÞ were calculated from FEFF9 (Anku-

dinov et al., 1998). The reduction factor S2
0 was set as 1. The

range of k was 2–14 Å�1. To ensure the stability of this

method, random noise was added to �ðkÞ. The random noise

was produced by 10�4 � randnðkÞ, where randnð. . .Þ is a

function to generate normally distributed random numbers.

Kernel K and data were both weighted by k3.

In Fig. 1(a), the solid line is the theoretical gðrÞ. Three peaks

have merged into a single peak and become indistinguishable.

Fig. 1(b) shows the theoretical EXAFS data �ðkÞ with added

noise and the fitting curve. The dashed line is a Hanning

window for the FT with a window parameter of 20. Fig. 1(c)

shows the reconstructed ADF and the phase- and amplitude-

corrected FT spectrum (van Zon et al., 1984) of the simulated

data. While the three peaks are indistinguishable using the FT

method, they are successfully resolved by the ADF method.

In the ADF method, the peak position and peak area are the

bond length and coordination number, respectively. Calcu-

lated parameters are n1 = 2.0, n2 = 2.1, n3 = 2.0, r1 = 1.915 Å, r2 =

2.007 Å, r3 = 2.082 Å, �2 = 0.0049 Å2, which are very close to

the true values. The maximum bias of the bond length is only

0.008 Å. Considering that the noise added is higher than

usually recorded in real experimental data and the results are

close to the true values, our method should be regarded as

stable and reliable.

3.2. Testing using the LaFe1–xCrxO3 system

For further testing of our method, perovskite materials

were chosen. Perovskite materials exhibit many interesting

properties from both theoretical and application points

of view. CMR, ferroelectricity, superconductivity, charge

ordering, spin-dependent transport and high thermopower are

commonly observed features in this kind of material. As one

of the most widely used perovskite structures, the perovskite

oxides ABO3, containing a rare-earth metal on the A sites with

12-fold oxygen coordination and a transition metal on the B

sites with six-fold oxygen coordination, exhibit a rich variety

of unusual and interesting electronic, magnetic and structural

properties (Andreasson et al., 2007). In this contribution, we

chose the LaFe1–xCrxO3 system which is well known because

of its ‘strange’ magnetic behaviour (Ueda et al., 1998). For a

long time, ferromagnetism (FM) was expected to be found in

LaFe1–xCrxO3 but it was not observed until a LaFeO3–LaCrO3

superlattice was obtained in 1998 (Ueda et al., 1998). It is

generally believed that FM is absent in such materials due to
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the fact that FM coupling of Fe–O–Cr has not been achieved

when synthesizing such materials by sintering methods. The

materials phase separates into Fe oxide and Cr oxide phases

(Ueda et al., 1998; Wold & Croft, 1959). As a result, a ferro-

magnetic-ordered phase has not been obtained. In this work,

powder samples of LaFe1–xCrxO3 (x = 0, 1/3, 2/3) were

synthesized using a standard solid-state reaction method

(Belayachi et al., 1996; Louca et al., 1999). X-ray diffraction

spectra indicated that all samples crystallize in the perovskite

structure with orthorhombic deformation, having a space

group Pbnm (Wang et al., 2007).

The procedure to resolve the EXAFS data using our

method is as follows.

(1) Conventional EXAFS data treatment, including back-

ground correction, E–k space conversion, 
0-fit, Fourier

transform and inverse Fourier transform (IFT). XAFS data

analysis software, such as WinXAS, IFEFFIT etc., can be used

to perform this.

(2) Reconstruct the ADF using filtered EXAFS data.

In this example, WinXAS was used to carry out the

conventional data analysis. For the IFT, the data range was set

at 1.15–2.10 Å to filter the EXAFS data of the first main peak

which mainly consists of Fe–O octahedral coordinations.

Fig. 2(a) shows the FT data of LaFe1–xCrxO3. Fig. 2(b) shows

the filtered EXAFS data of Fe–O peaks. All data were

weighted by k3. Fig. 2(d) shows the reconstructed ADF. The

calculated bond lengths of LaFeO3 were 1.919, 2.007 and

2.087 Å. The maximum error was 0.005 Å with the X-ray

diffraction data of Sangaletti et al. (2001). Further detailed

structure information is shown in Table 1. Based on the

reconstructed ADF, a lattice distortion model of octahedral

FeO6 with Cr doping was obtained and is shown in Fig. 2(e).

From Fig. 2(d) we can see that the Fe–O octahedral struc-

ture changes as a function of Cr doping. This is a clear

evidence that Fe atoms were replaced by Cr atoms. Further-

more, the three FT spectra in Fig. 2(a) look similar, indicating

that the three samples have similar structures. Combining the

structural analysis of Fe–O and the FT spectra, our results

indicate that ferromagnetic coupling of Fe–O–Cr is present

and phase separation is not the real reason for the absence of

FM in the LaFe1–xCrxO3 sample. In another paper (Belayachi

et al., 1998), the authors found an unusual magnetic behaviour

in LaFe1–xCrxO3 when x > 0.5. In Fig. 2(d), we can see that the

Fe–O octahedral structure changes significantly when x = 2/3,

indicating that the unusual magnetic behaviour may be related

to the Fe–O octahedral distortion.

In this section, our method was examined by using

theoretical data based on LaFeO3 and experimental data of

LaFe1–xCrxO3, requiring a spatial resolution better than

0.074 Å. For theoretical data and LaFeO3 standard data, the

three subshells were resolved clearly and the maximum bond

length errors were only 0.008 Å and 0.005 Å, respectively. This

clearly indicates that our method has good spatial resolution

and the calculated results are reliable.

4. Discussion and summary

EXAFS is an advanced technique which is sensitive to local

structure around the absorbing atoms. In this paper, we focus

on the nearest subshells only and achieve a spatial resolution

higher than 0.1 Å. To obtain sub-10 pm resolution, our

method requires the same atom species of the subshells,

otherwise the kernel function cannot be regarded as the same

for different subshells and the algorithm cannot be applied.

Therefore our method is suitable for studying MO6 octahedral

distortion. Regarding the algorithm to resolve equations (6)–

(8), the one we have introduced in this paper is based on the

gradient descent algorithm. The testing of our method to

analyze numerical simulation data shows that a resolution

better than 6 pm cannot be obtained using 12 Å�1 data (the

research papers

J. Synchrotron Rad. (2014). 21, 756–761 Yonghua Du et al. � Sub-10 pm spatial resolution using EXAFS 759

Figure 1
Validation of our method using numerical simulations. (a) gðrÞ is the theoretical curve built using three Gaussian peaks with n1 = n2 = n3 = 2, r1 = 1.923,
r2 = 2.012, r3 = 2.086, �2 = 0.005. �r1 is the bond length difference between r1 and r2. �r2 is the bond length difference between r2 and r3. To resolve these
three peaks, a spatial resolution better than the smallest one, �r2, is needed. These three peaks merged into a single peak which is indistinguishable using
existing EXAFS data analysis methods. (b) Simulated data are the EXAFS data �ðkÞ calculated using equation (1) with added noise. Data are k3-
weighted. The fitting curve is the curve fitted by our algorithm. A Hanning window for the FT is shown as a dashed line and the window parameter is 20.
(c) The dashed line shows the phase- and amplitude-corrected FT spectrum (van Zon et al., 1984) of the simulated data. The three peaks are
indistinguishable using this method. The solid line shows the atom distribution function (ADF) calculated from our method. The peaks are clearly
resolved. The peak position and the area are the bond length and coordination number, respectively. Calculated parameters are n1 = 2.0, n2 = 2.1, n3 = 2.0,
r1 = 1.915 Å, r2 = 2.007 Å, r3 = 2.082 Å, �2 = 0.0049 Å2, which are very close to the true values.



theoretical resolution limit is about 4.2 pm). For the next step,

we will apply the regularization method to resolve equations

(6)–(8) in an attempt to achieve a closer approximation to the

resolution limit.

In summary, we have developed a new EXAFS data

analysis method which is based on a non-parametrical algo-

rithm allowing one to obtain structural information directly

from EXAFS data without assuming the number of fitting

parameters. Theoretically, the resolution limit of our method is

�r � ð1=2Þ�k, which is three times better than the existing

methods. Hence, we are able to perform structural analysis at

the 4.2 pm scale or smaller using EXAFS as we can collect

data over a 12 Å�1 range or higher easily using advanced

synchrotron radiation facilities. Furthermore, our method can

be easily extended to study lattice distortion caused by

vacancy, temperature, pressure and size effects or other

systems which require high spatial resolution. Our method is

expected to help scientists to understand the relationship

between material properties and structures at the limit

potential of EXAFS.

EXAFS data were collected at beamline 1W1B of the

Beijing Synchrotron Radiation Facility and the XAFCA

facility at Singapore Synchrotron Light Source. The authors

are very grateful to Professor Yuhui Dong, Professor Jing

Zhang, Professor Gopinathan Sankar, Dr Tao Liu and Dr Ping

Yang for the stimulating discussions. This research was

financially supported by the Strategic Priority Research
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Table 1
Fitting parameters of experimental data of LaFe1–xCrxO3 (x = 0, 1/3, 2/3).

n1, n2, n3 and r1, r2, r3 are the coordination numbers and bond lengths of the three subshells, respectively. �2 is the DWF.

n1 r1 (Å) n2 r2 (Å) n3 r3 (Å) �2 � 103 (Å2)

LaFeO3‡ 2 1.923 2 2.012 2 2.086
x = 0 1.5 � 0.1 1.919 � 0.001 2.6 � 0.2 2.007 � 0.002 1.9 � 0.2 2.087 � 0.001 0.5 � 0.1
x = 1/3 1.0 � 0.1 1.898 � 0.0005 3.5 � 0.3 1.999 � 0.002 1.5 � 0.1 2.094 � 0.001 0.5 � 0.1
x = 2/3 0.5 � 0.07 1.891 � 0.001 3.2 � 0.3 1.973 � 0.002 2.3 � 0.2 2.069 � 0.002 0.5 � 0.1

‡ Structural information calculated from Sangaletti et al. (2001).

Figure 2
Data analysis of the LaFe1–xCrxO3 system with x = 0, 1/3, 2/3. (a) Fourier transform of LaFe1–xCrxO3 EXAFS spectra. (b) EXAFS functions of the first
coordination shell obtained by inverse FT over a filtered range between 1.15 and 2.10 Å. All data are k3-weighted. (c) EXAFS data along with the fitting
curves obtained using our algorithm. (d) Reconstructed ADF. Peak positions are indicated. Structural parameters are summarized in Table 1. (e) FeO6

octahedral distortion model obtained based on the reconstructed ADF. Bond lengths of Fe–O and distortion direction of each O atom are shown in
the figure.
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