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Third-generation low-emittance storage-ring light sources based on double- and

triple-bend cells and undulator magnets have been in operation around the

world for more than two decades. On the horizon is a new generation based on

the multi-bend achromat (MBA) lattice concept promising two to three orders

of magnitude higher brightness than is available in today’s sources. In this paper,

the challenges inherent in designing MBA lattices, as well as potential solutions,

are described. Topics covered include lattice concepts, scaling of storage-ring

performance, brightness optimization, nonlinear dynamics, beam lifetime and

injection schemes.
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1. Introduction

Utilization of synchrotron radiation from electron storage

rings began with parasitic experiments on machines dedicated

to high-energy physics. In time, these sources were replaced

by a second generation that were dedicated to synchrotron

radiation, but not well optimized for that purpose. Bending

and wiggler magnets served as the primary radiation-gener-

ating devices, emitting radiation over a broad spectrum. The

invention of the undulator magnet and development of the

technology for producing much smaller electron beam size

and divergence brought about a third generation and a rapid

increase in the number of sources in operation. These new

sources deliver radiation of vastly higher quality than their

predecessors and collectively serve tens of thousands of users

annually.

Not so recently, it was considered common knowledge that,

with this third generation, storage rings had essentially

reached their ultimate performance. This was in spite of the

fact that several groups (e.g. Einfeld & Plesko, 1996; Kaltchev

et al., 1996) had explored a possible path to dramatically better

sources. That path, the multi-bend achromat (MBA) lattice,

has been adopted by several facilities now under construction

and is being seriously contemplated as a means of upgrading

existing facilities. For large hard X-ray facilities in particular, it

promises two to three orders of magnitude improvement in

brightness, justifying the designation of these machines as a

fourth generation of storage-ring light sources.

In this paper we review the promise and challenges of these

machines. We begin with a review of storage-ring physics,

including basic discussions of single-particle dynamics,

collective effects and the source of emittance. We then present

a study of storage-ring scaling using a model that illustrates

both the potential and difficulties of MBA lattices. We

describe the various methods that are used to counter some of

these difficulties, including methods of optimizing nonlinear

dynamics. Finally, we look at an exploratory design for a

possible upgrade of the Advanced Photon Source (APS),

using this as an illustration of possible solutions and perfor-

mance.

2. Measures of radiation quality

Modern storage-ring light sources are valued for their ability

to produce intense highly collimated radiation from X-rays to

infrared. Brightness, an important measure of beam quality, is

expressed in simplified form (for untilted beams) as

B ¼
N�

4�2ð��=�Þ�t�x�x0�y�y0
; ð1Þ

where N� is the number of photons within a fractional energy

or wavelength band ��=� arriving during time �t. The factor

Fs = N�=ð��=�Þ�t is the spectral flux. �x;y and �x0;y0 represent

the r.m.s. size and divergence of the photon beam in the

horizontal and vertical planes. Hence, the brightness is simply

the spectral flux per unit volume in transverse phase space.

The properties of the X-ray beam depend on the properties

of the parent electron beam, the properties of the device that

causes the radiation, and the photon energy of interest. We

may determine the properties of the X-ray beam by convol-

ving the radiation distribution for a single electron, which

depends on electron energy, the properties of the radiator and

the photon energy, with the electron beam distribution. For

undulator radiation, an approximate description of the single-
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electron transverse distribution is given by Elleaume (2003),

who characterizes the r.m.s. source size as

�r ’ 2�Luð Þ
1=2=ð2�Þ ð2Þ

and the divergence as

�r 0 ’ �=2Luð Þ
1=2; ð3Þ

where Lu is the length of the undulator. It is convenient to

define the intrinsic radiation emittance as

"r ¼ �r�r 0 ¼ �=2� ð4Þ

and the beta function as

�r ¼ �r=�r 0 ’ Lu=�: ð5Þ

The emittance is an invariant quantity that is proportional to

the phase-space area occupied by the radiation, while the beta

function characterizes the partitioning of the emittance

between size and divergence.

Again taking the simplest case, the electron beam can also

be described with Gaussian parameters. However, in this case

we consider the emittance and beta function to be the

fundamental quantities, since these are under direct control of

the accelerator designer. Letting q stand for x or y and taking

the simplest case [compare equation (16)], we have an r.m.s.

size

�q ¼ "q�q

� �1=2
ð6Þ

and an r.m.s. divergence

�q0 ¼ "q=�q

� �1=2
: ð7Þ

Given that we have characterized both the intrinsic radiation

distribution and the electron beam in terms of upright Gaus-

sian, we can easily compute the total photon beam parameters

by simple quadrature addition, obtaining

�q�q0 ¼ "q�q þ "r�r

� �1=2 "q

�q

þ
"r

�r

� �1=2

: ð8Þ

To increase the brightness, we must reduce this product for

both planes. Clearly, if "q � "r, the electron beam transverse

properties will typically be unimportant as long as �q and �r

are of similar magnitude. In the case when "q and "r are

comparable, the optimum condition requires �q � Lu=�, in

which case �q�q0 = "q þ "r.

Another measure of beam quality that is independent of

intensity is the coherent fraction, given by

fc ¼
"2

r

�x�x0�y�y0
: ð9Þ

This is simply the ratio of the intrinsic (i.e. minimum possible)

phase-space volume to the actual volume. It is customary to

speak of being ‘diffraction-limited’ when

"q < ð1=2Þ"r ’ �=4�: ð10Þ

In this case, the coherent fraction is approximately 44%. The

coherent flux is readily computed as Fc = fcFs = Bð�=2Þ2.

When the coherent fraction is close to unity, we may

reasonably say that we have an ‘ultimate’ light source. It is

interesting, then, to understand how far existing light sources

are from this ideal.

For an undulator that fills a typical 5 m-long straight section,

the ideal beta function is �r = 1.6 m, which is achieved in some

existing machines. Emittance, however, is another matter. In

practical units, we may rewrite (10) as

"q ½pm�<� 100=Ep ½keV�

"q ½pm�<� 8� ½Å�:
ð11Þ

Hence for ‘typical’ X-ray energies of 1 and 10 keV, we would

need electron beam emittances of 100 and 10 pm, respectively,

to achieve the diffraction-limited condition.

At third-generation sources, typical vertical emittances "y

are 1 to 40 pm, which is in the diffraction-limited regime,

depending on the photon energy. In the horizontal plane,

however, "x is typically 1 to 5 nm, which is more than an order

of magnitude larger than the diffraction limit. Hence, there is

great potential to improve the brightness, coherent fraction

and coherent flux from storage rings provided we can reduce

the horizontal emittance significantly.

3. Review of storage ring physics

3.1. Basic concepts

A typical third-generation storage ring is a highly periodic

configuration of magnets arrayed around a long narrow

vacuum chamber that forms a closed loop. The electron beam

circulates within this chamber, its path guided by ‘bending’

magnets (also known as dipole magnets). Bending magnets

were the primary source of radiation in earlier-generation

sources and are often still used for that purpose. However, the

bending magnets occupy only a modest fraction (perhaps 20–

30%) of the circumference. The remainder of the circumfer-

ence is filled with other necessary components, such as

quadrupole magnets, which provide focusing, and sextupole

magnets, which correct chromatic and other focusing aberra-

tions. Dipole magnets are characterized by having a nominally

constant value of vertical magnetic field By = B0 within some

arc of the circumference, while quadrupole magnets nominally

provide a simple gradient in magnetic field,

By ¼ B1x;

Bx ¼ B1y:
ð12Þ

Sextupole magnets, the highest-order magnets generally found

in light sources, are described by

By ¼ ð1=2ÞB2 x2
� y2

� �
;

Bx ¼ B2xy:
ð13Þ

The locations and strengths of these various magnets deter-

mines what is commonly referred to as the accelerator ‘lattice’.

The origin of the name is obscure but is presumably related

to the high degree of periodicity in the arrangement of the

magnets around the circumference. ‘Designing a lattice’ refers
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to the process of arranging the positions and strengths of these

components in such a way as to optimize accelerator perfor-

mance, as measured by emittance, beta functions, free space

for undulators, beam lifetime, ease of beam injection and

insensitivity to collective instabilities, among other things. A

host of practical considerations must also be incorporated,

such as magnet strength limits, synchrotron radiation heat load

management, vacuum system performance, assembly methods,

alignment accuracy, vibration, etc.

If low emittance were the only consideration, the circum-

ference of the accelerator would be as tightly packed as

possible with dipoles, quadrupoles and sextupoles. However, a

vital feature of third-generation sources is a large number of

‘straight sections’, which are free of accelerator magnets and

largely set aside for insertion devices (IDs), i.e. undulators and

wigglers. These devices, i.e. periodic arrays of magnets typi-

cally producing a sinusoidally varying field, create much

higher radiation flux and, in the case of undulators, extremely

high brightness compared with what is possible from bending

magnet sources.

A typical ring will have several tens of straight sections, a

fraction of which are devoted to special requirements for

accelerator operation that are not part of the lattice per se.

These include radio frequency (RF) accelerating cavities to

restore to the beam the energy it loses to synchrotron radia-

tion, as well as hardware required to inject beam into the ring.

3.2. Single-particle motion and beam sizes

As mentioned, the storage-ring lattice consists of a typically

periodic array of magnets, including quadrupole magnets that

provide focusing. In some cases, the bending magnets also

have a quadrupole gradient and hence provide significant

focusing as well. This periodic focusing structure results in

periodic ‘lattice functions’, which govern particle trajectories

and help determine the beam size and divergence. Transverse

particle motion in a circular accelerator may be broken into

two components, expressed for the horizontal plane as

xiðsÞ ¼ 2Ai�ðsÞ
� �1=2

cos ’xðsÞ þ�’i

� �
þ �i�xðsÞ: ð14Þ

In this equation, the i subscript refers to a specific particle, s is

the distance around the circumference C of the accelerator,

�xðsÞ is the beta function, ’xðsÞ is the betatron phase, � =

�E=E0 is the fractional momentum offset, and �xðsÞ is the

dispersion function, which determines how the closed orbit

varies with electron energy deviation. The first term in this

equation represents the rapid ‘betatron oscillations’ that

particles execute about their closed orbit. The quantity Ai

quantifies the amplitude of these oscillations and is known

as the Courant–Snyder invariant for particle i (Courant &

Snyder, 1958). In the APS, for example, the horizontal beta-

tron phase advances by about 72� per revolution. The second

term, in contrast, oscillates less rapidly, as � varies relatively

slowly. The differential equation for the betatron oscillations

(i.e. ignoring the momentum offset) is a harmonic oscillator

with periodic position-dependent focusing strength (Hill’s

equation),

x00� þ K1ðsÞx� ¼ 0; ð15Þ

where K1 = B1=H is the geometric quadrupole strength, H =

�mec=e is the beam rigidity, and primes represent derivatives

with respect to s. Similar equations hold for the vertical plane.

The r.m.s. beam size and divergence in the horizontal (‘x’)

plane can be expressed by taking ensemble averages of the

transverse coordinates over all the particles in a beam,

yielding

�xðsÞ ¼ "x�xðsÞ þ ���xðsÞ
� �2

n o1=2

;

�x0 ðsÞ ¼ "x

4þ � 0 2x ðsÞ

4�xðsÞ
þ ���

0
xðsÞ

� �2

� 	1=2

;

ð16Þ

where "x = hAi is the horizontal emittance and �� = h�2ið Þ
1=2

is

the fractional r.m.s. energy spread. (Again, similar equations

hold for the vertical plane.)

In a circular accelerator, there are necessarily magnets that

bend the beam in the horizontal plane, meaning that the beam

must be dispersed with energy in some locations and �x cannot

be everywhere zero. However, in an ideal ring, �y = 0, while in

a well corrected ring we have �y � �x. Fig. 1 shows the lattice

functions and beam sizes for the present APS ring, which has a

fairly typical ‘double-bend’ or Chasman–Green (Chasman et

al., 1975) structure.

At a symmetry point, where the derivatives � 0xðsÞ and �0xðsÞ
are zero, the product of the beam size and divergence is

particularly simple and gives the ‘effective emittance’

�x�
0
x ¼ "x 1þ

���xðsÞ
� �2

� 2
x

( )1=2

: ð17Þ

This is particularly relevant for IDs because the center of a

straight section is almost always a symmetry point. In this case,

it would appear that the effective emittance can be minimized

if we arrange for �x = 0, which is called the achromatic

diffraction-limited storage rings
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Figure 1
Lattice functions and beam sizes for one sector of the APS. Red blocks
represent dipole or bending magnets, green blocks represent quadrupole
magnets, and blue blocks represent sextupole magnets. The magnets are
sliced into sections to provide a finer representation of the lattice
functions.



condition. However, that is not necessarily true, because in

double-bend lattices, such as the APS, "x can be made smaller

by allowing �x to be non-zero in the straight sections. In the

case of APS, this results in an effective emittance of about

3 nm with ‘distributed dispersion’ compared with about 5 nm

in the achromatic case (Farvacque et al., 1994; Emery &

Borland, 2002). Clearly, it is important to understand what

determines the energy spread and emittance since these affect

the contributions of the electron beam to the total photon

beam phase space area.

3.3. Origin of energy spread and emittance

Energy spread and emittance have their origin in the

quantum nature of radiation emitted by electrons in magnetic

fields. Two electrons passing through the same magnetic field

on identical trajectories will emit different numbers of

photons, at different locations and with different energy.

Clearly, this effect will directly increase the energy spread of

the beam. In addition, it will increase the beam emittance,

since electrons receiving different energy kicks while in a

magnetic field will have divergent trajectories in the bending

plane (typically the horizontal plane).

The dispersion function plays an important role in this

process, since it defines the closed orbit for a particle of a given

fractional energy error �. When an electron emits a photon of

energy ep at position s, it suddenly has an additional energy

error of �� = �ep=E0 and thus is an additional distance

�xðsÞ�� from its closed orbit. Referring to equation (14), we

see that this increases the amplitude of the betatron oscillation

by the same amount, thus increasing the amplitude A and,

after ensemble averaging, the emittance of the beam.

If this ‘quantum excitation’ were the only phenomenon at

work, we would expect the energy spread and emittance to

increase monotonically, until the beam began to scrape on the

vacuum chamber. However, a phenomenon know as radiation

damping opposes the increase in energy spread and emittance,

so that an equilibrium is reached. Damping of the energy

spread occurs because the emission of synchrotron radiation

depends on the particle energy. The storage ring RF systems

restore the average energy U0 lost each turn. However,

particles with � > 0 (� < 0) lose more (less) energy than

average. Together, this results in a damping of the energy

spread increase.

When electrons radiate, the photons are emitted along the

direction of travel of the electron. Hence, both the transverse

and longitudinal momenta are decreased. The decrease in the

transverse momentum is larger when the slope is larger, i.e.

when the transverse momentum is larger. However, when

reaccelerated in the RF cavities, only the longitudinal

component is restored. This again results in a damping

phenomenon, since we have reduction of transverse

momentum that is greater when the magnitude of the trans-

verse momentum is greater.

It can be shown that (Wiedemann, 2003a) the equilibrium

energy spread and emittance can be expressed as

��;0 ¼ Cq�
2 h 1=	3


 

i

Jzh1=	
2i

� �1=2

ð18Þ

and

"0 ¼ Cq�
2
hH= 	3



 

i
Jxh1=	

2i
ð19Þ

where � is the relativistic factor, Jx (Jz) is the horizontal

(longitudinal) damping partition number, 	ðsÞ is the local

bending radius of the ideal closed orbit, Cq = 3.8319� 10�13 m

is a combination of physical constants, and

H ¼ �x�
0 2
x þ 2
x�x�

0
x þ �x�

2
x; ð20Þ

with 
x = �� 0x=2 and �x = ð1þ 
2
xÞ=�x. Angle brackets repre-

sent averages over the entire circumference of the ring.

We are now in a position to understand how to make the

energy spread and emittance smaller. One obvious way is to

make the beam energy (i.e. �) smaller, but this has several

pitfalls. First, the smaller the energy then the more difficult it

becomes to make hard X-rays. Second, an intensity-dependent

phenomenon known as intrabeam scattering, discussed below,

becomes much more severe at low energy and will limit our

ability to profit from the �2 factor in these equations.

The damping partition numbers Jx and Jz are related by

Jx þ Jz = 3, with Jx = 1 typical in rings that lack transverse field

gradients in the dipoles. We can increase Jx by incorporating a

horizontally defocusing gradient in the dipoles, which will help

to reduce the emittance at the expense of energy spread.

Usually, this is beneficial as long as not overdone.

Increasing the bending radius 	 may also be expected to

have a beneficial effect. The energy spread will scale weakly

with radius, i.e. �� ’ 1=ðj	jÞ1=2, while the emittance will scale

like 1=	3 (once we include the fact thatH’ 1=	2). In the next

section, we explore scaling in more detail.

Since the dipole magnets bend the beam path in the hori-

zontal plane and thus create non-zero dispersion only in that

plane, it would appear that the vertical emittance should be

essentially zero. However, in all real storage rings there are

rotational misalignments that result in non-zero vertical

dispersion and also coupling of the motion between the x and

y planes. In simple terms, this results in sharing of the natural

emittance "0 between the x and y planes. It is common to

express this with a parameter 0 	 � 	 1,

"x ¼ "0½1=ð1þ �Þ�;

"y ¼ "0½�=ð1þ �Þ�:
ð21Þ

Using these equations we see that � is just the ratio "y="x and

that "x + "y = "0. (These conclusions must be modified when

the damping times are different in the two planes, but we will

gloss over this detail in the interest of simplicity.)

3.4. Damping wigglers

As we mentioned before, the equilibrium emittance is a

balance between quantum excitation and synchrotron radia-

tion damping. The quantum excitation can be reduced by

increasing the focusing of the arc optics, as we will describe

diffraction-limited storage rings
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in x4. An alternative would be increasing the damping

‘denominator’ using a number of strong wiggler magnets in

zero-dispersion straight sections. The alternating magnetic

fields of wigglers, like undulators, do not produce a net

deflection of the beam, but create a large powerful fan of

dipole-magnet-like radiation. They are used in linear-collider

damping ring design proposals and in several light source

projects (Balewski et al., 2004; Guo et al., 2009). In order to

gain a large fraction in horizontal emittance the wigglers

would have to be specified to extract much more synchrotron

radiation than the regular arc dipoles.

The main attraction of wigglers in the design of a low-

emittance ring is that they allow the arc optics to have ‘larger’

quantum excitation than otherwise, thus reducing the overall

optical aberrations or nonlinearities, which are considered

the main design limitations in low-emittance rings. Another

advantage of wigglers is that they are almost modular. That is,

wiggler sections can be added or subtracted in operations

without excessive beam dynamics impact. The impact of some

collective effects will also be reduced compared with non-

wiggler light sources because of the extra damping.

However, there are significant disadvantages to using

wigglers. In light sources, space and straight sections are at a

premium and thus devoting straight sections to wigglers is not

always desirable. Since the energy loss per turn has been

multiplied with the extra radiation produced by wigglers, the

number of RF cavities and power sources may need to be

increased, which is particularly a concern for higher energy

rings and further reduces the amount of straight section length

available for undulators.

Wigglers also introduce asymmetry into the lattice, which

can cause beam dynamics problems, as described in the next

section. This asymmetry may result from changes to the linear

optics that are needed to optimize the performance of the

wigglers and compensate for their strong vertical focusing. It

also results from field roll-off in the wiggler coupled with the

amplitude of the wiggle (Safranek et al., 2002; Xiao et al.,

2013), both of which are a concern with strong long-period

damping wigglers. Another negative effect of damping

wigglers is that the energy spread increases, thus decreasing

the brightness of undulators at high harmonics.

In practical terms, one can at most hope to obtain a factor of

three or four reduction in emittance from the use of damping

wigglers. As we will see, other approaches based on lattice

modifications promise much larger factors and preserve more

space for high-brightness radiation-producing devices (i.e.

undulators instead of wigglers).

3.5. Tunes and resonances

Like any oscillatory motion, the motion described by

equation (14) is subject to resonances, particularly when we

consider that in a realistic accelerator the equation of motion,

equation (15), has significant nonlinear terms on the right-

hand side. Depending on which nonlinearities are present,

motion at particular frequencies can grow without limit,

resulting in particle loss. We define the ‘tune’ of the ring as the

normalized betatron phase advance per turn,

�q ¼
’qðCÞ � ’qð0Þ

2�
; ð22Þ

where q represents x or y. It is fairly obvious that, when �q is

an integer, any disturbance (e.g. a centroid kick) to the beam

will accumulate turn after turn.

For simplicity, in most of this paper we have assumed that

motion in the horizontal and vertical planes is separate, when

in reality there is some coupling between the two planes. One

implication is that betatron motion is subject to many reso-

nances that involve both the horizontal and vertical tunes.

These resonances are governed by the equation (Bruck, 1972)

n�x þm�y ¼ p; ð23Þ

where n, m and p are abitrary integers. This equation repre-

sents a resonance of order jnj þ jmj. When p is a multiple of

Ns, the number of sectors in the ring, we speak of structural

resonances. If the lattice is precisely symmetrical, these are the

only resonances present and they are of high order (and

therefore less serious). When the symmetry of the lattice is

broken, we effectively have Ns = 1 and resonances appear at

lower order.

There is a simple relationship between the order of a

resonance and the type of magnetic field that can drive it. For

example, integer resonances are driven by dipole errors, while

half-integer resonances are driven by quadrupole errors.

In general, a resonance labeled by ðn;mÞ is driven by

2ðjnj þ jmjÞ-pole magnets. Sextupoles, the need for which is

described in the next section, can drive several resonances,

e.g. 3�x = p and nux 
 2�y = p.

A particular difficulty is that the electrons in the beam

oscillate with a spread of frequencies, owing to the spread in

energies and betatron amplitudes. As discussed in more detail

in x5.1, one of the tasks of the lattice designer is to keep the

beam away from such resonances, or at least ensure that the

resonance is not driven strongly. Otherwise, particles can

bleed out through a resonance, resulting in short lifetime or

poor injection efficiency.

3.6. Chromatic effects

The beam motion described in equation (14) contains

several simplifications, one of which is the assumption that the

phase advance ’xðsÞ is independent of the energy deviation �.
However, focusing is provided by magnetic elements (quad-

rupoles) that of necessity affect particles of different energy

differently. The focal length f of an ideal thin-lens quadrupole

is f = f0ð1þ �Þ, where f0 is the focal length when the energy

deviation is zero. Put another way, the effective value of the

geometric focusing strength is

K1;eff ¼ K1=ð1þ �Þ ’ K1ð1� �Þ: ð24Þ

This energy-dependent focusing results in an energy depen-

dence of the tune, known as the chromaticity,

q ¼ d�q=d�: ð25Þ

diffraction-limited storage rings
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Typically, when a lattice contains only dipole and quadrupole

fields, the chromaticity is negative in both planes. This is

referred to as the ‘natural’ chromaticity.

For example, for the APS we have �x = 36.1 and a natural

chromaticity x;nat = �90. Thus, a particle with an energy

deviation of 0.1/90 or about 0.11% would have a tune of 36, i.e.

would sit on the integer resonance. Such a particle would

certainly be lost. Indeed, since the r.m.s. energy spread of the

APS electron beam is �� = 0.096%, a steady stream of particles

would be driven across the integer resonance by quantum

excitation and be lost, resulting in an extremely short

‘quantum’ beam lifetime.

To prevent such problems, it is necessary to reduce the

chromaticity to a much smaller value. Typically, one would like

the crossing of significant resonances to occur at 10��, so that

the impact on lifetime is negligible. In the APS example just

given, this implies jxj <� 10.

In fact, the quantum lifetime is only one consideration

motivating a low value of chromaticity. As we will describe

below, particles can be excited to momentum deviations of

several percent by Touschek scattering events, leading to

reduced lifetime for various reasons, e.g. scattered particles

may damp across a resonance on their way back to the core of

the beam, resulting in loss.

As mentioned above, sextupole magnets are introduced

into storage rings for the purpose of controlling the chroma-

ticity. To better understand how, we start by rewriting equation

(14) as

xðsÞ ¼ x�ðsÞ þ ��xðsÞ; ð26Þ

where x�ðsÞ represents the betatron oscillation. Referring to

equation (13) and assuming y = 0 for simplicity, we obtain

By ¼ ð1=2ÞB2 x2
� þ 2�x��x þ �

2�2
x

� �
: ð27Þ

Recalling that � changes much more slowly than x�, it is

apparent that the second term of this expression acts as a �-
dependent gradient, so that equation (24) becomes

K1;effðsÞ ¼ K1ðsÞð1� �Þ þ 2��xðsÞK2ðsÞ; ð28Þ

where K2 = B2=H. In this equation, we see two energy-

dependent gradients, the unavoidable one due to the quad-

rupoles as well as a term that is driven by the sextupole

strength K2 in dispersive areas (i.e. where �x 6¼ 0). Without

going into detail, we can see the possibility of ‘correcting’ the

chromaticity by adjusting the location and strength of such

‘chromatic’ sextupoles. At minimum, two sets or ‘families’ of

sextupoles are needed to allow correction of both the hori-

zontal and vertical chromaticity to zero, which is, naively at

least, the ideal value for maximizing the momentum accep-

tance. In modern light sources, additional families are used

in order to allow correction of geometric and higher-order

chromatic aberrations introduced by the chromatic sextupoles

(Crosbie, 1987). This topic will be discussed in more detail

in x5.1.

3.7. Longitudinal motion

As noted above, storage-ring light sources require RF

cavities to replace the energy lost to synchrotron radiation. By

virtue of the sinusoidal variation of the RF voltage VðtÞ =

V0 sin!RFt, these RF cavities provide a longitudinal restoring

or focusing force that is periodic in time. This results in the

existence of an integer number h of stable regions, known as

RF buckets, in phase and energy space, where the harmonic

number h is the ratio of the RF frequency !RF to the revo-

lution frequency !0. The focusing force further results in

bunching of the beam near the center of each bucket at a

particular RF phase ’s known as the synchronous phase, given

by

sin ’s ¼ U0=V0 ¼ 1=q ð29Þ

where U0 is the nominal energy loss per turn and q > 1 is

known as the over-voltage factor.

Any restoring force results in oscillatory motion at a specific

frequency. In the transverse planes, these are the two tunes

�x and �y. Similarly, there is a longitudinal tune �s and a

corresponding frequency �s for ‘synchrotron’ oscillations,

given by (Sands, 1970)

�2
s ¼


cceV0 !RF

CE0

cos ’s: ð30Þ

The parameter 
c, known as the momentum compaction

factor, relates the fractional change in orbit length to a change

in fractional momentum error,

1

��

�L

C
¼ 
c ¼

1

C

Z
�xðsÞ

	ðsÞ
ds; ð31Þ

where 	ðsÞ is the local bending radius of the design trajectory.

Given its role in linking energy deviation to path length, it

is perhaps not surprising that 
c helps determine the r.m.s.

electron bunch duration, which is proportional to the frac-

tional energy spread ��,

�t ¼ 
c=�sð Þ��: ð32Þ

Since 
c helps determine the bunch duration and thus the

peak current within a bunch for a given bunch charge, its value

is important for understanding single-bunch collective

instabilities. The value of �s, also influenced by 
c, affects both

single- and multi-bunch instabilities by determining the rate

at which particles in the head and tail of a bunch exchange

positions.

Finally, 
c helps determine the RF acceptance "RF, also

known as the ‘bucket height,’ which defines the maximum

fractional energy deviation a particle can have without being

lost from its bucket (and eventually from the machine) (Sands,

1970),

"RF ¼ 

2U0

�
chE0

q2
� 1

� �1=2
� cos�1

ð1=qÞ
h i� 	1=2

: ð33Þ

Typically, "RF is at least 2%. Higher values may contribute to

longer beam lifetime in the presence of inelastic scattering

from residual gas atoms and Touschek scattering (see below),

diffraction-limited storage rings
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provided that the energy acceptance is not limited first by

other factors.

3.8. Collective effects

So far, we have described storage rings in terms of the

behavior of particles under the influence of external fields

from magnets and RF cavities. While this ‘single-particle

dynamics’ is a rich and challenging subject, we must also be

cognizant of ‘collective effects,’ in which particles interact with

each other either directly, as in scattering or via space charge,

or indirectly, typically via electromagnetic interaction with the

vacuum chamber. Collective effects become more pronounced

as the beam intensity increases, but also as the particle density

increases when, for example, we attempt to decrease the beam

emittance. If not properly managed, collective effects can

result in intensity limitations, short beam lifetime, emittance

growth and other undesirable consequences.

Two scattering phenomena are important in low-emittance

storage rings. Both have their origins in collisions between

pairs of particles within a single bunch. The first, commonly

called ‘intrabeam scattering’ or IBS, refers to multiple small-

angle scattering events, wherein each particle repeatedly

collides with other particles in the bunch. Detailed treatment

of IBS is available in the literature (Bjorken & Mtingwa,

1983). For present purposes, it suffices to note that the local

collision rate is proportional to the bunch intensity and

inversely proportional to the bunch volume, i.e.

RIBS /
I

Nb�x�yc�t

; ð34Þ

where I is the total beam current and Nb is the number of

bunches. During each collision, particles may experience

relatively large transfers of momentum from betatron oscil-

lations into synchrotron oscillations. When this happens in

regions where �x is nonzero, it may well induce a larger

betatron oscillation in a similar fashion to quantum excitation.

The result is that both the energy spread and the horizontal

emittance grow. As (34) implies, the phenomenon is worse for

low-emittance rings with relatively few high-current bunches.

Intrabeam scattering is also worse for low-energy rings, which

is important as it curtails our ability to take advantage of the

" / �2 dependence exhibited in equation (19). We will

explore this in more detail below.

The Touschek effect is related to IBS but refers to relatively

rare hard scattering within a bunch that results in sufficiently

large momentum deviations that one or both particles are lost.

As with IBS, the Touschek scattering rate is proportional to

the bunch intensity and inversely proportional to the bunch

volume. In low-emittance rings, the beam lifetime �, defined as

1

�
¼

1

I

dI

dt
; ð35Þ

is typically dominated by the Touschek scattering contribu-

tion. For third-generation rings, it is the deviation in the

longitudinal momentum after a collision that matters. Thus

having sufficient RF bucket height is essential in obtaining

sufficiently long lifetime. In addition, the momentum accep-

tance of the lattice must be sufficient, i.e. transverse motion of

the particles must be stable for large longitudinal momentum

deviations. Hence, arrangement and adjustment of the sextu-

pole magnets is an important technique for increasing the

Touschek lifetime.

IBS and Touschek scattering are collective effects that

result from the microscopic interaction of pairs of particles.

An individual particle can also interact with the macroscopic

field of the bunch in which it resides, or indeed of the entire set

of bunches that compose a beam. This interaction includes

direct space charge forces and, more importantly for high-

energy beams, interaction mediated by the vacuum chamber

walls. In particular, any irregularity or resistivity in the vacuum

chamber walls can cause an electromagnetic ‘wake’ to form

when a bunch passes, resulting in a time-dependent modula-

tion of the longitudinal and transverse coordinates of the

particles in the bunch. An equivalent way to characterize this

interaction is with a frequency-dependent complex impe-

dance, which characterizes the voltage produced by a given

current distribution. As the bunch intensity increases, the

effect of the wake or impedance increases, resulting variously

in increased energy spread, increased emittance, motion of the

beam centroid and beam loss. These effects can to some extent

be mitigated by increased (positive) chromaticity and feed-

back.

Hence, it is common for storage rings to be tuned for

positive chromaticity, particularly when running with high

single-bunch current is desired. In the APS, for example, a

chromaticity of about +7 is needed to stabilize a 5 mA bunch,

while +11 is needed to stabilize a 20 mA bunch. As discussed

above, when the chromaticity is too different from zero, it can

adversely impact momentum aperture and hence beam life-

time. Use of bunch-by-bunch feedback allows reducing these

values considerably (Revol & Nagaoka, 2001; Yao et al., 2011).

Benefits may also accrue from using a higher-harmonic RF

cavity to stretch the bunches and introduce a spread in

synchrotron frequencies, as reported, for example, for the

Aladdin Light Source (Bosch et al., 2001; Bosch, 2005), with

theoretical grounding by Sagan (1994) and Krinsky & Wang

(1985).

Some structures, such as the RF cavities used to replace the

energy lost to synchrotron radiation, can trap electromagnetic

energy from passing bunches in resonant modes. These reso-

nant modes allow bunches to affect other bunches, and hence

can cause a multibunch instability. Bunch-by-bunch feedback

systems are quite effective in dealing with multibunch

instabilities.

4. Scaling of ring performance

Understanding how ring performance scales with circumfer-

ence and lattice type is very beneficial in guiding design

efforts. If we imagine a ring of fixed circumference C divided

into Ns identical sectors with Nd identical dipoles each, we

know that the bending angle per dipole is �d = 2�=ðNsNdÞ. For

small angles, the dispersion slope �0x added by a single dipole is

proportional to �d. In addition, the average beta function will

diffraction-limited storage rings
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scale like ld = C�d=ð2�Þ, since that characterizes the distance

between focusing elements. Referring to equation (20), we can

expect that H ’ C� 3
d and thus, referring to equation (19), we

anticipate that "0 ’ H=	 ’ �
3
d ’ 1=ðNsNdÞ

3.

Indeed, for several specific lattice types (e.g. double-bend

achromat), Wiedemann (2003b) shows that the minimum

emittance scales in this fashion. The emittance also depends

on the choice of lattice type and horizontal tune, so following

Murphy (1989) we can write

"0 / Fðtype; �xÞ
�2

JxðNsNdÞ
3
: ð36Þ

Strictly speaking, this scaling formula should only be used for

a fixed lattice type (e.g. a double-bend or triple-bend design),

but in practical use we find it is reasonably accurate even when

that condition is not met.

Hence, the 3.1 nm emittance of the APS may be expected to

drop 40-fold if we replace the existing double-bend sectors

design by a seven-bend design. As an indication of the

importance of the Fðtype; �xÞ factor, we note that APS started

operation with an emittance of about 8 nm, transitioning to

3.1 nm through adjustment of quadrupole strengths.

With such dramatic benefits apparently possible, it is

worthwhile to understand the scaling of other storage-ring

parameters. Rather than attempt to tease this out through

analysis, we decided to simulate a model ring that allows more

readily computing scaling of intricate parameters. This

simplified model has no straight sections for IDs and consists

of a simple repetitive cell with a ‘theoretical minimum emit-

tance’ (TME) configuration, as shown in Fig. 2. This is very

similar to the central cells of the MAX IV sector (Leemann et

al., 2009), for example.

For our model, we have chosen a fixed intermediate

circumference of 600 m and an intermediate energy of

4.5 GeV. Because of the simplicity of the cell, the distinction

between Ns (the number of sectors) and Nd is meaningless, so

we just use the latter for simplicity of terminology. By varying

Nd, we can examine the changes in various parameters as our

hypothetical 600 m, 4.5 GeV ring is upgraded to lattices with

different numbers of dipoles.

The modeling of the ring was performed with the program

elegant (Borland, 2000), starting with Nd = 40. As Nd was

increased, the previous solution was used as the starting point

for the new solution. For each value of Nd, we minimized "0

subject to several constraints: 0.5 m 	 �x;y 	 40 m, Jx;z � 1,

and circumference equal to 600 m. The upper limitation on the

beta function is needed to ensure that beam sizes, sensitivity to

errors, and collective effects are reasonably constrained, while

the lower limit was chosen as a practical value to prevent large

changes in the character of the solutions. The lengths of the

dipoles and quadrupoles was allowed to vary, as was their

gradient and the distances between the magnets. The lengths

of the sextupoles (a small fraction of the circumference) were

kept fixed. Fig. 2 shows an example of the lattice functions for

one cell of the ring with Nd = 280.

As Fig. 3 shows, the emittance does indeed scale as 1=N 3
d .

The fractional energy spread is found to scale very weakly, like

1=N 0:06
d , which is understandable given that the radius of the

ring is fixed.

As noted above, the decrease in emittance results from

using strong focusing elements between the dipoles to reduce

the magnitude of the dispersion function �x. Not surprisingly

then, the average value of �x decreases rapidly, like 1=N 1:9
d .

Also not surprising is the rapid increase in the focusing

gradients, shown in Fig. 4. The exponents differ for the

gradient in the quadrupoles (‘Q1’) and dipoles (‘B1’), and the

scaling is not a pure power law, but in general the scaling is like

N 2
d . The integrated strength of the focusing elements, defined

as the product of the gradient and the length of the element,

increases more slowly, like Nd, because the length of the

elements must shrink like 1=Nd in order to fit the larger

number of elements within the same circumference. That

scaling is also in keeping with the focusing elements having to

produce a focal length about equal to their separation.

Because of the increase in the number of focusing elements

and the emphasis on focusing in the bending (dispersive)

plane, the horizontal tune and natural chromaticity scale like

Nd. Coupled with the 1=N 1:9
d drop in the dispersion function,
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Figure 2
Lattice functions for one cell of the model ring for the case Nd = 280. Red
blocks represent dipole or bending magnets (B1), green blocks represent
quadrupole magnets (Q1), and blue blocks represent sextupole magnets
(SF and SD).

Figure 3
Scaling of natural emittance with number of dipoles in the model ring.
The line shows a fit, giving "0 / N �2:98.



we expect a �N 3
d increase in the required sextupole strength,

which is indeed seen in Fig. 5.

The rapid increase in the focusing and sextupole strengths

has significant implications for magnet design. A good rule of

thumb is that the field on the pole tips of quadrupoles and

sextupoles should not exceed Bt = 1 T. For quadrupoles, this

implies a pole tip radius of

Rq ¼
Bt

dBy=dx
; ð37Þ

while for sextupoles it implies a pole tip radius of

Rs ¼
2Bt

d2By=dx2

 !1=2

: ð38Þ

As shown in Fig. 6, this implies a rapid reduction in the magnet

bore radii. The conclusion is that for ultralow emittance we

require bore radii of the order of 10 mm. This has significant

repercussions for the vacuum systems, since the conductance

of the vacuum pipe scales with the cube of the radius. In order

to keep the average pressure fixed, the spacing between

pumps should scale like R3, i.e. like 1=N 6
d . Not surprisingly, a

new approach is needed and has been found in the use of

NEG-coated chambers, which have continuous pumping along

the circumference (Kersevan, 2000).

The strong variation of fields with transverse position

implied by the high quadrupole and sextupole strengths

implies greater sensitivity to alignment errors and vibration.

Misaligned quadrupoles kick the beam orbit, while misaligned

sextupoles introduce focusing errors and cross-plane coupling.

For the horizontal (x) plane, the orbit is primarily affected by

misalignments of the focusing quadrupoles (Q1), while for the

vertical (y) plane the orbit is primarily affected by misalign-

ments of the gradient dipoles (B1). For a displacement �x of a

focusing single quadrupole, the orbit displacement is (Sands,

1970)

x1ðsÞ ¼ K1L�x
�xð0Þ�xðsÞ
� �1=2

2 sin��x

cos ’xðsÞ � ’xð0Þ � ��x

� �
;

ð39Þ

where K1 = ð1=HÞdBy=dx is the geometric strength of a

quadrupole of length L at s = 0, H = �mec=e is the beam

rigidity, ’xðsÞ is the betatron phase advance, and �x =

’xðCÞ=ð2�Þ is the horizontal tune. For 2Nd independent

displaced quadrupoles, we find the r.m.s. horizontal orbit

amplification factor at the Q1 locations

Fx ’
xrms

�xrms

¼ 2Ndð Þ
1=2 K1L�x;max

2
ffiffiffi
2
p

sin��x

ð40Þ

where we have made use of the fact that �x is approximately

maximal at the Q1 locations (see Fig. 2). Similarly, the r.m.s.

vertical orbit at the B1 locations is

Fy ’
yrms

�yrms

¼ Ndð Þ
1=2 K1L�y;max

2
ffiffiffi
2
p

sin��y

; ð41Þ

where we have made use of the fact that �y is maximal at the

B1 locations. Assuming for simplicity and uniformity that

sin��x = sin��y = 1=
ffiffiffi
2
p

, we can estimate the amplification

factors for our model lattice, as shown in Fig. 7. The depen-

dence is relatively weak compared with magnet strength, say, a

result of the significant drop in the maximum beta functions in

both planes as Nd is increased.
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Figure 5
Scaling of sextupole strength required to correct the chromaticities to 0
for the two sextupole families. Fitting gives approximate scaling of N 3:2

d

for the SF and N 2:9
d for the SD sextupoles.

Figure 6
Scaling of dipole, quadrupole and sextupole bore radii assuming the pole
tip field is 1 T. The dipole and quadrupole values scale approximately as
N�2

d , while the sextupole values scale approximately as N�1:5
d .

Figure 4
Scaling of focusing gradients in the quadrupoles (‘Q1’) and dipoles (‘B1’).
Fitting gives approximate scaling of N 2:4

d for the quadrupoles and N 1:8
d for

the dipoles.



We can also estimate the alignment requirements for

sextupoles using the relationship between a beta function

error and the focusing error (d2By=dx2ÞL�x for a single

sextupole displaced by �x,

��xðsÞ

�xðsÞ
¼

�xð0Þ

2 sin 2��x

K2L�x cos 2 ’xðsÞ � ’xð0Þ � ��x

� �
; ð42Þ

where K2 = ð1=HÞ d2By=dx2 is the normalized strength of the

sextupole of length L at location s = 0.

Consistent with our assumption above for the orbit ampli-

fication estimate, we will assume sin 2��x = sin 2��y = 1. From

Fig. 2, we see that the horizontal beta function at the SF

sextupoles (at the ends of the cell) is approximately maximal,

while the vertical beta function is minimal. In contrast, for the

SD sextupole both beta functions are close to the average

value for the cell. Thus, for the horizontal plane we can write

��x

�x

� �
rms

’
�x;max K2L



 


SF
þ

ffiffiffi
2
p
�x;ave K2L



 


SD

4

� Ndð Þ
1=2 �xð Þrms; ð43Þ

while for the vertical plane we have

��y

�y

� �
rms

’

ffiffiffi
2
p
�y;ave K2L



 


SD

4
Ndð Þ

1=2 �yð Þrms: ð44Þ

Normalizing to the displacement ð�xÞrms or ð�yÞrms gives the

amplification factors shown in Fig. 8. The scaling is quite rapid,

particularly for the horizontal plane, where it is close to N 3
d .

For the APS double-bend lattice (NsNd = 80), the alignment

tolerances for sextupoles were 150 mm. This analysis implies

that for a seven-bend lattice (NsNd = 280) the tolerance would

be 5–15 mm, which is close to state of the art (Jain, 2011).

As we saw above, the strength of the sextupoles increases

roughly as N 3
d . This has significant implications for nonlinear

dynamics, which we can explore using scaling arguments

(Emery, 1990). Looking at only the horizontal plane, and

introducing the functions kðsÞ and mðsÞ giving, respectively,

the distribution of K1 and K2 as a function of s, the equation of

motion for a general lattice with Nd cells is

d2x

ds2
þ kðsÞx ¼ �

1

2
mðsÞx2; ð45Þ

where the s dependence of focusing strength for quadrupoles

and sextupoles are made explicit in order to find a scaling law

with Nd. For simplicity, we assume that the sextupole magnet

length shrinks with the cell length, whereas above the sextu-

pole length was fixed. This implies that m will scale as N 4
d (not

�N 3
d as found above), in order to give the correct �N 3

d

scaling of the integrated strength of each sextupole. We start

with the equation of motion for a reference value of Nd,

namely Nd0,

d2x

ds2
þ k0ðsÞx ¼ �

1

2
m0ðsÞx

2; ð46Þ

for which, we assume, we know the stability boundary and

instability growth times. Obviously the differences between

(45) and (46) are in the focusing and sextupole terms, which

are different in magnitude and spatial frequency. We will re-

write the terms of (46) to relate to those of (45). Using the

scaling found above, the quantity kðsÞ can be written as

n2
dk0ðndsÞ where nd = Nd=Nd0 is the normalized number of

cells. The factor nd in the argument nds indicates that magnet

strengths vary more rapidly with S as we pack more magnets

into the fixed-circumference ring. The n2
d factor indicates that

the quadrupole gradient increases as the square of number of

cells, roughly as found above. Similarly we have mðsÞ =

n4
dm0ðndsÞ for the general sextupole distribution. Rewriting the

double derivative d2x=ds2 as n2
dd2x=dðndsÞ2, (45) becomes

n2
d

d2x

dðndsÞ2
þ n2

dk0ðndsÞx ¼ �
1

2
n4

dm0ðndsÞx2: ð47Þ

Letting � = n2
dx and � = nds, then

d2�

d�2
þ k0ð�Þ� ¼ �

1

2
m0ð�Þ�

2; ð48Þ

which exhibits the same structure as (46), for which we already

know the solution. The stability limit of � (for a general nd) in

(48) has the same value as that of x (for nd = 1) in (46). Thus

the stability limit for a general Nd goes as 1=N 2
d . The time
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Figure 8
Scaling of fractional beta function error amplification factors for
horizontal offsets of sextupoles. The values scale approximately as N 2:7

d

for the x plane and and N 1:8
d for the y plane.

Figure 7
Scaling of orbit amplification factors for horizontal offsets of Q1
quadrupoles and vertical offsets of B1 dipoles. The values scale
approximately as N 0:3

d and N �0:4
d , respectively.



evolution of the instability goes as 1=Nd, which means that the

instability follows with the number of cells or number of

sextupoles. The same result is found for the vertical-plane

equation of motion.

Hence, if a double-bend lattice is replaced by a seven-bend

lattice with the same number of cells, we expect the stability

limit, or ‘dynamic aperture’, to be reduced to about 10% of the

original value. This seems to imply that conventional injection,

which requires a dynamic aperture of 10 mm or more, is

impossible, a subject to which we return in x6.

Another aperture limit with which we must contend results

from the variation in tune (oscillation frequency) with

momentum offset. This influences the momentum acceptance,

which in turn influences the beam lifetime via Touschek

scattering (Bernardini et al., 1963). Extending the description

in x3.6, we can write

�qð�Þ ¼ �qð0Þ þ �q þ �
2q;2 þ �

3q;3 . . . : ð49Þ

Typically, we correct q to a small value and attempt to do

likewise with the higher-order chromaticities using additional

families of sextupoles. Since our model has only two families,

we can only set x = y = 0. The resulting �N1:6 increase in the

higher-order chromaticities gives us an indication of the

challenges faced in optimizing a workable lattice using addi-

tional sextupoles or other methods (described in more detail

in x5).

These rough estimates give somewhat dire conclusions and

are introduced primarily to provide an understanding of why

designing ultralow-emittance light sources is so difficult. In

reality, clever schemes and better optimization tools can

significantly improve upon these scaling-based aperture

expectations, as we will see below.

So far, we have primarily looked into scaling effects in the

transverse planes. However, the motion in the longitudinal

plane is also affected. In particular, the all-important para-

meter 
c scales like 1=N 1:9
d . As mentioned above, the RF

bucket height needs to be sufficiently large regardless of Nd, in

order to maintain good lifetime, which becomes easier as 
c

shrinks [see equation (33)]. If we maintain a typical bucket

height of 
3%, we can also determine the scaling of related

quantities. For example, the required RF voltage scales like

1=Nd, primarily a result of the change in 
c, since the other

quantities going into equation (33) change only weakly. As a

result, the synchrotron tune �s decreases as 1=N 1:5
d and the

bunch length scales as 1=N 0:4
d . One might hope to counteract

this reduced bunch length, which is undesirable from the

standpoint of collective instabilities and Touschek scattering,

by reducing the RF voltage, but that would result in reduced

RF acceptance. This is not a wise choice when the emittance is

shrinking rapidly, since small emittance leads to more rapid

Touschek scattering and thus a strong requirement for large

energy acceptance.

Having determined the scaling of the beam dimensions in

all three planes, we are now in a position to appreciate the

scaling of collective effects. Fig. 9 shows the scaling of the

initial horizontal IBS growth rate, computed with the program

ibsEmittance (Xiao, 2008; Borland et al., 2009b) for a 1 nC

bunch, exhibiting a N 5
d dependence. As Nd gets larger, the

initial IBS growth rate exceeds the synchrotron radiation

damping rate, indicating that the beam will expand in volume

until the rates are balanced. The computations are performed

for two emittance ratios �, from which we see that having

larger � results in significant suppression of the IBS growth

rate. Not surprisingly, when the equilibrium emittances are

computed, the case with larger � shows significantly less

impact from IBS, as shown in Fig. 10. Running with large � is

usually avoided because of problems it can cause with tradi-

tional accumulation-based injection, a subject to which we will

return later.

Another method of mitigating the effects of IBS is to arti-

ficially stretch the bunch, which can be accomplished using a

higher-harmonic cavity or lower RF frequency. Such a cavity

works by reducing the slope of the net RF voltage at the center

of the bunch, without significantly impacting the bucket half

height. It is practical to attempt to lengthen the bunch by

a factor of about three, so we repeated our calculations

assuming a fixed initial bunch r.m.s. length of 12 mm (40 ps),

diffraction-limited storage rings
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Figure 9
Comparison of initial intrabeam scattering growth rates in the horizontal
plane to the synchrotron radiation damping rate, for a 1 nC bunch with
� = 0.01 and � = 1.00. The fit shows a dependence of �N 5

d .

Figure 10
Comparison of equilibrium horizontal emittances in the presence of IBS
for a 1 nC bunch with � = 0.01 and � = 1.00. The results for vanishingly
small charge, labeled ‘0 nC,’ show the limit as IBS effects become
negligible.



which is approximately three times the minimum bunch length

seen in the simulations. The bunch may lengthen further under

the influence of IBS-induced energy spread. As Fig. 11 shows,

this helps to reduce the effect of IBS, but is not a complete

cure by itself.

We noted above that IBS is much worse for lower energy.

Using the model ring with Nd = 150, we scanned the beam

energy for a 10 nC bunch charge while keeping �z = 12 mm

and � = 0.01. As shown in Fig. 12, the IBS prevents benefitting

from the 1=�2 dependence of the natural emittance on energy,

which can only be fully eliminated by running with very low

charge bunches. The impact can be mitigated by running with

a high emittance ratio �, but that also impacts brightness by

increasing the vertical emittance. Evidently, if we wish to

obtain the lowest emittance, we must consider several

methods of controlling IBS, namely, use of many low-charge

bunches, use of relatively large emittance ratios, use of a

bunch-lengthening cavity, and use of reasonably high beam

energy.

We next turn our attention to Touschek lifetime, which we

anticipate to also be a significant challenge for ultralow

emittances. Let us assume that the momentum aperture can be

maintained, through the methods detailed in the next section,

at a nominal value of 
3%. We use the beam parameters

computed in the presence of IBS with bunch lengthening,

since this will enlarge the bunch volume and hence reduce the

Touschek scattering rate. The Touschek lifetime was computed

with the program touschekLifetime (Xiao & Borland, 2007),

which is based on Piwinski (1998). As Fig. 13 shows, the

Touschek lifetimes for large Nd can be quite short unless we

use low-charge bunches and large �. Another way to view

these data, shown in Fig. 14, is to plot Touschek lifetime versus

"x"y��, which gives a rough gauge of potential X-ray bright-

ness. If we take 1 h as a practical lower limit for the lifetime,

we conclude that the best approach is to run with many weak

bunches (e.g. 1 nC per bunch) and low �. The graphs some-

what overstate the advantage of very low � for increasing the

X-ray brightness, since we are ignoring the considerable

contribution of the intrinsic radiation emittance and energy

spread. A more definitive statement requires selecting a
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Figure 13
Comparison of Touschek lifetime for 1 and 10 nC bunches with � = 0.01
and � = 1.00, assuming the use of a bunch-lengthening cavity to stretch the
bunch to �z = 12 mm.

Figure 14
Touschek lifetime versus product of the emittances and energy spread for
1 and 10 nC bunches with � = 0.01 and � = 1.00, assuming the use of a
bunch-lengthening cavity to stretch the bunch to �z = 12 mm. Roughly
speaking, low values of "x"y�� correspond to higher X-ray brightness.

Figure 11
Comparison of equilibrium horizontal emittances in the presence of IBS
for a 1 nC bunch with � = 0.01 and � = 1.00, for two cases: normally
varying bunch length and with �z = 12 mm due to use of a bunch-
lengthening cavity.

Figure 12
Comparison of equilibrium horizontal emittances in the presence of IBS
for a 10 nC bunch with two values of �, as a function of the beam energy
for a ring with Nd = 150. The r.m.s. bunch length is assumed to be constant
at �z = 12 mm.



photon energy, undulator and knowing the beta functions in

the ID straight. However, the general conclusion is valid.

As mentioned in x3.8, there are other collective effects that

result from the interaction of electrons with the macroscopic

field of the bunch or of the entire beam, as modified or

trapped by the vacuum chamber and RF cavities that are a

necessary part of any accelerator. The thresholds for some of

these collective instabilities can be roughly estimated and it is

worth exploring how they might be expected to scale. One

difficulty is that the vacuum chamber impedance will vary in

a non-trivial way as the vacuum chamber radius R is varied.

Typical contributions to the longitudinal impedance scale as

1=R or 1=R2, while typical contributions to the transverse

impedance scale as 1=R3 to 1=R4. Even taking the smallest

exponents indicates a serious issue with collective instabilities.

Two important instabilities in modern storage rings are the

microwave instability (MWI), which results in inflation of the

energy spread, and the transverse mode-coupling instability

(TMCI), which limits the single-bunch current. The threshold

for MWI is given by the Boussard criterion (Zotter, 2013),

which, to avoid unnecessary details, we write as

IMWI /

c�z�

2
�

Zk=n


 

 ; ð50Þ

where jZk=nj is the broadband longitudinal impedance. The

threshold for TMCI can similarly be characterized as (Zotter,

2013)

ITMCI /
�s

h�yi Zy



 

 ; ð51Þ

where jZyj is the vertical transverse impedance (which typi-

cally dominates).

Figs. 15 and 16 show the scaling of the thresholds under two

conditions: the optimistic assumption of constant impedance

and the more pessimistic assumption that jZk=nj ’ 1=R and

jZyj ’ 1=R3. Clearly, there is a huge variation in the scaling

depending on what we assume for the scaling of the impe-

dances. If the impedances do, in fact, scale rapidly with R, then

we can expect to encounter serious issues as we move toward

multi-bend lattices. Fortunately, there are steps one can take

to mitigate the increase in impedance, including making

transitions in the chamber smoother, using higher-conductivity

material (e.g. aluminimum or copper in place of stainless

steel), reducing beta functions at the locations with the

smallest gap or most rapid variation in gap, and lengthening

the bunch. One can also employ better feedback systems (e.g.

with lower noise and higher power) and use positive chro-

maticity to stabilize TMCI to some degree. We will touch upon

this issue again in x6.

5. Lattice optimization techniques

We have seen using scaling arguments that nonlinear dynamics

is expected to be very challenging for next-generation rings.

Because of the complexity of the full equations of motion, we

assess the quality of a lattice design using particle ‘tracking’,

propagating simulated particles for many turns in the ring

by integrating the equations of motion through the various

accelerator components. Particle tracking allows determining,

for example, the dynamic and momentum acceptances.

The region in x–y space where motion of particles with

initial coordinates ðx; yÞ stays stable is called dynamic aperture

or dynamic acceptance (DA). Typically the DA is considered

most relevant to beam capture from the injector and is

determined by tracking particles starting at the azimuthal

location of beam injection. The DA is also important in

determining the elastic gas scattering lifetime, as it determines

the maximum deflection angle a particle may suffer without

being lost from the beam.

The local momentum acceptance (LMA) (Steier et al., 2002;

Belgroune et al., 2003) is the maximum negative and positive

momentum deviation that is stable as a function of azimuthal

coordinate s. Typically, the LMA will be wide at locations

where j�xj is small and narrow at locations where j�xj is large.

The LMA is relevant to Touschek lifetime calculations, since
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Figure 16
Scaling of transverse mode coupling instability threshold for the case of
constant impedance and impedance that varies like 1=R3, where R is the
vacuum chamber radius. In the former case, the threshold is roughly
constant, whereas in the later case it scales like 1=N 4:4.

Figure 15
Scaling of microwave instability threshold for the case of constant
impedance and impedance that varies like 1=R, where R is the vacuum
chamber radius. In the former case, the threshold scales like 1=N 2:5,
whereas in the latter case it scales like 1=N 3:9.



it determines the maximum energy kick that a particle may

experience without being lost. For a similar reason, it is

involved in computations of gas bremsstrahlung lifetime.

In this section, we delve in more detail into the various

techniques used for detailed optimization of DA and LMA.

We begin with a discussion of the more traditional approach,

which is based on perturbation theory and attempts to

linearize the motion of particles over as wide a range of

transverse amplitudes and momentum deviations as possible.

We then describe more recent developments involving direct

simulation and optimization of nonlinear dynamics.

5.1. Traditional approach to nonlinear dynamics
optimization

The stability of particle motion depends on how well the

nonlinear dynamics is optimized and controlled. To analyze

particle motion in the presence of sextupoles, a perturbative

approach is often used. In this method, the Hamiltonian for

particle motion is split into linear and nonlinear parts, and the

nonlinear part is assumed to be a small perturbation to the

linear motion. Then, the motion can be analyzed analytically,

and various expressions for tune shifts with amplitude, reso-

nance driving terms, higher-order chromaticities, etc. can be

obtained [see Bengtsson (1997) as an example of Hamiltonian

dynamics and symplectic maps with normal form].

Simply speaking, to improve the nonlinear behavior of the

lattice, one needs to minimize tune shifts with amplitude and

momentum, as well as the strength of driving terms for nearby

resonances. This can be done by varying the strengths and

positions of different sextupole families, adding higher-order

multipole magnets (e.g. octupoles), changing the fractional

betatron tunes, and by varying the lattice functions at locations

of nonlinear magnets. In general, there are two types of

schemes to improve nonlinear beam dynamics: global

cancellation schemes and local cancellation schemes.

A global cancellation scheme employs many repetitive cells

with specially chosen phase advance in each cell. When

properly constructed, these many repetitive cells, which are

designed to have integer total phase advance in both planes,

become an achromat to some order, where by ‘order’ we refer

to the highest power of the particle coordinates. First-order

achromats have been applied in particle accelerators for a long

time. Brown (1979) developed a systematic matrix-based

approach to designing second-order achromats. It adopts at

least four identical cells with dipoles, quadrupoles and sextu-

poles and can eliminate all geometric and chromatic aberra-

tions up to second order. After that, similar third-order

achromat design approaches were developed analytically and

numerically (Dragt, 1987), again using the concept of identical

cells and integer phase advance. Wan & Berz (1996) devel-

oped a general method with Lie algebra to design achromats

to arbitrary order, taking advantage of mirror symmetry and

using multipole magnets for each specified order (for example,

octupoles for a third-order achromat). The latest PEPX design

utilizes a third-order geometric achromat which is achieved

with the assistance of harmonic sextupoles (Cai et al., 2012). It

can eliminate all the betatron resonance driving terms below

fourth order. A quasi-achromat scheme was proposed to

achieve a similar performance in a more general case (Sun &

Borland, 2013). As observed in Fig. 17, there are far fewer

resonance lines showing up in the frequency map (Laskar,

1990) of the quasi-achromat scheme than a nominal scheme

which has arbitrary phase advance.

The local cancellation scheme, as the name suggests, works

by achieving cancellation of nonlinearities within a cell. One

outstanding example is the famous idea proposed by Brown

(1979), employing �I transport between non-interleaved

sextupoles in several FODO cells to cancel higher-order

geometric aberrations. This idea is further developed in the

hybrid multibend achromat concept developed at ESRF

(Farvacque et al., 2013) where three nearby sextupoles (two

families) located in a dispersion bump are each separated by

�I from a matching magnet on the mirror side (see x6.1 for

further discussion). The higher-order geometric aberrations

cancel to a certain degree between the sextupole pairs.

Because approximations or impractical assumptions are

often made in development of such schemes, they are rarely

sufficient in themselves to ensure good performance. Octupole

magnets may be included to directly minimize transverse

amplitude-dependent detuning terms, thus avoiding major
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Figure 17
Comparison of frequency map analysis (FMA) shows that the quasi-
third-order achromat scheme (bottom) has better performance than a
similarly optimized lattice that uses no particular cancellation scheme.
The FMA for the quasi-achromat shows far fewer resonance lines, which
is generally indicative of a better solution. The frequency maps are
evaluated at locations in the two lattices where the beta functions are
roughly equivalent.



resonance crossings. More families of sextupoles may also be

adopted to minimize higher-order chromaticities or geome-

trical aberrations, at the cost of reduced periodicity and

symmetry. Placement and adjustment of sextupoles and

octupoles is guided by analytical expressions that relate the

various detuning terms and resonance driving terms to the

strength of these magnets and the lattice functions at their

locations. Although the expressions have a closed form, they

are complex and numerous enough that the optimization must

be performed with the aid of a computer program such as

OPA (Streun, 1999) or elegant.

5.2. Direct approach to nonlinear dynamics optimization

In the process of optimizing a lattice as described in the

previous section, it is essential to check the performance of the

lattice using particle tracking. When properly performed,

tracking can include effects to higher order than is possible in

pertubative approaches and with full coupling of motion in all

three planes. It can also easily incorporate errors, such as

misalignments, rotations, strength errors and field nonunifor-

mities, as well as physical apertures and radiation damping.

For these reasons, it is more definitive than perturbative

approaches, but is also far more demanding in computational

resources.

The traditional approach will usually yield good results in

a perfect machine, but the solution may fail to perform well

in the presence of realistic imperfections or ‘errors’. Hence,

iteration between tracking and traditional optimization is

usually required. In light of this and recognizing the vast

improvement in computational capabilities seen in recent

years, a number of groups have developed optimization based

directly on tracking, without the use of the perturbative

approach.

The first such work (Shang & Borland, 2005) known to the

authors used a parallel simplex optimizer and the tracking

program elegant to improve the simulated dynamic acceptance

of the APS. In the same year, Bazarov & Sinclair (2005)

described the first application of multi-objective genetic

algorithms or MOGA (Srinivas & Deb, 1995) to tracking-

based accelerator optimization, albeit for a photoinjector

rather than a storage ring. [An overview of MOGA is

presented below. See also Hofler (2013) and Hofler et al.

(2013).] This was followed several years later (Borland et al.,

2009c) by an exploration of several tracking-based techniques

to optimize both dynamic and momentum acceptances, and

by work of Yang et al. (2009) in which MOGA was used to

optimize storage-ring linear optics. The former included both

a grid scan technique and the use of single-objective genetic

optimization, including the first use of a tracking-based opti-

mizer to improve the performance of an operating storage-

ring light source. It also included the discovery that breaking

the symmetry of the sextupole distribution, traditionally

considered unwise or at best pointless, could in fact result in

better performance.

This was followed shortly by publicaton of the results of

several applications of MOGA to tracking-based optimization

of storage rings. Borland et al. (2009a) demonstrated the use of

MOGA to simultanelously and directly optimize both DA and

LMA, and later extended this (Borland et al., 2010) to directly

optimize Touschek lifetime computed from the LMA. In

addition to variation of sextupoles, variation of the linear

lattice design was part of the MOGA process. Yang et al.

(2011) demonstrated the use of MOGA to simultaneously

optimize the on-momentum DA plus the off-momentum DA

for two particular momentum deviations, which is a proxy for

the LMA. This work used a combination of tracking results

and low-order resonant driving terms, providing faster

convergence. Gao et al. (2011) was a similar effort, but without

inclusion of off-momentum analysis. Also of interest is Sun et

al. (2012), who included minimization of the diffusion rate (a

measure of resonance strengths) within the DA as one opti-

mization goal.

MOGA, as the name suggests, relies on two concepts: multi-

objective comparison and genetic, or evolutionary, improve-

ment of solutions. Imagine that one needs to adjust an accel-

erator or other system to minimize the values of n goal

functions giðsÞ, where i = 1 . . . n and s represents the collection

of accelerator settings available for adjustment. For example,

g0 might be related to the DA and g1 might be related to the

Touschek lifetime, while s could be the sextupole strengths. A

common and often effective approach is to form a new goal

function that is a weighted sum of the individual goals, e.g.

G ¼
Pn
i¼ 1

wigiðsÞ: ð52Þ

However, this involves deciding ahead of time on the relative

importance of the different goals, which may be difficult when

there are many goals. It may also unnecessarily restrict the

search space in the beginning stages, resulting in a failure to

find better solutions. Multi-objective comparison sidesteps this

problem by use of non-dominated sorting (Deb et al., 2002),

which allows ranking solutions based on multiple criteria. The

first-rank solutions are those solutions for which no other

solution exists that is superior in all objectives. Depending on

the relative importance of the different objectives, any one of

these solutions might be considered the ‘best solution’. Once

the first-rank solutions are known, they can be set aside and

the analysis repeated to find the second-rank solutions, and so

on until all solutions have been ranked.

Once solutions are ranked, the next step is to determine

how to generate new trial values of the variables. Many

methods exist, but the most common approach appears to be

an ‘elitist’ method that selects a subset of the top-ranked prior

solutions, then ‘breeds’ them to create new trial values. The

method used at APS involves selecting the top few ranks, then

breeding new trial configurations from pairs of these solutions.

The breeding algorithm typically used blends each of the

attributes of the two parents using a probability distribution

that is roughly uniformly distributed between the values from

the parents, with Gaussian tails that extend outside the

interval defined by the parents.

It is common for MOGA to be performed in discrete

generations, where all trials from a previous generation must
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complete before new trial configurations are generated.

However, this can leave computational resources idle, parti-

cularly when there is a spread in the length of time required

to evaluate the configurations. This is not uncommon when

performing searches for dynamic or momentum acceptance.

Hence, the APS algorithm starts new trials continuously based

on the highest-ranked solutions available at any time.

We noted above that one advantage of tracking is that it can

include effects that are not readily included in pertubative

methods. This provides an important advantage during opti-

mization, since it results in more robust solutions. Toward this

end, the optimization method employed at APS includes

errors, radiation damping, RF cavities and physical apertures.

Errors are included because these break the symmetry and

drive resonances. Optimizing in the presence of representative

errors yields a more robust result, avoiding the collapse of the

acceptances that can sometimes be experienced when errors

are added to solutions optimized for a perfect machine. The

most important errors in storage rings are residual orbit,

misalignment and magnet strength errors. Similar effects can

be introduced when insertion devices are included, particu-

larly in low-energy storage rings. While one would, ideally,

simulate all of these in a realistic way, to make this truly

realistic involves simulation of correction schemes that are not

necessarily simple to automate in a reliable fashion. As a

result, we use a simplified set of errors intended to emulate the

conditions that are typically achieved after correction. This

involves adding only strength errors and roll errors to quad-

rupoles and sextupoles. This produces ‘beating’ (i.e. non-

periodic variation) in the beta functions and dispersion, such

as would be observed due to horizontal orbit error in sextu-

poles and strength error in quadrupoles. It also produces

cross-plane coupling, such as would be observed due to

vertical orbit error in sextupoles and roll errors in quadru-

poles.

Including radiation damping is important for several

reasons. First, radiation damping can stabilize particles that

might otherwise be lost. Second, radiation damping causes

particle oscillation amplitudes in both the transverse and

longitudinal planes to vary, in the course of which the tunes

will vary. This can result in resonance crossings that affect

particle stability. For both reasons, excluding radiation

damping can potentially give misleading results.

Another reason to include radiation damping is that it

permits one to include RF cavities in a more realistic way, i.e.

with realistic voltage and synchronous phase. This in turn

results in an accurate simulation of synchrotron oscillations,

which modulate the tune (via the chromaticities) and sweep

the particle across resonances.

6. Possible APS upgrade lattice

Using the techniques described in the previous section, we

have developed a seven-bend achromat lattice that could be

used as a possible upgrade for the APS storage ring. The

lattice is based on a particular MBA concept developed at

the European Synchrotron Radiation Facility (ESRF) and

is known as a ‘hybrid’ multibend achromat (Farvacque et al.,

2013) or HMBA lattice. Fig. 18 compares the lattice functions

for the present-day APS with the lattice functions for a

possible HMBA design. We can clearly see that the dispersion

function is much smaller in the HMBA lattice compared with

the existing lattice. In addition, the average beta functions are

much smaller, both of which indicate the greater average

strength of the focusing elements. These factors combine

to reduce the magnitude of H [see equation (20)] and thus

the natural emittance. We fully expect that such a lattice, if

workable, would provide significant increases in X-ray beam

quality. However, from the discussion on ring scaling, we also

expect to encounter beam dynamics challenges. After a more

detailed review of the concept and constraints on its imple-

mentation at APS, we will describe how our particular lattice

was optimized and how it would perform if built.

Significant and interesting work along similar lines is on-

going at a number of other facilities world-wide. Among these

are possible upgrades of ALS (Tarawneh et al., 2013),

Diamond (Bartolini et al., 2013), ESRF (Farvacque et al.,

2013), SOLEIL (Nagaoka et al., 2013) and SPring-8, as well as

a possible new MBA-based ring in Beijing (Wang, 2013).

6.1. Lattice concept

An interesting feature of the HMBA lattice is that the

dispersion �x is not uniformly small, but has two symmetric

bumps, one between the first and second dipoles, and another

between the sixth and seventh dipoles. The sextupole magnets

are located within these bumps, since the relatively large value

of �x allows the sextupoles to be more effective and thus

weaker. This in turn reduces the strength of geometric aber-

rations introduced by the sextupoles.

Another noteworthy feature of the lattice is that the

sextupoles are arranged in such a way that their leading

geometric effects cancel within one sector. This is because the
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Figure 18
Comparison of lattice functions for present-day APS (top) and a possible
HMBA replacement lattice (bottom). Red blocks represent dipole or
bending magnets, green blocks represent quadrupole magnets, and blue
blocks represent sextupole magnets.



optics between the two dispersion bumps in any sector are

such as to give betatron phase advance of �’x = 3� and �’y =

� between corresponding sextupoles (i.e. between the first and

fourth, second and fifth, and third and sixth) in any sector. We

can easily see how this works using the impulse approximation

for two thin sextupoles with integrated strengths m = K2L.

Consider an on-momentum (� = 0) particle entering the first

sextupole with coordinates x0 = ðx0; x00; y0; y00Þ. At the exit of

the first sextupole, the coordinates become

x1 ¼

x1 ¼ x0;
x01 ¼ x00 � ð1=2Þmðx2

0 � y2
0Þ;

y1 ¼ y0;
y01 ¼ y00 þmx0y0:

8>><
>>: ð53Þ

Because of the phase advance �’x = 3� and �’y = �, the

coordinates at the entrance to the second sextupole are simply

inverted, i.e. x2 = �x1. Since both x and y have changed sign,

the changes in x0 and y0 from the second sextupole are iden-

tical to those from the first sextupole. Hence, the coordinates

at the exit of the second sextupole are �x0, i.e. we have the

very desirable result that the sextupoles have no effect for an

on-momentum particle. This conclusion is only exactly true

when the sextupoles can be treated in the impulse approx-

imation and when the sextupoles are not interleaved (i.e. only

two sextupoles per sector). Although neither of these condi-

tions is actually met in this lattice, the configuration still

provides a very good starting point for further optimization.

Another noteworthy feature of the ESRF concept is the use

of longitudinal gradients in the first, second, sixth and seventh

dipoles. The first (seventh) dipole has most of the bending

concentrated at the entrance (exit), which helps to kick the

dispersion up to larger values, thus making the sextupoles

weaker. The central section of the lattice comprises three

additional dipoles with transverse gradients. This part of the

lattice is very similar to the cells for the MAX IV design

(Leemann et al., 2009) and those used for our model lattice

in the scaling study presented in x4. The transverse gradient

dipoles not only serve to make the lattice more compact, they

also increase Jx and thus decrease the emittance [see equation

(19)]. As we will show below, the gradients in these dipoles

and the surrounding quadrupoles are very strong, helping to

reduce H and providing the necessary phase advance for

cancellation of geometric sextupole kicks.

6.2. Constraints

Because we are contemplating upgrading an existing ring,

we have several geometrical constraints that should be satis-

fied to minimize other required changes. Of course, we must

keep 40 sectors as now, with 35 of these dedicated to insertion

device beamlines supporting 4.8 m-long IDs. The ID straight

sections would ideally be exactly where they are now, which is

a difficult constraint to satisfy without a significant change in

circumference. Instead, we require them to move transversely

by no more than 70 mm, in order that the X-ray beam pipe will

fit within the existing shield-wall penetrations (Ramanathan,

2003). It is also desirable that the circumference of the new

ring closely matches that of the existing ring, in order to avoid

issues with the booster synchrotron in the existing injector,

which is locked in RF frequency to the ring. At issue is that

changing the common RF frequency will result in running off-

momentum in the booster, according to [compare equation

(31)]

��ð Þbooster¼ �
1


c;booster

�f

f

� �
RF

; ð54Þ

where 
c;booster = 7.1 � 10�3 is the momentum compaction

factor of the booster and ð�f=f ÞRF is the fractional change in

the common RF frequency. The change in circumference

should ideally be less than 18 p.p.m. in order to avoid an

energy offset of more than 0.25%.

In addition to ID beamlines, APS operates a number of

bending magnet beamlines, which impose additional require-

ments. In order to reduce the difficulty of building the accel-

erator magnets, it is helpful to reduce the beam energy E from

the present value of 7 GeV to 6 GeV. However, the critical

photon energy ec from a dipole scales like E3B, where B is the

bending field. This implies a significant reduction in ec unless B

is made 60% larger, which drives the emittance higher and

makes the transverse gradient dipoles much more difficult to

design. Following ESRF, we elected instead to make space for

a 15 cm-long three-pole wiggler downstream of the middle

dipole in each sector. The only requirement is then to provide

sufficient space and ensure that the radiation source point has

the same angle and is within 70 mm of the existing transverse

position.

Another choice to be made in optimizing the lattice is the

assumed injection method (see x6.5), i.e. whether to assume

on-axis swap-out injection (Emery & Borland, 2003) or

traditional accumulation-based injection. This choice signifi-

cantly impacts the optimization because traditional injection

requires five to ten times larger dynamic acceptance. Although

studies are on-going, swap-out appears to provide a significant

advantage in terms of emittance and also relaxes magnet field

quality requirements, so here we present results for swap-out

only and reserve a detailed comparison for a future publica-

tion.

APS presently operates in one of two timing fill patterns

about 80% of the time. The prevalent pattern has 24 equi-

spaced 16 nC bunches, while the ‘camshaft’ pattern has an

isolated 59 nC bunch, with many small bunches crowded on

the opposite side of the ring. It is highly desirable to maintain

a strong timing capability in any upgrade, which entails

maintaining a high single-bunch stability limit. For present

purposes, we have targeted 16 nC per bunch as in the present

24-bunch mode, but with a total of 48 bunches in order to

deliver twice the average current (200 mA instead of 100 mA).

Detailed simulation of impedance and instabilities (Chae,

2014) indicate that this is possible provided the chromaticity in

both planes is +5, so we have targeted this value. (The value

should be less when bunch-by-bunch feedback is included,

which is the subject of on-going analysis.)
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6.3. Lattice optimization

Nominally, the sextupoles in the HMBA lattice are powered

in just two families, with symmetry about the center of the

sector and about the center of the dispersion bump. More

explicitly, within each dispersion bump we have an SD–SF–SD

arrangement. Although we will have to break this symmetry in

order to compensate for the thickness and interleaving of the

sextupoles, it is the natural starting point. Using this config-

uration and the assumption that x = y = 2 is sufficient (see

below), we performed wide-ranging scans of working point, as

described by Borland et al. (2013). This led us to use integer

tunes of �x = 95 and �y = 36 as our starting point, which we

have retained even though chromaticity requirements have

increased to x = y = 5.

As described above, the MOGA process simultaneously

runs many ‘function evaluations’ with different values for the

control variables, including the strength of the sextupoles.

Based on a suggestion from P. Raimondi of ESRF, we elected

to split the sextupoles into 12 families, with odd sectors having

the first six families and even sectors the other six. This

provides a great deal of freedom in adjusting the nonlinear

dynamics effects of the sextupoles.

Other control variables include goals for the horizontal and

vertical phase advance between sextupoles, the fractional

tunes, the beta functions at the IDs, the maximum beta func-

tions and the maximum dispersion. These are described as

goals since it is not guaranteed that an acceptable linear optics

solution will exist for any combination of values. Instead, as

part of each function evaluation, a lattice-matching step is

performed that attempts to satisfy these goals, along with

others such as obtaining an emittance below a fixed target,

obtaining sufficiently small dispersion in the straight section,

satisfying geometrical constraints, providing sufficient space

between magnets for diagnostics and other equipment, and

providing sufficient margin between magnet engineering

designs and the fields used in the lattice. Although it varied

with different stages of the optimization, at times we allowed

the matching stage to vary essentially every property of the

lattice, including the relative strength and length of all

magnets and dipole segments, as well as the distances between

magnets. As the design developed, we reduced the number of

matching variables, typically by removing the ability to vary

lengths and angles, thus fixing the geometry. Because of the

complexity of the matching problems and in order to make

good use of parallel resources allocated to each function

evaluation, we used the parallel hybrid simplex optimizer

(Wang et al., 2011) in the parallel version of elegant (Wang et

al., 2009).

The next stage of function evaluaton, following matching,

was tracking with parallel elegant to obtain the dynamic and

local momentum acceptances. Symplectic integration was used

for all magnetic elements, with drift spaces treated as a

second-order matrix. Physical apertures were included,

consisting of a 10 mm-radius round aperture in the arcs and a

20 mm by 6 mm ellipse in the IDs. Lumped radiation damping

was included along with a thin-lens RF cavity set for 
4%

bucket height. A common set of strength and roll errors was

used for these computations, sufficient to give 2–4% beta

function beats. For quadrupole and sextupole roll errors, we

used a rather large r.m.s. value of 1 mrad in order to provide

some assurance that coupling resonances were driven.

Because of the iterative nature of the work, including

repeated iteration between the physics design and engi-

neering, it is not possible to show a pristine example of an

optimization from a symmetric starting point to a final lattice.

However, Fig. 19 illustrates the character of the results,

obtained in this case by starting from a previous MOGA

solution. Also shown is the performance with symmetric

sextupoles, which is presumably poor in this case because of

the large chromaticity, as better results were obtained for

symmetric sextupoles with a chromaticity of +2.

Table 1 summarizes properties of the best solution obtained

to date, the lattice functions for which are shown in Fig. 18.

The effective emittance is under 66 pm, a 47-fold reduction

from the effective emittance of APS today. (Naive application

of "0 / E 2=N 3
d would have led us to expect a 58-fold reduc-

tion.) The circumference is matched to within 6 p.p.m., with a

42 mm offset of the IDs and a 23 mm offset of the BM lines.

The magnet strengths are quite high, with quadrupole

gradients of 47 to 80 T m�1 and maximum transverse gradients

in dipoles of 46–47 T m�1. We anticipate building dipoles as

transversely offset quadrupole magnets, in order to obtain the

desired strength and good field quality. The SD sextupoles

have strengths jdB2
y=dx2j between 2.8 and 4.7 kT m�2, while

the SF sextupoles have strengths between 4.1 and 5.1 kT m�2.

Even assuming a pole tip radius of 13 mm, the use of vana-

dium permendur pole tips is required (Jaski, 2014) for all

sextupole magnets and the strongest quadrupole magnets

(specifically, those situated between the second and sixth

dipole). The variation in the strengths among sextupoles that

are nominally in equivalent locations is quite large, both

within a sector and between the odd and even sectors.

As expected, the variation in field in the longitudinal

gradient dipoles is largest for the first and seventh dipoles in

diffraction-limited storage rings
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Figure 19
Example of MOGA optimization results, showing the scaled DA area and
the Touschek lifetime (in arbitrary units) for several thousand evaluations
across two MOGA runs. The cyan dot shows the result for symmetric
sextupoles, for comparison. The green dot is the starting point, obtained
from a previous MOGA run, while the red dot is the ‘best’ configuration.



each sector, where the ratio is less than five-to-one, with a

modest maximum field of 0.63 T at the upstream (down-

stream) end of the first (seventh) dipole. The ratio is less than

three-to-one within the second and sixth dipoles, with a

maximum field of only 0.35 T.

6.4. Lattice evaluation

Although the MOGA process described above includes

optical errors as part of the modeling, it is essential to evaluate

the solution with a number of error ensembles in order to

verify robustness. This not only includes many instances of

optical errors of the type introduced during optimization but

also allows addition of other types of errors and exploration of

their effects.

Because of the strong quadrupoles and sextupoles, the orbit

correction and lattice correction procedure is somewhat

involved and will be the subject of a future publication. For the

present, the generation of optical error ensembles is similar to

what was described in x5.2. That is, rather than simulate the

process of orbit correction and lattice correction, we generate

many (e.g. 12000) error ensembles, perform a simple tune

correction by changing the two quadrupole families in the ID

straights, then select only those configurations that exhibit

characteristics consistent with more thorough correction.

In generating the initial ensembles, we include transverse

gradient errors as well as roll errors on quadrupoles and

sextupoles. We computed the average vertical-to-horizontal

emittance ratio at the IDs for each ensemble, then selected

only those ensembles with values between 9 and 11%. We

have chosen ensembles that exhibit r.m.s. beta beats between

5 and 8%, which left 117 of the original 12000 ensembles. The

selected ensembles are intended to represent the results of

reasonably thorough but not final correction of the lattice,

which motivates selecting relatively large but not extreme

values for the emittance ratio and beta beats.

For each ensemble, we computed the DA and LMA by 500-

turn tracking with lumped radiation damping and an RF cavity

set for a 
4% bucket. These simulations included systematic

and random multipole errors in the dipoles, quadrupoles and

sextupoles. Lacking completed magnet designs, we made some

simplifying assumptions about the character of the systematic

errors. For dipoles, we included sextupole through 18-pole

(the highest multipole elegant can include in a dipole). For

quadrupoles, we included allowed multipoles, in particular, the

12-, 20-, 28- and 36-pole. For sextupoles, we also included

allowed multipoles, in particular, the 18-, 30- and 42-pole.

Again for simplicity and in the interest of being conservative,

each systematic multipole error was given the same magnitude

as a fraction of the main harmonic at a reference radius of

r = 10 mm.

Random multipole errors were added to quadrupoles and

sextupoles based on Halbach (1969), which connects the r.m.s.

value of such errors to r.m.s. values of construction errors. The

construction errors included in this treatment, as coded in the

program sddsrandmult (Borland et al., 2003), are uncorrelated

displacement of the poles, errors in the top/bottom and right/

left symmetry, errors in the radius, and relative rotation of the

top and bottom. We assumed 30 mm r.m.s. for each positional

error and 150 mrad r.m.s. (30 mm over 20 cm) for the rotational

error. Halbach’s theory provides values for the random

quadrupole through 20-pole. We elected to suppress the low-

order contributions (quadrupole and sextupole) on the

grounds that these are either already included in the genera-

tion of the optical errors, or else subject to correction using

magnetic measurements. If, for example, we included the

quadrupole errors, it would defeat the previously performed

tune correction, increase the level of lattice function beating,

and also inflate the vertical emittance.

Fig. 20 shows the DA for three different levels of systematic

errors. We see that, for 0.03% and 0.1% systematic multipole

errors (per component at 10 mm), the tenth percentile

contours of the DA are nearly identical. On this basis, there is

no reason to require errors below 0.1%. Fig. 21 shows a more

complex picture, in that the LMA is smallest when the

systematic error levels are smallest. This indicates that some

component of the systematic errors is helpful to the dynamics,

though exactly which is yet to be understood. Note that

looking at the median LMA shows no such effect, indicating

that the benefit accrues only for the worst-performing

ensembles. It will be important to revisit this phenomenon

once detailed magnet designs are available and detailed lattice

correction has been implemented.

As discussed above, intrabeam scattering (IBS) can have a

significant negative effect on emittance and energy spread,

which can be mitigated by bunch lengthening. The zero-

current r.m.s. bunch length is about 4 mm, but this can be

diffraction-limited storage rings

930 Michael Borland et al. � Fourth-generation storage-ring light sources J. Synchrotron Rad. (2014). 21, 912–936

Table 1
Lattice parameters for a possible APS hybrid seven-bend achromat
upgrade.

Tunes and chromaticities
�x 95.107
�y 36.144
Natural x �137.10
Natural y �109.88

Lattice functions
Average �x 4.22 m
Average �y 7.93 m
Average �x 0.028 m

Radiation-integral-related quantities at 6 GeV
Natural emittance 65.47 pm
Energy spread 0.095 %
Horizontal damping time 12.16 ms
Vertical damping time 19.75 ms
Longitudinal damping time 14.35 ms
Energy loss per turn 2.24 MeV

ID straight sections
�x 6.85 m
�y 2.44 m
�x 1.45 mm
"x;eff 65.6 pm

Miscellaneous parameters
Momentum compaction 5:86� 10�5

�fRF=fRF 5:54� 10�6

Damping partition Jx 1.62
Damping partition J� 1.38



lengthened considerably by use of a third-harmonic cavity.

To make a conservative estimate of the required voltage, we

assumed a (low) longitudinal impedance of jZ=nj = 0.1 � and

solved the Haissinski equation (Haissinski, 1973) using the

program haissinski (Emery & Borland, 2000) for a 200 mA

total beam current divided into various numbers of bunches.

This allowed determining the harmonic cavity voltage

required to lengthen the bunch to 15 mm r.m.s., which turns

out be less than 1.05 MV. Since this seems practical, we then

assume a 15 mm r.m.s. bunch length as the starting point for

subsequent calculations. More detailed simulations (Chae,

2014) indicate that attempting to lengthen the bunch further

may result in bifurcation of the bunches.

We next used ibsEmittance to compute IBS effects as a

function of the number of bunches and the emittance ratio �.

One way to qualitatively assess the importance of IBS is to

look at "x þ "y as a function of �, since we naively expect this

to be constant when IBS is unimportant. As shown in Fig. 22,

this is nearly the case when � > 0.05, in that the variations are

under 10%. Fig. 23 shows the effect on the energy spread. For

both emittance and energy spread, the effects for are only

significant for low � in few-bunch modes of operation. The

slight increase in the emittance sum for large � results from the

inequality of the damping times in the horizontal and vertical

planes.

Combining the IBS results with the LMA results allows us

to compute the Touschek lifetime for each of the error

ensembles as a function of � and the number of bunches, which

we did using the program touschekLifetime. These results are

then analyzed statistically to determine the likely Touschek

lifetime, as shown in Fig. 24. For 324 bunches, the Touschek

lifetime is long even for low �, but, for 48 and 81 bunches,

increasing � to at least 0.5 seems advisable.

Because of the limited DA and LMA, we may expect the

gas scattering lifetime to be shorter than is common in today’s

storage rings. We have looked at the two principal components

of gas scattering (Le Duff, 1985). The first of these is inelastic

gas scattering, in which a particle receives an angular kick in

a collision with a gas molecule and is lost if as a result it is

outside the DA. The second is bremsstrahlung, in which a

diffraction-limited storage rings

J. Synchrotron Rad. (2014). 21, 912–936 Michael Borland et al. � Fourth-generation storage-ring light sources 931

Figure 20
Tenth-percentile dynamic acceptance contours from ensemble evaluation
of 117 error ensembles with random and systematic multipole errors. The
level of systematic multipoles was varied between 0.03% and 0.3% of the
main harmonic at a radius of 10 mm, for each multipole.

Figure 21
Tenth-percentile local momentum acceptance contours from ensemble
evaluation of 117 error ensembles with random and systematic multipole
errors. The level of systematic multipoles was varied between 0.03% and
0.3% of the main harmonic at a radius of 10 mm, for each multipole.
In order to conserve computing resources, computations were peformed
for the first four sectors only. Tests indicate that this is sufficient to
characterize performance.

Figure 22
Sum of the horizontal and vertical emittances including IBS as a function
of the emittance ratio �, for 200 mA stored in various numbers of
bunches, assuming a 15 mm initial r.m.s. bunch length.

Figure 23
RMS fractional energy spread including IBS as a function of the
emittance ratio �, for 200 mA stored in various numbers of bunches,
assuming a 15 mm initial r.m.s. bunch length.



particle emits a photon in a collision with a gas molecule and is

lost if as a result it is outside the LMA. The usual method of

computing the lifetime contributions from gas scattering relies

on average values of the lattice functions and the momentum

aperture. In calculating these lifetimes, we employed a more

accurate method that uses the DA and LMA results from

tracking (Borland, 2014).

Assuming 2 nT average pressure with the same fractional

pressures (66% H2, 2% H2O, 7% CH4, 21% CO and 4% CO2)

as in the APS today, we computed the gas scattering lifetime

for each of the ensembles. The elastic gas scattering lifetime

for the 0.1% systematic multipole error level is in excess of

140 h for all ensembles, while the corresponding gas brems-

strahlung lifetime is in excess of 89 h, giving a total gas scat-

tering lifetime of greater than 54 h.

We are now in a position to compute the total lifetime and

the injection interval. Because of the small DA, on-axis swap-

out injection is the method of choice. For a beam with Nb

bunches and an injection interval �Ti, the fractional droop D

in the population of any bunch is

D ¼ �TiNb=�; ð55Þ

where we assume that the total lifetime � � Nb�Ti. We

assume D = 0.1, i.e. that a bunch must be replaced when it has

decayed to 90% of its original intensity. Note that the droop in

the total beam current is D=Nb, a much smaller value.

Because of the existing (very conservative) shielding

calculations, we wish to maintain when possible a lifetime �
of greater than 5.7 h at 200 mA. For any particular Nb, this

determines the minimum value of � using the data in Fig. 24

combined with the gas scattering lifetime, and thus the injec-

tion interval. Table 2 lists the total lifetimes and injection

intervals for various fill options. The 48 bunch mode will

require a new assessment of the shielding. While the injection

intervals and average injector current requirement should not

cause difficulties for accelerator operation with the existing

injector, the high charge per bunch in some modes will require

upgrades to the injection systems (Yao et al., 2013).

6.5. Injection scheme and performance

The conventional, off-axis, accumulation-based injection

scheme usually requires a dynamic aperture of �10 mm,

which, as indicated in x4 and x6.3, is extremely difficult if not

impossible to achieve for the very low emittance storage rings

discussed in this paper. If the lattice is driven to sufficiently

low emittance, we expect that on-axis ‘swap-out’ injection

(Emery & Borland, 2003), in which the weakest bunch is

kicked out and replaced with a fresh high charge injector

bunch, is the only choice. Hence, we present that scheme for

the APS upgrade lattice described above.

Another consequence of a small dynamic aperture is that

perturbations to the stored beam from the injection elements

must be kept at a low level. With the close bunch spacing that

results from the adverse scaling of beam instabilities, IBS and

Touschek lifetime, this means that the injection kickers have

to have very fast rise and fall times. As a result, stripline

kickers are the best choice for beam injection.

The kick angle from a stripline of length L with gap d

between the electrodes is given by

�� ¼ 2g
eV

E

L

d
; ð56Þ

where V is the voltage different between the two electrodes, E

is the beam energy, g	 1 is a geometrical factor, and the factor

2 includes the force from both electric and magnetic fields. The

timing requirements on the stripline kicker pulser are deter-

mined by the length of the stripline (L) and bunch spacing.

The desired 324-bunch fill pattern with its 11.3 ns bunch

spacing puts the tightest requirement on the timing. The

timing requirements can be understood with reference to

Fig. 25, which shows a sketch of the stripline pulser waveform

and related stored and injected (extracted) bunches.

In designing the injection system, we must ensure that the

incoming beam does not suffer significant losses, either as a

result of hitting injection components (e.g. the septum blade or

kicker electrodes) or as a result of being outside the DA. In

general, we may choose to inject in the horizontal or vertical

plane. Letting q stand for x (horizontal injection) or y (vertical

injection), the required minimum beam separation �qmin at

the septum is given by

�qmin ¼ qinj þ qerr þ�qa þ�qd; ð57Þ

where qinj is the injected beam size (normally 3�inj), qerr is the

allowed error from all sources (for example, trajectory jitter),
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Figure 24
Tenth-percentile Touschek lifetime as a function of the emittance ratio �,
for 200 mA stored in various numbers of bunches, assuming a 15 mm
initial r.m.s. bunch length and including IBS inflation of the emittances
and energy spread.

Table 2
Beam parameters for several bunch patterns including IBS.

The tenth-percentile lifetime includes contributions from Touschek, elastic
nuclear and brehmsstrahlung scattering.

Nb

Qb

(nC) �
"x

(pm)
"y

(pm)
��
(10�4)

�10th

(h)
�Tinj

(s)

48 15.33 1.00 48.16 48.16 10.2 3.47 26.0
81 9.09 1.00 45.36 45.36 9.94 5.39 23.9

162 4.54 0.12 70.25 8.08 10.0 5.70 12.7
216 3.41 0.10 69.18 6.87 9.93 6.91 11.5
324 2.27 0.10 66.92 6.65 9.81 9.55 10.6



�qa is the minimum septum aperture, and �qd is the septum

thickness.

The beam separation has to be provided by a kicker

element (stripline in our case), and is given by

�q ¼ �k�sð Þ
1=2sin �’ �k; ð58Þ

where �k;s are beta functions at the kicker and septum loca-

tion, respectively, �’ is the phase advance between the kicker

and septum, and �k is the kick strength. One common choice is

to design a lattice such that �’’ �=2, with �s and �k enlarged

to further amplify the effect of the kick. This typically entails

putting the kickers and septum in two different straight

sections, but at a minimum requires several quadrupoles

separating the kickers. In the simplest case, where the kickers

and septum are all located in the same straight section,

equation (58) simplifies to

�q ¼ D�k ð59Þ

where D is the drift distance between the effective center of

the kicker and the septum.

The choice between distributed injection [equation (58)]

and a single sector injection [equation (59)] depends in part on

a comparison of ð�k�sÞ
1=2 sin �’ and D, which depends on the

actual optical design. Even though ð�k�sÞ
1=2 sin �’ can be

made larger through a special optical design in the injection

region, while D is more or less limited by the available space

(the same as that preserved for the insertion devices), there

are many disadvantages to using distributed injection:

(i) A special injection section would break the high

symmetry of the lattice, which makes the already challenging

nonlinear dynamic issues worse.

(ii) The beam separation achieved depends strongly on the

optics design, which puts constraints on the optics optimiza-

tion and future operational adjustment, giving less flexibility.

(iii) Large �k implies a large beam size inside the stripline

kicker, which conflicts with the desire to make a narrow-gap

high-field device. Thus, the advantage of large �k may be

limited.

(iv) Larger �k and �s means the impedance contributions

from the kicker and septum are also larger, which is un-

favorable for high single-bunch current.

Another choice we have is between injection in the hori-

zontal and vertical plane. The APS booster provides a beam

with much smaller emittance in the vertical than in the hori-

zontal plane. In addition, we anticipate future evolution of the

MBA lattice might include reducing the horizontal beta

function in the straight sections. Hence, it makes sense to

inject in the vertical plane. Based on these arguments, which

admittedly are not conclusive at this stage, we have selected

vertical injection in a single straight section as our default

option.

A conceptual injected beam orbit layout is shown in Fig. 26.

Due to the limited available straight section length, the

injected beam cannot avoid passing through the upstream

quadrupole doublet. In order for the injected beam to stay

near the accelerator midplane, a slightly tilted Lambertson

septum magnet is used, giving a small vertical bending angle

in addition to a relatively large horizontal bend. The main

parameters of the injection components are listed in Table 3.

To ensure low losses, we have designed the injection system

such that the injected beam envelope will freely pass through

the kicker and septum apertures, using 
3� for the transverse

planes and assuming 0.5% r.m.s. energy spread (which

includes a large allowance for energy jitter). The coordinates
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Figure 25
Timing relation among stripline kicker, stored and injected bunches.
Legend: ‘�1’: leading stored bunch; ‘0’: injection bunch; ‘+1’: following
stored bunch; ‘L’: stripline length; ‘Tr’, ‘Tf’, ‘Ttop’: rise, fall and flattop of
the pulser waveform.

Figure 26
Schematic layout of vertical injection beam orbit (not to scale).

Table 3
Main parameters of injection element.

Title Description Value Unit

Stripline Length 0.72 m
Gap 9 mm
Pulser voltage 
15 kV
Kick angle 0.72 mrad
�t10%�90% 4.5 ns
�ttop 5.9 ns
�t90%�10% 4.5 ns
Reproducibility (top) 	1%
Tail amplitude 	3%

Lambertson Length 1.8 m
Thickness 2 mm
Field strength 1 T
Bend angle 90 mrad
Tilt angle 98.2 mrad
Half-aperture to axis 3.5 mm



of the beam edges at the entrance and exit of the upstream

B:M1, B:Q2 and B:Q1 magnets, and at the first stripline, are

listed in Table 4. We also assume the injected beam is shielded

from the magnetic field of B:Q1 and B:Q2 by using an

appropriate material choice for the relevant section of the

vacuum chamber.

To confirm the design, the injection efficiency for injected

particles (i.e. not including transport loss from the booster to

injection kicker) has been simulated using elegant with various

injection errors. As in the lattice evaluation reported above,

we simulated with 100 sets of optical errors and multipole

errors. For each error set, we further included +2% or �2%

systematic (i.e. the same on all kickers) strength errors toge-

ther with 10000 instances of 5% r.m.s. random errors for the

stripline kicker and 0.01% r.m.s. random errors for the

Lambertson septum. The injected bunch (
3� with "x =

60 nm, "y = 16 nm, �p=p = 0.5%) has been tracked through the

ring for 500 turns and particle loss is recorded. Longitudinal

motion (RF) and synchrotron radiation damping are included

in the tracking. The average injection loss distribution

(average over 10000 shots) over 100 error ensembles is shown

in Fig. 27; the average injection efficiency is better than 99%.

For the optical error ensemble which gives the highest average

loss, we find that only six of the 10000 shots have injection

efficiency less than 95%. This indicates that the injection

scheme should perform very well.

6.6. X-ray performance

Using the electron beam parameters for various fill patterns

allows us to compute the X-ray performance from undulator

sources in the lattice just presented and compare it with the

present-day APS. For the MBA lattice, we looked at the

performance of 4.8 m-long hybrid-permanent magnet (HPM)

undulators and 3.7 m-long superconducting undulators

(SCUs), both with 8.5 mm magnetic gaps. The SCUs are

shorter to allow space for warm-to-cold transitions at both

ends.

To obtain a very broad idea of performance, instead of

picking specific devices we varied the undulator periods from

12 to 33 mm in 0.5 mm steps. The maximum K value for the

HPM devices was computed from logarithmic extrapolation

of existing APS undulator measurements, which gives results

within 10% of a simulation-derived model (Dejus et al., 2009).

For the SCUs, we used the scaling derived by Kim (2005),

which is based on the use of NbTi superconductor. Having

computed radiation properties for each device, we found the

envelopes over all devices, which makes for a very straight-

forward comparison.

Fig. 28 compares the average brightness of the MBA lattice

to the existing performance, showing increases of two to three

orders of magnitude. Not surprisingly, the flux improvements,

shown in Fig. 29, are less dramatic, but still significant. They

result from a combination of higher beam current and shorter-
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Table 4
Injected beam envelope (
3�) at specified locations for different
injection configurations.

Name Location x� (mm) xþ (mm) y� (mm) yþ (mm)

B:M1 Exit �182.6 �175.7 �4.08 �1.77
Q2 Entrance �177.3 �170.5 �3.72 �1.43

Exit �144.4 �138.3 �1.48 0.64
Q1 Entrance �127.6 �121.9 �0.33 1.70

Exit �97.9 �92.9 1.69 3.58
Lambertson Entrance �82.9 �78.1 2.71 4.53

Exit �1.8 1.8 5.76 6.97
Kick-1 Entrance �1.8 1.8 4.03 5.13

Exit �1.8 1.8 2.21 3.32

Figure 27
Average injection loss distribution (average over 10000 shots) over 100
optical errors.

Figure 29
Comparison of envelopes of central cone flux for the present-day APS
with the MBA replacement lattice.

Figure 28
Comparison of envelopes of average brightness for the present-day APS
with the MBA replacement lattice, in units of photons s�1 mm�2 mrad�2

(0.1% bandwidth)�1.



period undulators, which allows squeezing more undulator

periods into the same space.

7. Conclusion

Storage-ring light sources have made dramatic progress in the

decades since the first parasitic experiments were performed.

Third-generation light sources based (largely) on the

Chasman–Green double-bend configuration and supporting

large numbers of undulators provide excellent performance to

an ever-growing community of scientists in diverse fields of

research. Even as these machines began to come into opera-

tion, ideas for more compact higher-brightness sources were

beginning to be explored (Einfeld & Plesko, 1996; Kaltchev et

al., 1996). These ideas, in the form of the multi-bend achromat

lattice, have now blossomed into a subject of intense interest,

with the first rings based on these concepts now under

construction (Leemann et al., 2009; Liu et al., 2013). These

rings and those that seem likely to follow will usher in a fourth

generation of storage-ring light sources, with increases of

brightness of several orders of magnitude. The beam dynamics

and engineering challenges of these rings are significant, but

modern theoretical and simulation techniques provide the

tools necessary to meet those challenges. As an example, we

presented an exploratory study of a possible APS upgrade

lattice, which promises to increase the brightness by two or

three orders of magnitude compared with the present-day

APS.
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