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X-ray beamlines in modern synchrotron radiation sources make extensive use

of grazing-incidence reflective optics, in particular Kirkpatrick–Baez elliptical

mirror systems. These systems can focus the incoming X-rays down to

nanometer-scale spot sizes while maintaining relatively large acceptance

apertures and high flux in the focused radiation spots. In low-emittance storage

rings and in free-electron lasers such systems are used with partially or even

nearly fully coherent X-ray beams and often target diffraction-limited

resolution. Therefore, their accurate simulation and modeling has to be

performed within the framework of wave optics. Here the implementation and

benchmarking of a wave-optics method for the simulation of grazing-incidence

mirrors based on the local stationary-phase approximation or, in other words,

the local propagation of the radiation electric field along geometrical rays,

is described. The proposed method is CPU-efficient and fully compatible with

the numerical methods of Fourier optics. It has been implemented in the

Synchrotron Radiation Workshop (SRW) computer code and extensively tested

against the geometrical ray-tracing code SHADOW. The test simulations have

been performed for cases without and with diffraction at mirror apertures,

including cases where the grazing-incidence mirrors can be hardly approximated

by ideal lenses. Good agreement between the SRW and SHADOW simulation

results is observed in the cases without diffraction. The differences between

the simulation results obtained by the two codes in diffraction-dominated cases

for illumination with fully or partially coherent radiation are analyzed and

interpreted. The application of the new method for the simulation of wavefront

propagation through a high-resolution X-ray microspectroscopy beamline at the

National Synchrotron Light Source II (Brookhaven National Laboratory, USA)

is demonstrated.

Keywords: wavefront propagation; wave optics; Fourier optics; geometrical ray-tracing;
grazing-incidence mirror; benchmarking.

1. Introduction

In modern third- and fourth-generation synchrotron radiation

sources, i.e. storage rings and free-electron lasers (FELs),

X-ray beam micro-focusing is routinely used in a large number

of experimental techniques. The appearance of new low-

emittance storage ring sources (Ozaki et al., 2007; Eriksson et

al., 2013; Reich, 2013), which generate considerable amounts

of coherent X-ray flux, the start-up of operation of the X-ray

FEL, producing highly coherent X-ray pulses (Emma et al.,

2010; Ishikawa et al., 2012), and the recent substantial

improvement of mirror surface quality allowing nearly

diffraction-limited resolution to be achieved (Mimura et al.,

2010; Yamauchi et al., 2011), make it particularly important to

use accurate wave-optics-based methods (Bahrdt, 1997;

Chubar & Elleaume, 1998; Chubar et al., 2002) for the simu-

lation, optimization and design of such mirror systems and

entire beamlines containing them.

At low demagnification, when the longitudinal extent of a

focusing mirror is much smaller than the distance from the

mirror to the focused radiation spot, the focusing mirror can

be reasonably approximated by an ideal thin lens (Bowler

et al., 2008). This may not be the case for mirror systems

performing strong focusing, when the distance to the focused

spot becomes comparable with the mirror length. Therefore, a

special numerical method had to be developed to enable the

simulation of such cases within the framework of wave optics.

In the pioneering simulations of wave propagation through a
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beamline containing grazing-incidence optics, Bahrdt (1997)

used an approach combining the stationary phase approx-

imation (see, for example, Born & Wolf, 1999) with a transport

matrix formalism. This approach enabled the simulation of

wave propagation through an entire optical system, when the

system did not contain apertures limiting the beam and

causing diffraction. Taking into account the diffraction with

this approach was not straightforward, because the description

of the diffraction requires a different type of asymptotic

expansion, other than the stationary phase method. Chubar

& Elleaume (1998) and Chubar et al. (2002) implemented a

different approach to propagate the wave through an entire

beamline, which is based on Fourier optics methods and

employs the numerical apparatus of fast Fourier transforms

(FFT). This method ‘natively’ takes into account both wave

aberrations and diffraction at apertures in a very CPU-effi-

cient manner, and it easily allows high spatial frequencies to

be taken into consideration (e.g. surface height profile or slope

errors; De Andrade et al., 2011). However, the Fourier optics

method, in its traditional implementation, operates only with

‘thin’ optical elements (Goodman, 2005), i.e. it is not directly

applicable for an accurate simulation of grazing-incidence

optics with large longitudinal extent along the optical axis. In

some cases this limitation can be overcome using the ‘split-

operator’ approach, allowing one to simulate an extended

‘thick’ optical element by a sequence of ‘thin’ elements and

drift spaces (Hoekstra, 1997). However, this may slow down

the simulation, compromising one of the main advantages of

the Fourier optics method, its CPU efficiency.

In this paper we describe the implementation and extensive

benchmarking of a ‘hybrid’ method, which preserves all the

advantages and overcomes the limitations of the Fourier

optics method and the stationary phase approximation, prof-

iting from their complementarity. Our method is still essen-

tially Fourier optics based; it natively treats diffraction, and

yet allows for simulation of extended grazing-incidence

mirrors almost as efficiently as ‘thin’ optical elements. The new

method has been implemented in the Synchrotron Radiation

Workshop (SRW) code (Chubar & Elleaume, 1998; Chubar et

al., 2002).

The benchmarking simulations are performed for the

Kirkpatrick–Baez (KB) type mirror system (Kirkpatrick &

Baez, 1948) composed of two orthogonal elliptical cylinders.

This popular type of X-ray optical mirror system is commonly

used both in ‘high throughput’ and in ‘high demagnification’

modes. In the former, flux at a sample is favored over spatial

resolution; in the latter, the flux in the focused spot is sacri-

ficed in favor of the spatial resolution. Another attractive

feature of this type of optics, that makes it particularly efficient

for microspectroscopy-type experiments, is the absence of

dispersion (i.e. the absence of strong dependence of the

focusing properties on radiation photon energy, in contrast

with diffractive and refractive optical elements).

The parameters of the optical schemes being considered are

relatively close to those used for several beamlines of the

National Synchrotron Light Source II (NSLS-II), the new low-

emittance storage ring source constructed at Brookhaven

National Laboratory, Upton, NY, USA. The first of the two

beamlines uses the KB mirror system in the ‘high throughput’

mode, and the second in the ‘high resolution’ mode. The

results of the wave-optics simulations performed for the fully

and partially coherent radiation, using the new method

implemented in the SRW code, are compared with the results

obtained simulating the elliptical cylinders by ‘ideal lenses’

(still using SRW) and with geometrical ray-tracing results

obtained using the SHADOW code (Sanchez del Rio et al.,

2011) for the same parameters of the source and optical

schemes. The general agreement and some differences in the

results, associated with the wave-optical phenomena, are

discussed and interpreted.

2. Combining the Fourier optics and the stationary
phase methods

The propagation of the transverse components of the

frequency-domain electric field of radiation in free space or

through an optical element can be described by an integral

operator, i.e. ‘propagator’, which, for the majority of practi-

cally important cases, can be formally represented by

E? j xj; yj; !;�e

� �
¼
RR

Kjðxj; yj; xj�1; yj�1; !Þ

� E? j�1 xj�1; yj�1; !;�e

� �
dxj�1 dyj�1; ð1Þ

where Kjðxj; yj; xj�1; yj�1; !Þ is a kernel specific to the jth

optical element ( j = 1, 2, . . . ). In the general case, Kj is a

matrix (tensor) with its elements being dependent on the

frequency ! and on the transverse coordinates in a plane

before ðxj�1; yj�1Þ and a plane after ðxj; yjÞ the optical element.

E? j�1 and E? j are the transverse electric field components in

the planes before and after the optical element, which, besides

the transverse coordinates and frequency, depend also on a set

of phase-space coordinates of a source �e. For synchrotron

radiation emitted by one relativistic electron moving in an

external (in the general case non-uniform) magnetic field, this

is a set of the electron coordinates in six-dimensional phase

space of the electron beam (see, for example, Chubar et al.,

2011): �e = fxe; ye; x 0e; y 0e; �e; zeg, where xe; ye; x 0e; y 0e are the

electron initial transverse coordinates and angles, �e is the

electron energy, ze is the initial longitudinal position. We note

that usually xe; ye; x 0e; y 0e are small and that the ze dependence

can often be omitted at simulations of spontaneous emission in

storage rings.

Following the Huygens–Fresnel principle, the kernel of

equation (1) for the propagation in free space between two

parallel planes in the paraxial approximation is (see, for

example, Born & Wolf, 1999)

Kjðxj; yj; xj�1; yj�1; !Þ ’

!

2�icL
exp i

!

c
L2 þ xj � xj�1

� �2
þ yj � yj�1

� �2
h i1=2

� �
I; ð2Þ

where L is the distance between the planes, c is the speed of

light and I is the unit matrix, i.e. in this case equation (1) is

reduced to a scalar convolution-type relation for each of the

two transverse components of the electric field. This allows the
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convolution theorem and the digital FFT to be applied for its

fast numerical calculation. Often, the square-root in the

argument of the exponent in equation (2) can be approxi-

mated by the first two terms of its Taylor expansion, assuming

L � jxj � xj�1j, L � jyj � yj�1j,

Kjðxj; yj; xj�1; yj�1; !Þ ’

!

2�icL
exp i

!

c
Lþ
ðxj � xj�1Þ

2
þ ðyj � yj�1Þ

2

2L

" #( )
I: ð20Þ

This approximation is convenient for various numerical

manipulations aiming to increase the efficiency and to reduce

the memory requirement for the calculation of the integrals

in equation (1). One of such manipulations is the analytical

treatment of the quadratic phase term, allowing for the free-

space propagation simulations with a reduced sampling rate

(Chubar et al., 2008), which dramatically improves technical

feasibility and robustness of the Fourier optics method.

Furthermore, if the dependence on x2
j�1; y2

j�1 in the phases of

components of the product KjE? j�1 can be ignored, as usually

happens at propagation over a large distance L from or to a

waist, then

Kjðxj; yj; xj�1; yj�1; !Þ ’
!

2�icL
exp

"
i
!

c
Lþ

xj
2 þ yj

2

2L

� �

� i
!xj

c

xj�1

L
� i

!yj

c

yj�1

L

#
I ð200Þ

and equation (1) reduces to a simple Fourier transform.

For a ‘thin’ optical element, the kernel can be represented

by

Kjðxj; yj; xj�1; yj�1; !Þ ’ Tðxj; yj; !Þ�ðxj�1 � xjÞ�ðyj�1 � yjÞ;

ð3Þ

where Tðxj; yj; !Þ is a complex transmission (matrix) function

and �ðxÞ is the �-function. Equation (3) reduces equation (1)

to a simple product. For an isotropic ‘thin’ optical element,

Tðxj; yj; !Þ = Tðxj; yj; !ÞI, where Tðxj; yj; !Þ is a scalar complex

transmission function.

We should point out that equations (1)–(3) not only

represent a good approximation for the simulation of coherent

radiation propagation through an optical system but they also

allow for accurate description of processes taking place in

a large number of experiments, such as coherent diffraction

imaging, coherent scattering, interferometry and others.

Hence a robust numerical implementation of this Fourier-

optics based ‘apparatus’ can find a very large number of

applications, well beyond the accurate simulation of radiation

propagation through X-ray beamline optics.

Equation (1) when combined with (2) [or (20)] and (3) can

also be used for simulation of radiation propagation through

an optical element with a large extent along the optical axis

using the ‘split-operator’ or ‘beam propagation’ technique

(Hoekstra, 1997). However, the numerical efficiency of such a

method applied to two-dimensional wavefronts with a large

number of steps versus longitudinal position may be not very

high.

Alternatively, for such longitudinally extended optical

elements, and in particular for grazing-incidence mirrors, one

can use a numerical procedure which can be formally

described by equation (1) with the following kernel,

Kjðxj; yj; xj�1; yj�1; !Þ ’ Gðxj�1; yj�1; !Þ

� exp i
!

c
�ðxj; yj; xj�1; yj�1; !Þ

h i
� � xj�1 � ~xxj�1ðxj; yjÞ

� 	
� � yj�1 � ~yyj�1ðxj; yjÞ

� 	
; ð4Þ

where Gðxj�1; yj�1; !Þ is a matrix function defining local

transformations of amplitudes of electric field components

(e.g. at reflection from a mirror surface and propagation

between input and output planes within the mirror extent),

~xxj�1ðxj; yjÞ; ~yyj�1ðxj; yjÞ are scalar functions defining the trans-

formation of coordinates for points in transverse planes before

and after the optical element, and �ðxj; yj; xj�1; yj�1; !Þ is a

scalar function defining the optical path between the points in

the input and output planes. These functions can be found

using the stationary phase approximation applied to the

Kirchhoff integral over the mirror surface, or simply by

applying locally the laws of geometrical optics and satisfying

boundary conditions for the electric field components.

It is usually straightforward to find numerically for a given

point in the input plane ðxj�1; yj�1Þ the corresponding one in

the output plane ðxj; yjÞ. This can be done by ‘sending a ray’

from the point ðxj�1; yj�1Þ (before the mirror) in the direction

provided by the local gradient of the input radiation field

phase, finding the intersection with the optical element (e.g.

mirror surface), generating the reflected ray, and finding its

intersection with the output plane (after the mirror).

The local ‘ray-tracing’ does not guarantee that the points in

the output plane will form a regular rectangular mesh, which is

a requirement for using FFT to propagate the electric field

from that plane further on. Hence, as a final step of the local

propagation, the electric field components are re-calculated

on the required rectangular mesh, using a two-dimensional

interpolation.

The approach just described allows an electric field to be

propagated from a transverse plane before an optical element

to a transverse plane after it. The process can be reiterated by

applying a sequence of propagators, according to equation (1),

with the kernels corresponding to drift spaces and individual

optical elements [see equations (2)–(4)]. In many cases these

propagators can have CPU-efficient implementations based

on FFT and simple multiplications. Therefore the entire

simulation, even for a wide wavefront sampled on a two-

dimensional mesh with thousands of points in both transverse

directions, may take no longer than a few seconds on a

moderately equipped desktop computer. In the cases of high

or full transverse coherence, such as for the emission of UV

and X-ray FELs, or spontaneous infrared emission in third-

generation sources, the simulation procedure does not require

any other processing. Additional information such as the
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spectral flux per unit surface, polarization and other radiation

characteristics can be extracted from the propagated electric

field components. However, in storage rings and in energy-

recovery linacs, the synchrotron emission by the entire elec-

tron beam is known to be only partially coherent for the most

part of the spectrum. For its accurate simulation, one has to

take into account that the radiation generated by electrons

having different phase-space coordinates �e is not temporally

coherent for the most part of the spectrum, and that the

wavefronts produced by these electrons may propagate

differently through the optical elements of a beamline

(Chubar et al., 2011), making the simulation more complex

and CPU-intensive.

The simulation of both the fully and partially coherent

radiation propagation through beamline optical systems using

the approximations of the ‘thin’ and extended optical

elements is possible with the recent Open Source versions of

the SRW code (https://github.com/ochubar/SRW).

3. Simulation results

In order to verify the validity and reliability of the new

wavefront propagation method implemented for grazing-

incidence mirrors, we benchmarked it against two other well

known methods: the Fourier optics, that simulates accurately

the wave-optical effects (such as the diffraction at the aper-

tures) however uses the ‘ideal thin lens’ approximation for

simulating the grazing-incidence mirrors, and the geometrical

ray-tracing, that models accurately the reflection from an

extended mirror surface, yet does not take into account the

wave-optical effects. The three methods were compared by

simulating the propagation of equivalently defined X-ray

beams through beamlines having the optical schemes shown in

Figs. 1 and 6. In x3.1 and x3.2 we describe the simulation results

obtained for fully and partially coherent (at a low degree of

coherence) Gaussian beams, and in x3.3 for a partially

coherent undulator radiation source in a low-� straight section

of NSLS-II. The simulations were performed using the

recently implemented Python interfaces of the SRW and

SHADOW codes. This avoided redefining the parameters of

the sources and the optical schemes used in the simulations.

3.1. Fully coherent Gaussian beam

Before discussing the simulations performed for a coherent

Gaussian beam, let us first note that the use of the geometrical

ray-tracing method for such simulations requires special

considerations about the parameters of a source and/or an

input radiation beam. The geometrical ray-tracing procedure

does not ‘natively’ take into account the laws of wave optics,

and formally allows sources or beams to have any size and

divergence. Therefore the existing physical constraints on

possible source parameters have to be imposed ‘artificially’

before starting the ray-tracing simulations. In particular, the

well known fundamental relation between the RMS source

size �r and divergence �0r of a coherent Gaussian radiation

beam,

�r �
0

r ¼ �=4�; ð5Þ

where � is the radiation wavelength, should be taken into

account when defining the Gaussian source for the ray-tracing

simulations. Once this condition is met, the ray-tracing

method, which is known to preserve the phase-space volume

of the propagating beam, can in principle be used for simu-

lating the propagation even of a coherent beam, at least for

optical schemes without apertures at which diffraction may

occur.

Note that, for the wavefront propagation simulation

method, it is sufficient to define, for example, only the size of a

coherent Gaussian source at its waist, and the correct diver-

gence, in complete agreement with equation (5), will ‘develop’

automatically in the process of simulation, since it is imposed

by equations (1), (20) and (200). Of course, the numerical

wavefront propagation method allows for using any distribu-

tion of input electric field in equation (1), not just the Gaus-

sian one. On the other hand, since for a non-Gaussian field

distribution equation (5) converts to the inequality �r �
0
r �

�=4�, the use of the geometrical ray-tracing with the RMS

source sizes and beam divergences related by equation (5)

may lead to incorrect results.

The simulations presented in this section were performed

for a coherent monochromatic Gaussian beam source at

12 keV photon energy, with the horizontal and vertical RMS

waist sizes equal to �1.84 mm and the RMS angular diver-

gences equal to �4.47 mrad, in accord with equation (5). The

optical scheme, for which the first set of simulations has been

performed, is illustrated in Fig. 1. The scheme includes two

mirrors focusing in the vertical and in the horizontal planes

(VKB and HKB, respectively). The mirror surfaces are ellip-

tical cylinders; their length in the tangential direction is 0.5 m;

the incidence angle at their centers is 3.5 mrad; the ellipses’

semi-axes lengths are equal to a = 30.5 m and b = 27.1 mm for

VKB and a = 30.5 m and b = 19.25 mm for HKB. The VKB is

located at 60.0 m from the source, the HKB at 60.5 m from the

source; and the system focuses the beam at 61.0 m from the

source. A rectangular aperture can be optionally introduced in

front of the VKB to test the impact of diffraction.

The calculations by the three different methods were initi-

ally performed without the aperture. The distributions of

intensity (i.e. flux per unit surface) obtained at three different

locations, i.e. the focal point of the elliptical mirrors, 5 cm
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Figure 1
Optical scheme used for simulations with fully coherent Gaussian beam.



upstream and 5 cm downstream from the focal point, are

presented in Fig. 2. As one can see from Fig. 2(a), the distri-

butions obtained by the different methods are almost indis-

tinguishable between each other at the location of the focus.

The source, optical scheme and the focal spot parameters used

and/or obtained in this and other simulations discussed in this

paper are summarized in Table 1. As seen in the table, the

ratio between the full width at half-maximum (FWHM) and

the root mean square (RMS) focal spot sizes is close to 2.35 in

the three cases as expected for a Gaussian beam. The hori-

zontal and vertical RMS (�x, �y) and skewness (�1x, �1y) values

specified in Table 1 were estimated numerically from the

radiation intensity distributions in the focal spots Fðx; yÞ

normalized to 1,

�x ’
Rþ1
�1

dy
Rxþ�x=2

x��x=2

ðx� xÞ2Fðx; yÞ dx

" #1=2

;

�y ’
Ryþ�y=2

y��y=2

ðy� yÞ
2 dy

Rþ1
�1

Fðx; yÞ dx

" #1=2

;

�1x ’
Rþ1
�1

dy
Rxþ�x=2

x��x=2

ðx� xÞ
3
Fðx; yÞ dx=�3

x;

�1y ’
Ryþ�y=2

y��y=2

ðy� yÞ3 dy
Rþ1
�1

Fðx; yÞ dx=�3
y;

ð6Þ

where

�xx ¼
Rþ1
�1

Rþ1
�1

xFðx; yÞ dx dy;

�yy ¼
Rþ1
�1

Rþ1
�1

yFðx; yÞ dx dy;

Rþ1
�1

Rþ1
�1

Fðx; yÞ dx dy ¼ 1

and �x;�y are chosen so that

Rþ1
�1

dy
Rxþ�x=2

x��x=2

F x; yð Þ dx ¼
Ryþ�y=2

y��y=2

dy
Rþ1
�1

F x; yð Þ dx ¼ 0:95:

These constraints have been used to ensure the convergence

of the integrals in equation (6) even for the intensity distri-

butions strongly dominated by diffraction (see below).

A slight difference between the distributions develops as

the observation plane moves off the focal point [see Figs. 2(b)

and 2(c)]: the distributions obtained for the extended elliptical

mirror, using both the wavefront propagation (curve 1) and

the geometrical ray-tracing (curve 3) methods become slightly

asymmetric, while staying in good agreement with each other,

whereas the distribution obtained using the ideal thin lens

approximation (curve 2) remains symmetric with respect to

the optical axis. It is noteworthy that the asymmetry is

stronger in the horizontal plane, which is explained by the

stronger focusing taking place in that plane: the demagnifi-

cation in the horizontal plane is 121, whereas in the vertical

plane it is 60. As Figs. 2(b) and 2(c) show, the asymmetry of

the distributions is different before and after the focal point.

The agreement between the wavefront propagation and the

geometrical ray-tracing results ceases when the fully coherent

Gaussian beam is truncated by an aperture, such as the one

located before the VKB, as shown in Fig. 1. Fig. 3 shows the

horizontal and vertical cuts of the intensity distributions at and

after the focus, obtained using the three calculation methods

with the aperture closed down to 0.5 mm in the horizontal and

vertical directions. We note that this aperture size is smaller

than the size of both KB mirrors projected on the transverse

plane (1.75 mm) and also smaller than the FWHM size of the

radiation beam at the location of the mirrors (�0.63 mm).

As one can see from Fig. 3, the wavefront propagation

method, both with the extended mirror (curve 1) and with the

thin lens approximation (curve 2), gives considerably larger

distribution sizes (by a factor of �2.5 for FWHM values) and

lower intensity peaks (by a factor of �8) than the geometrical

ray-tracing method (curve 3). The FWHM and RMS sizes of

the focal spot obtained by the different methods are given in

Table 1. We note that the curves 1 and 2 show secondary

maxima (see Fig. 3b), revealing the wave-optics (diffraction)

origin of the effects under consideration. Obviously, these

effects cannot be simulated by pure geometrical ray-tracing,

which ignores the diffraction occurring at the aperture located

before the mirrors. The diffraction fringes are clearly present
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Figure 2
Horizontal (left) and vertical (right) cuts (along the horizontal and
vertical planes containing the optical axis) of the intensity distributions
obtained by three different calculation methods: wavefront propagation
with grazing-incidence elliptical mirrors extended along optical axis (1),
wavefront propagation with the focusing mirrors simulated by ideal
thin lenses (2), and geometrical ray-tracing with the grazing-incidence
elliptical mirrors (3): (a) at the longitudinal position of the focal point; (b)
5 cm upstream from the focal point; (c) 5 cm downstream from the focal
point.



in the intensity distributions obtained by the wavefront

propagation at the observation plane located 5 cm down-

stream from the focal point [see curves 1 and 2 in Fig. 3(c)],

even though in this case the sizes of all distributions are

comparable. One can also notice in Fig. 3(c) a small asym-

metry of the distributions obtained for the extended mirrors,

as was the case in the simulations without the aperture.

The next series of simulations aimed to explore how the

intensity distributions in the focal spot vary when increasing

the demagnification of the KB system and the source size of

a coherent Gaussian beam. The parameters of the optical

system were changed as follows: the KB mirror lengths were

reduced to 15 cm, the VKB center was relocated at

�61.238 m, the HKB at 61.388 m and the focus at 61.5 m from

the source. The photon energy was kept at 12 keV but the

RMS waist sizes of the round Gaussian beam source were set

to 10 mm and 60 mm (for two different cases of simulation).

The corresponding RMS angular divergences, following

equation (5), were respectively�0.822 mrad and�0.137 mrad.

Let us note that such cases of low-divergence coherent hard

X-ray beams are not purely academic: these parameters are

not far from those of radiation beams in existing X-ray FELs

(Emma et al., 2010; Ishikawa et al., 2012).

The results of the simulated intensity at the focus are

presented in Fig. 4. As one can see, the three different

methods give very close results for the 10 mm source size and

�0.822 mrad divergence Gaussian beam (Fig. 4a). However,

the situation changes dramatically for the larger, 60 mm,
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Table 1
Basic parameters of the sources, the optical schemes and the focal spots obtained using different simulation methods for the cases described in x3.1–x3.3.

Source Focal spot (calculated by three methods†)

RMS size,
H/V (mm)

RMS
divergence,
H/V (mrad)

Photon
energy
(keV)

De-magnification,
H/V Method #

FWHM size‡,
H/V (nm)

FWHM
to RMS§
ratio, H/V Skewness§, H/V

x3.1, Fig. 2(a): fully coherent Gaussian beam at lower demagnification without apertures

1.84/1.84 4.47/4.47 12 121/60
1 37.7/75.4 2.27/2.43 0.0/0.0
2 38.7/78.7 2.37/2.48 0.0/0.0
3 35.0/73.0 2.35/2.43 0.0/0.0

x3.1, Figs. 3(a) and 3(b): fully coherent Gaussian beam at lower demagnification with 0.5 mm � 0.5 mm aperture

1.84/1.84 4.47/4.47 12 121/60
1 92.6/179 1.53/1.48 0.0/0.0
2 92.6/179 1.53/1.48 0.0/0.0
3 36.2/73.3 2.45/2.45 0.0/0.0

x3.1, Fig. 4: fully coherent Gaussian beam at higher demagnification without apertures

10/10 0.822/0.822 12 546/233
1 41.5/101 2.29/2.34 0.0/0.0
2 42.9/101 2.34/2.35 0.0/0.0
3 42.4/101 2.25/2.31 0.0/0.0

60/60 0.137/0.137 12 546/233
1 244/600 2.30/2.42 �0.3/�0.1
2 257/602 2.37/2.33 0.0/0.0
3 246/603 2.36/2.44 �0.3/�0.1

x3.2, Fig. 5(a): low-coherence Gaussian beam at higher demagnification

137/5.53 7.95/4.73 12 546/233
1 445/67.8 1.80/1.43 �0.1/0.0
2 566/68.9 2.35/1.34 0.0/0.0
3 457/66.9 1.76/2.32 �0.1/0.0

x3.3, Fig. 7: high-resolution microspectroscopy beamline with horizontal secondary source aperture of 50 mm

33.5/�4.7 18.3/�8.5 7.18 378/346
1 187/121 1.27/1.44 0.0/0.0
2 196/126 1.32/1.46 �0.1/0.0
3 171/109 2.50/2.27 0.0/�0.1

x3.3, Fig. 7: high-resolution microspectroscopy beamline with horizontal secondary source aperture of 20 mm

33.5/�4.7 18.3/�8.5 7.18 378/346
1 91.6/120 0.380/1.45 0.0/0.0
2 95.3/126 0.418/1.46 �0.1/0.0
3 88.0/108 2.84/2.27 0.0/�0.1

x3.3, Fig. 7: high-resolution microspectroscopy beamline with horizontal secondary source aperture of 10 mm

33.5/�4.7 18.3/�8.5 7.18 378/346
1 68.3/118 0.170/1.38 �0.1/0.0
2 70.8/123 0.269/1.40 �0.1/0.0
3 45.4/114 2.94/2.27 0.0/�0.1

x3.3, Fig. 7: high-resolution microspectroscopy beamline with horizontal secondary source aperture of 5 mm

33.5/�4.7 18.3/�8.5 7.18 378/346
1 64.3/118 0.134/1.33 �0.1/0.0
2 67.4/122 0.129/1.49 �0.1/0.0
3 23.2/105 2.92/2.27 0.0/0.0

† The three calculation methods used are: wavefront propagation with extended grazing-incident mirror models (method #1); wavefront propagation with mirrors simulated by ideal
lenses (method #2); geometrical ray-tracing with extended grazing-incident mirror models (method #3). ‡ The estimated error of the FWHM values for different methods varies
between � 0.1 and several percent. § The RMS and skewness values were estimated numerically as described by equation (6); the relative error of the RMS values is � 5–10%; the
relative error of the skewness values is larger, especially in the cases when the absolute skewness values are small.



source size and the lower, �0.137 mrad, beam divergence

[see Figs. 4(b) and 4(c)]. The intensity distributions at the

geometrical focal point, obtained using the extended grazing-

incidence mirror methods, i.e. both the wavefront propagation

and the geometrical ray-tracing, become considerably asym-

metric, with the asymmetry being more significant in the

horizontal plane, where the demagnification is stronger (�546

against �233 for the vertical plane). The remarkable agree-

ment between the wavefront propagation and the ray-tracing

simulations using the extended mirror models in that case is

also illustrated by the two-dimensional image plots in Fig. 4(c).

Such good agreement is not surprising since there is no

diffraction at the mirror apertures (the beam is not truncated

by any mirror) and the source size and divergence of the beam

for the ray-tracing simulations were chosen to obey the wave-

optics relation expressed in equation (5). The asymmetry of

the obtained intensity distributions is characterized by large

absolute values of the skewness parameter in Table 1.

We should point out that the significant deviation of the

focal spot intensity distributions obtained for the grazing-

incidence elliptical mirrors from the distribution obtained

using the ideal thin lens approximation suggests that the

elliptical mirror shape may not be the optimal one to focus a

beam with such a large source size and low divergence. In fact,

it can be shown that when the contribution to the size of the

beam at the mirror from the divergence is much smaller than

the source size, the appropriate focusing optical element to

use is a parabolic mirror since the beam can be better

described as collimated.

A special comment can be made about the CPU efficiency

of calculations using the wavefront propagation and the

geometrical ray-tracing methods in the case of a coherent

radiation beam. The geometrical ray-tracing method, which

uses the stochastic Monte Carlo approach for seeding the

initial rays, requires huge statistics to achieve high-quality

intensity profiles by slicing/binning a distribution along a line.

The number of rays used in each of the ray-tracing simulations

described above was 25 million. The corresponding ray-tracing

computation time, which scales linearly with the number of

rays, was about 10 min on a single core, whereas with the

wavefront propagation method exploiting the two-dimen-

sional FFT, with 1000–2000 equidistant points used for each

transverse direction, the calculation on one core usually lasted

about 10 s. Besides, no significant increase of the calculation

time was observed in the case of the wavefront propagation

simulations with the extended grazing-incidence mirrors

compared to those with ideal lenses. This clearly shows that,

for optical simulations with fully coherent radiation beams, the

FFT-based wavefront propagation method (as implemented in

the SRW code) is not only more accurate but also numerically
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Figure 3
Horizontal (left) and vertical (right) cuts of intensity distributions by the
horizontal and vertical planes containing the optical axis, obtained by the
three different calculation methods as described in the caption to Fig. 2:
(a) at the longitudinal position of the focal point; (b) close-up of the same
distribution at the focal point; (c) 5 cm downstream from the focal point. Figure 4

(a) Horizontal (left) and vertical (right) cuts of intensity distributions
at the geometrical focal point of the KB system with �546 (�233)
horizontal (vertical) demagnification, obtained by the three different
calculation methods, as described in the caption to Fig. 2, for a coherent
Gaussian beam with 10 mm RMS waist size (at the source) and
�0.822 mrad divergence. (b) Same for the Gaussian beam with 60 mm
RMS waist size and �0.137 mrad divergence. (c) Image plots of the two-
dimensional intensity distributions obtained in (b) using the extended
grazing-incidence mirror methods: the wavefront propagation (left) and
the geometrical ray-tracing (right).



more efficient than the geometrical ray-tracing (as imple-

mented in the SHADOW code).

More generally, one can note that the numerical complexity

of FFT scales as O½N logðNÞ�, with N being the total number of

data points (equal to the product of numbers of points in each

in the two directions in the case of two-dimensional FFT). The

complexity of other operations used in the Fourier optics

method besides the FFT [e.g. those described by equation (1)

with kernels given by equations (3) and (4)], scales approxi-

mately as OðNÞ. The complexity of the geometrical ray-tracing

method is formally also Oð ~NNÞ, where ~NN is the total number of

rays used. However, whereas in the Fourier optics method

each of the N data points is located on a regular rectangular

mesh and directly carries information about the radiation

electric field and so about the flux per unit surface area, in the

Monte Carlo driven geometrical ray-tracing the knowledge of

the density of ray intersection points with a surface is required

for estimating the radiation flux per unit area of that surface.

Therefore, for a comparable numerical accuracy between the

two methods one has to use a number of rays for obtaining a

sufficiently accurate value of the flux per unit surface at one

point, so that the required total number of rays has to

considerably exceed the number of final data points: ~NN � N.

This explains the smaller CPU time that was required for SRW

simulation compared with the SHADOW simulation in the

case of the fully coherent radiation beam considered in this

section.

3.2. Low-coherence Gaussian beam

In this section, we present the wavefront propagation and

geometrical ray-tracing simulation results obtained for a

partially coherent X-ray beam focused by the KB mirror

system used in the simulations illustrated in Fig. 4.

The partially coherent X-ray beam has been simulated using

the Gaussian Schell model (Gori & Palma, 1978), allowing

for approximate description of partially coherent undulator

radiation in a synchrotron source (Coı̈sson, 1995). In this

model the fully coherent single-electron undulator radiation is

approximated by a coherent Gaussian beam, which, strictly

speaking, is not fully accurate and results in a limited applic-

ability of this model (Geloni et al., 2008); and the electron

beam, in which different electrons are producing non-corre-

lated temporally incoherent emission, is represented by an

incoherent source with a Gaussian density distribution, the

latter being a good approximation for the equilibrium state of

an electron beam circulating in a storage ring.

The wave-optics-based simulation of the propagation of

such a beam through an optical system is simulated in SRW

code by propagating multiple uncorrelated coherent beams

‘originating’ from different phase-space ‘points’ of an

extended incoherent source and summing their intensity

distributions at the final plane. For the ray-tracing simulations,

such beam is simulated simply by a Gaussian beam with the

horizontal and vertical RMS sizes �x;y and divergences � 0x;y
given by

�x;y ¼ �2
r þ �

2
e x;y

� �1=2
; � 0x;y ¼ � 0 2r þ �

0 2
e x;y

� �1=2
; ð7Þ

i.e. resulting from the convolution of the coherent Gaussian

beam with the RMS size �r and divergence � 0r [related by

equation (5)], and an incoherent Gaussian beam with the

horizontal and vertical RMS sizes �e x;y and divergences � 0e x;y.

In the simulations, �r and � 0r values were taken to correspond

to the central cone of single-electron radiation from a�2.6 m-

long undulator at 12 keV photon energy (�r ’ 1.84 mm, � 0r ’
4.47 mrad); and �e x;y, � 0e x;y to correspond to the horizontal and

vertical RMS sizes and divergences of electron beam in the

middle of a high-� straight section of NSLS-II (�e x = 137.0 mm,

�e y = 5.22 mm, � 0e x = 6.57 mrad, � 0e y = 1.53 mrad). The hori-

zontal and vertical FWHM dimensions of the radiation beam

at the location of the KB mirrors are �1.44 mm and

�0.68 mm, respectively, whereas the projected mirror size is

�0.53 mm. The corresponding transverse coherence lengths

are �8.5 mm and �0.22 mm, i.e. the X-ray beam is more

coherent in the vertical direction. The transverse coherence

lengths were estimated as separation distances between two

slits in Young’s interference scheme resulting in the visibility

of fringes equal to 0.5.

The simulation results for this partially coherent X-ray

beam, obtained by the three different methods described

above, are presented in Figs. 5(a)–5(c). Fig. 5(a) shows the

horizontal and vertical cuts of intensity distributions calcu-

lated at the geometrical focal point. One can notice the

deviation from the Gaussian shape when simulations are
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Figure 5
Horizontal (left) and vertical (right) cuts (along the horizontal and
vertical plane containing the optical axis) of the intensity distributions of
partially coherent X-ray beam at 12 keV photon energy, obtained by
three calculation methods as described in the caption to Fig. 2: (a) at the
longitudinal position of the focal point; (b) 2 cm upstream from the focal
point; (c) 2 cm downstream from the focal point.



performed with the elliptical mirror shapes, in particular in the

horizontal direction (Fig. 5a, left graph). This deviation is

confirmed by the ratios of the FWHM to RMS size values: for

the distributions obtained using both the wavefront propa-

gation and the geometrical ray-tracing, this ratio is �1.8,

whereas for the Gaussian distribution one would expect it

to be �2.35, as approximately obtained by the wavefront

propagation when the mirrors are simulated by ideal thin

lenses (see Table 1). This deviation of the intensity distribution

shape from the Gaussian has a straightforward qualitative

interpretation. By definition, an elliptical mirror images a

point source located in one of its foci, to a point in the other

focus. The demagnification of a source with a finite transverse

size is formally varying along the mirror length: for the long-

itudinal positions between the upstream mirror edge and the

mirror center the demagnification is lower, and for the posi-

tions between the mirror center and downstream edge it is

higher than for the ideal thin lens located at the mirror center.

If the mirror length is much smaller than the distances from

the mirror center to the source and to the image, this effect is

negligible. However, if this is not the case, the demagnification

variation along the mirror produces at the final focal point

a more ‘peaky’ intensity distribution, with wider ‘tails’

compared with the initial Gaussian distribution. The radiation

reflected by the downstream part of the mirror contributes to

the narrower peak, whereas the radiation reflected by the

upstream part contributes more to the ‘tails’. Or in other

words, the downstream half of the mirror has a higher

numerical aperture than the upstream half.

Note that the vertical FWHM to RMS size ratio of the

intensity distributions at the focus obtained by the wavefront

propagation (both using the extended mirror and the ideal

thin lens approximations) is �1.4, i.e. also less than 2.35,

whereas for the ray-tracing simulations it is�2.3 (see Table 1).

Such small values of the ratio obtained from the wavefront

propagation can be explained by the contribution of diffrac-

tion of the partially coherent radiation, which is important in

the vertical direction and tends to increase the RMS size

values of the intensity distributions.

The effects of the radiation diffraction at the aperture

(located before the VKB and comparable in size with the

projected VKB and HKB mirror dimensions) can also be

observed in the intensity distributions in Figs. 5(b) and 5(c),

which were calculated for the longitudinal positions 2 cm

before and 2 cm after the geometrical focus. Diffraction

patterns with multiple fringes are clearly seen in the vertical

cuts of the distributions (in the graphs on the right), and even

in the horizontal cuts (graphs on the left) at the edges of the

distributions, despite the fact that the coherence is very low

along the horizontal direction. The distributions obtained for

the elliptical mirrors before and after the focal point are also

asymmetric and specular to each other, as was the case for the

fully coherent radiation beam [see Figs. 2(b) and 2(c) and

Fig. 3(c)]. The asymmetrical shapes of the ‘out of focus’

intensity distributions are very similar in the wavefront

propagation with the elliptical mirrors and the geometrical

ray-tracing simulations, even though the diffraction patterns

are of course missing in the case of the ray-tracing. The

structures observed in the intensity distribution cuts of the

ray-tracing are due to statistical noise.

The comparison of the efficiency of simulations by the

different methods in the case of the low-coherence radiation

beam is much less favorable for the wavefront propagation

method. In order to obtain smooth and stable intensity

distributions, especially at the focal point where the contri-

bution of the incoherent source size is quite significant, one

had to average intensity distributions of propagated wave-

fronts from a very large number, up to a million, of coherent

Gaussian sources, non-correlated between each other. These

sources had Gaussian distributions over the four-dimensional

phase space of the incoherent source (with the phase space

coordinates being horizontal and vertical positions and

angles). The calculation was performed on 64 nodes of a

computer cluster, using a parallel version of the SRW code,

which makes use of the message passing interface (MPI), and

it lasted more than 6 h. The convergence was faster for the

‘out of focus’ intensity distributions, where the effects related

to the incoherent source size are smaller than at the focus. On

the other hand, the geometrical ray-tracing simulation, which

ignores radiation coherence related effects, took only

�10 min on a single core. This is not surprising, since the

numerical complexity of the ray-tracing is O( ~NN), i.e. it is linear

with respect to the number of rays, as in the case considered

in the previous section, whereas the complexity of the partially

coherent SRW simulation is O½ �NNN logðNÞ�, where �NN is the

number of non-correlated wavefronts used, and N is the

number of data points in each wavefront. In the low-coher-

ence case considered in this section, �NN had to be very large for

ensuring numerical convergence, so that �NNN � ~NN. Note that

in cases of higher coherence the required �NN can be consider-

ably smaller than this case.

Even though the partially coherent wavefront propagation

simulations are currently feasible even for low-coherence

radiation beams, their relatively low efficiency is one of the

main reasons why this more accurate calculation method is

currently less often used than the less accurate geometrical

ray-tracing method. Increasing the efficiency of the partially

coherent simulations is one of important directions of algo-

rithmic developments in numerical applications of physical

optics.

3.3. Partially coherent undulator radiation in a
high-resolution microspectroscopy beamline

Until now we were considering the propagation of fully and

partially coherent Gaussian beams through simple optical

systems containing KB mirrors as the only focusing elements.

In this section we increase the level of detail and complexity of

both the source and optics, which are now essentially matching

those of the Sub-Micron Resolution X-ray Spectroscopy

(SRX) beamline at NSLS-II (De Andrade et al., 2011). To

facilitate focusing of X-rays down to 10–100 nm spot sizes with

a possibility of controlling the resolution and the flux at

sample, the SRX beamline uses a popular optical scheme. A
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horizontal focusing mirror (HFM) creates an intermediate

waist in the horizontal plane, where a variable-size secondary

source aperture (SSA) is installed. The SSA can be fully open

(for high-throughput experiments) or closed to any size down

to �5 mm (for the experiments requiring high spatial resolu-

tion). Different KB mirror systems are considered to be used

in the two types of experiments. In all cases, the VKB creates

an image of the primary source whereas the HKB re-focuses

the SSA at the same longitudinal position where the VKB

focus is located, i.e. the sample position. This is illustrated in

Fig. 6. The positions of the optical elements relative to the

source are as follows: the HFM is located at 32.95 m, the SSA

at �49.35 m, the VKB at �64.808 m, the HKB at �64.915 m

and the sample position at �64.995 m. The VKB is 149 mm

long and the HKB is 59 mm long. All mirrors are installed at a

grazing angle of 3.5 mrad. For simplicity, the monochromator,

an important element of that microspectroscopy beamline,

was assumed to be ideal and was not included in the simula-

tions.

The radiation source used by this beamline is a 21 mm-

period 1.5 m-long in-vacuum undulator U21 installed in a low-

� straight section of NSLS-II. In the center of this section,

when the long-term target horizontal emittance of 0.55 nm will

be reached, the horizontal (vertical) RMS size of the electron

beam will be �33.3 mm (�2.9 mm) and the horizontal

(vertical) RMS divergence �16.5 mrad (�2.7 mrad). The

simulations were performed for 7.18 keV photon energy,

attainable at the fifth harmonic of the U21 radiation spectrum.

The undulator radiation for all types of simulations described

in this section, wavefront propagation and geometrical ray-

tracing, was calculated using the SRW code (Canestrari et al.,

2013).

The results of the simulations with the three methods for

four different SSA sizes are presented in Fig. 7 and in Table 1.

We note that in all cases the radiation beam is limited along

both transverse directions by an aperture located in front of

the VKB. The vertical and horizontal sizes of the aperture

were chosen to approximately match the VKB and HKB

dimensions projected on the transverse plane: �0.52 mm

(vertical) and �0.21 mm (horizontal); whereas the corre-

sponding vertical and horizontal FWHM sizes of the beam

before the VKB are �1.8 mm and�1.6 mm, respectively. The

beam truncation by the aperture results in diffraction effects

appearing in the wavefront propagation simulations but not in

the ray-tracing. As one can see from Fig. 7(a), this difference is

quite noticeable even for a relatively large 50 mm SSA size,

which is larger than the �39 mm FWHM size of the horizontal

waist at the SSA. We note, however, that in this partially

coherent radiation beam case the effect of diffraction on the

KB aperture is less significant than in the case of the fully

coherent beam (see Fig. 3 in x3.1).

With the reduction of the SSA size from 50 mm to 5 mm, the

horizontal size of the focused spot resulting from the wave-

front propagation simulations gradually approaches the

diffraction limit, whereas the spot size predicted by the

geometrical ray-tracing keeps on reducing down to non-

physical small values way beyond the diffraction limit. Besides,

the peak of intensity in the focal spot predicted by the ray-

tracing is practically not dependent on the SSA size, which

is not the case in the results of the wavefront propagation

simulations, predicting a (physically correct) reduction of the

peak intensity because of the diffraction at the SSA. As one

can see from Fig. 7, the difference between the wavefront

propagation simulation results for the elliptical mirrors and

the ideal thin lenses is not very large in this case. The use of the

wavefront propagation method, even with the KB mirrors

simulated by ideal thin lenses, is more appropriate than the

use of the pure geometrical ray-tracing, which does not
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Figure 6
Simplified optical scheme of the SRX beamline of NSLS-II (the
monochromator is not shown).

Figure 7
Horizontal and vertical cuts of intensity distributions of the partially
coherent X-rays at 7.18 keV photon energy at the position of geometrical
focus of KB mirrors of the SRX beamline for four SSA sizes: (a) 50 mm,
(b) 20 mm, (c) 10 mm and (d) 5 mm.



provide physically consistent results in this case (unless a

special post-processing/correction is made).

The numerical convergence of the partially coherent

calculations with the SRW code described in this section was

somewhat faster than in the low-coherence case described in

the previous section, especially for the focal-spot intensity

distributions approaching the diffraction limit, which

happened when the horizontal SSA size was 5 mm. It is

noteworthy that the latter is exactly the case posing certain

difficulties for the ray-tracing simulations, because the portion

of rays passing through the tiny aperture is small (�14% of

the total number of rays). The wavefront propagation simu-

lation results illustrated in Fig. 7 were obtained by averaging

�105 wavefronts from individual ‘macro-electrons’, distrib-

uted according to a Gaussian over the five-dimensional phase

space of the electron beam. The phase space ‘coordinates’

were the horizontal and vertical positions and angles, and the

energy of the electrons. One partially coherent simulation

typically lasted several hours on 64 nodes of a cluster. In each

geometrical ray-tracing simulation, performed using the

SHADOW code, �108 rays were used. Each simulation typi-

cally lasted �20 min on a single core.

4. Summary

A new method for simulation of fully and partially coherent

wavefront propagation through extended grazing-incidence

mirrors has been recently implemented in the SRW computer

code. The method makes use of a local stationary phase

expansion to propagate an electric field from a plane before

such a mirror to a plane after it. By using a two-dimensional

interpolation, the electric field can be re-sampled after such

local propagation on a regular mesh. The operation can be

combined with the ‘free-space’ and ‘thin optical element’

propagators and can significantly extend the applicability of

numerical Fourier optics based simulations to complex optical

systems without compromising the overall performance.

Thanks to such seamless integration, the new method does

not complicate the partially coherent radiation propagation

calculations that are possible with the SRW code.

The new method has been extensively benchmarked against

two other methods which are widely used for simulating

propagation of optical beams: wavefront propagation using

ideal thin lenses instead of grazing-incidence mirrors (with

the SRW code) and the geometrical ray-tracing taking into

account accurate mirror surface shapes (with the SHADOW

code). The benchmarking simulations were performed for

realistic X-ray optical systems including elliptical mirrors in

the popular Kirkpatrick–Baez geometry at high demagnifica-

tion, with fully and partially coherent Gaussian beams and an

undulator radiation source. Good agreement between the

results of the simulations using the new method and the

geometrical ray-tracing is observed in the cases without

diffraction at mirror apertures, even for fully coherent radia-

tion beams (given the appropriate choice of the input beam

sizes and divergences for the ray-tracing simulations). In the

cases dominated by diffraction, the differences between the

predictions of the wavefront propagation simulations using

the new method and the geometrical ray-tracing were quite

significant. The results obtained with the new method in these

cases were closer to those obtained using the wavefront

propagation with the mirrors approximated by ideal thin

lenses. All results obtained have a clear physical interpreta-

tion, which suggests that the new method can be used for

miscellaneous optical simulations, and in particular for those

targeting design and optimization of X-ray beamlines and

instruments for modern third- and fourth-generation sources.

The benchmarking of the new method being discussed, as

well other methods that were recently implemented (or are

currently under implementation) in the SRW code, is also

planned to be compared with the experimental results

obtained at new low-emittance synchrotron sources and

X-ray FELs.
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