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A new approach is proposed for measuring structural dynamics in materials

from multi-speckle scattering patterns obtained with partially coherent X-rays.

Coherent X-ray scattering is already widely used at high-brightness synchrotron

lightsources to measure dynamics using X-ray photon correlation spectroscopy,

but in many situations this experimental approach based on recording long

series of images (i.e. movies) is either not adequate or not practical. Following

the development of visible-light speckle visibility spectroscopy, the dynamic

information is obtained instead by analyzing the photon statistics and

calculating the speckle contrast in single scattering patterns. This quantity, also

referred to as the speckle visibility, is determined by the properties of the

partially coherent beam and other experimental parameters, as well as the

internal motions in the sample (dynamics). As a case study, Brownian dynamics

in a low-density colloidal suspension is measured and an excellent agreement is

found between correlation functions measured by X-ray photon correlation

spectroscopy and the decay in speckle visibility with integration time obtained

from the analysis presented here.
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1. Introduction

With the advent of high-brightness third-generation synchro-

tron radiation sources, X-ray photon correlation spectroscopy

(XPCS) has become a widely used method for the study of

mesoscale and nanoscale dynamics in a wide variety of

materials [e.g. Sutton (2008) and Grübel et al. (2008), and

references therein]. Key for XPCS is an illumination of the

sample with partially coherent X-rays obtained by sufficiently

collimating the radiation from a chaotic synchrotron radiation

source, which leads to the appearance of ‘speckles’ in the

scattering patterns (Sutton et al., 1991). With a dynamic

sample, the speckles fluctuate in time and the characteristic

timescales associated with the relaxation mechanisms can be

measured from the intensity autocorrelation functions. If

combined with area detectors and a multi-speckle technique,

XPCS can be used to measure both equilibrium and non-

equilibrium dynamics (Sutton et al., 2003).

Currently, XPCS enables studies of dynamics on timescales

from milliseconds to seconds or longer (Grübel et al., 2008).

Limited by the available coherent flux or, in many cases,

by detector technology, the applications of XPCS to faster

dynamics on milliseconds and shorter timescales are restricted

to only a few studies [e.g. Sikharulidze et al. (2002)]. With the

development of modern high-brightness third-generation

synchrotron radiation sources such as the National Synchro-

tron Light Source II (NSLS-II) at Brookhaven National

Laboratory and fourth-generation X-ray free-electron lasers

such as the Linear Coherent Light Source at Stanford Linear

Accelerator Laboratory (SLAC), more photons than was ever

possible before can be delivered to the sample in a short

period of time enabling, in principle, studies of much faster

dynamics. However, in order to do this, other instrumental

limitations, such as the relatively slow readout speed of ‘fast’

pixelated area detectors reaching today frame repetition rates

of about 1 kHz for state-of-the-art instruments (Ponchut et al.,

2011; Radicci et al., 2012), need to be overcome first. While the

development of faster (and smarter) pixelated area detectors

is, and should remain, one of the highest priorities in

synchrotron science, there is a pressing need for new experi-

mental techniques pushing the limits towards measuring

dynamics on shorter timescales with existing detectors.

Speckle visibility spectroscopy (SVS) was introduced to laser

light scattering (Bandyopadhyay et al., 2005) and applied to

measure fast changes associated with fluidization in a peri-

odically driven granular system (Dixon & Durian, 2003). In

SVS, the dynamics are measured from single diffraction

patterns by quantifying the speckle contrast (or ‘speckle

http://crossmark.crossref.org/dialog/?doi=10.1107/S1600577514015847&domain=pdf&date_stamp=2014-10-02


visibility’) as a function of integration time. With a dynamic

sample, the speckles will appear ‘blurred’ as the integration

time increases, and the dynamic timescales can be evaluated

from the decay in speckle visibility with increasing integration

times. An important advantage of SVS is the fact that it can

give access to dynamics faster than the repetition rate of the

detector as long as the integration time can be controlled on

these shorter timescales (e.g. by a fast shutter).

A major obstacle encountered in applying SVS to coherent

X-ray scattering is the low scattering intensity. Indeed, the

standard SVS analysis (Bandyopadhyay et al., 2005), where the

speckle contrast is calculated as the normalized variance of the

speckle patterns over an ensemble of equivalent pixels, fails

here. In many cases, and most predominantly for speckle

patterns recorded with short integration times, the presence of

fake dark speckles increases the normalized variance, which

seems greater than the actual contrast.

The first example of X-ray speckle visibility spectroscopy

(XSVS) was demonstrated by Inoue et al. (2012), where the

scattering of a Brownian sample was measured by a fast

charge-coupled device (CCD) X-ray camera. In order to

mitigate artifacts resulting from the low scattered intensity

and from charge-sharing among adjacent pixels, the authors

had to introduce an empirical fitting parameter in the

expression describing the normalized variance of intensity

fluctuations from speckle statistics and (Poisson) noise in the

detection system. Later, another research group (DeCaro et

al., 2013) measured the short-time dynamics of a colloidal

suspension by controlling the exposure time of a slow direct-

illumination CCD camera by means of a fast mechanical

shutter (a tuning fork). In order to overcome problems related

to detection noise in the CCD detectors, the authors used a

numerically intensive algorithm running on a supercomputer

to calculate the spatial correlation of intensity fluctuations

between adjacent pixels in an experimental set-up where the

speckles were magnified through focusing and were larger

than the detector pixel size. While this method can be extre-

mely powerful in measuring fast dynamics in very low scat-

tering systems, it is clearly quite difficult to be used on a

routine basis.

As an alternative approach, here we use noiseless photon-

counting pixelated area detectors which are becoming the

standard for coherent X-ray scattering experiments; see, for

example, the Maxipix and Eiger developments (Ponchut et al.,

2011; Gimenez et al., 2011; Ballabriga et al., 2013; Radicci et al.,

2012). As the signal is discriminated and converted to single

photon counts for each pixel individually, this leads to much

faster and less noisy devices, where the exposure time is

typically controlled to the microsecond level by an electronic

shutter. The intensity fluctuations over a set of equivalent

pixels is described by the negative-binomial distribution

function (see x2), taking into account speckle statistics asso-

ciated with the partial coherent illumination and Poisson noise

in the detection system. Here we show that this method and

model work remarkably well with the data recorded with

a fast pixelated detector, making the XSVS analysis rather

straightforward, free of any empirical parameters, and readily

available to the entire synchrotron radiation user community.

A similar approach was also used to demonstrate the presence

of speckle in low-scattering patterns obtained from the scat-

tering of single pulses from the X-ray free-electron laser

source at SLAC (Hruszkewycz et al., 2012; Lee et al., 2013).

In addition to giving access to faster dynamics compared

with more traditional methods such as XPCS, XSVS has

another major advantage in reducing the risk of beam-induced

sample damage. As long as nominally the same measurement

can be reproduced on a new sample, or a fresh location of an

irradiated sample, an ensemble can be built by repeating the

same single-shot experiment until the desired signal-to-noise

ratio is achieved.

In this paper we demonstrate for the first time the photon

statistics approach to the XSVS method at high-brightness

synchrotron radiation facilities by measuring the dynamics of

a diluted colloidal suspension of hard-sphere silica particles

undergoing Brownian motion. The sample does not show any

signs of beam damage. The photon statistics approach is quite

general and applicable to all illumination conditions, and we

demonstrate a complete overlap between XSVS and XPCS

results. A systematic experimental protocol is suggested for

XSVS applied in third-generation synchrotron radiation

sources.

2. Theory

In XPCS, the equilibrium sample dynamics are measured by

the autocorrelation function of the scattered intensity IðtÞ

from the illumination with (partially) coherent X-rays, given

by

gð2Þ q; �ð Þ �
hIðq; tÞIðq; t þ �Þi

hIðq; tÞi2
; ð1Þ

where h:::i represents an ensemble average over nominally

equivalent pixels and a time average over all the equivalent

times t, q is the scattering vector and � is the time delay.

Assuming Gaussian statistics (which apply to most practical

situations), the intensity autocorrelation gð2Þðq; �Þ is connected

to the intermediate scattering function (ISF) gð1Þðq; �Þ, which

contains the dynamical information of the sample motion, via

the Siegert relation,

gð2Þðq; �Þ ¼ �1½g
ð1Þ
ðq; �Þ�2 þ g1: ð2Þ

Here �1 is the optical contrast and is usually equal to the

contrast factor of the speckle patterns in XPCS measurements,

and g1 is the baseline, which is equal to 1 for ergodic samples.

For a system undergoing diffusive dynamics, the ISF is

described by gð1Þðq; �Þ ¼ exp½��ðqÞ��, where �ðqÞ is the

relaxation rate associated with the sample dynamics. The

autocorrelation function [equation (2)] can then be re-

arranged into

gð2Þðq; �Þ ¼ �1 exp½�2�ðqÞ�� þ g1: ð3Þ

For XSVS, the theoretical framework is described by the semi-

classical model following the work of Mandel (1958, 1959).

Firstly, we summarize the formalism introduced by Bandyo-
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padhyay et al. (2005) for SVS with laser light, which is based

on the statistical wave measure of the scattered intensity IðtÞ.

In reality, the time-resolved continuous scattering intensity

IðtÞ cannot be measured with infinite resolution. Instead, the

integrated signal ~IIðt;TÞ of duration T is used from the

recording of a detector, or

~IIðt;TÞ ¼ �
RtþT

t

Iðt 0Þ dt 0; ð4Þ

where � is a constant representing the detector efficiency. The

time and spatial average (for multi-speckle techniques) of
~IIðt;TÞ gives h~IIðTÞi. As in SVS (Bandyopadhyay et al., 2005),

the speckle patterns are usually recorded with a highly

coherent high-intensity incident beam making the intensity

fluctuations quasi-continuous and spanning a large dynamic

range. In this intense beam condition, the classical particle

behavior (photoelectrons as discrete particles) of the detec-

tion process, or the shot noise, is negligible, and the signal is

fully described by the statistics of classical waves. Therefore,

the probability density Pð~IIÞ is approximated by a gamma

distribution function (Mandel, 1959),

Pð~IIÞ ¼
M

h~IIi

� �M ~IIM�1

�ðMÞ
exp �M

~II

h~IIi

� �
; ð5Þ

where M is the number of coherent modes of the integrated

scattered signals, and �ð:::Þ is the gamma function. The

contrast factor � of detected signals is defined as

� ¼ 1=M: ð6Þ

When the (partially) coherent X-ray beam impinges on a

sample, the degeneracy is increased by the disorder of the

sample as well as the motion of the scatterers. Therefore, the

number of coherent modes M increases, which results in a

decrease in the contrast factor �. The moment analysis of the

photon statistics leads to the normalized variance of the

integrated signals var~II, given by

var~II ¼ h
~II2i=h~IIi2 � 1: ð7Þ

var~II is related to the contrast factor �, or the number of

coherent modes M through the probability density functions.

For signals ~II following the gamma distribution, var~II is equal to

the contrast factor � (Mandel, 1958, 1959),

var~IIðq;TÞ ¼ �ðq;TÞ: ð8Þ

In SVS, the experimental contrast factor �ðq;TÞ is calculated

by the normalized variance var~II of the speckle patterns

(Bandyopadhyay et al., 2005). The above approach is also

applicable to XSVS as long as the scattered signal is intense

enough, so that the gamma distribution holds.

In theory, the contrast factor can be written as a function of

the ISF (Mandel, 1958; Bandyopadhyay et al., 2005) under the

Gaussian wave assumption,

�ðq;TÞ ¼ �1

RT
0

2ð1� t=TÞ gð1Þðq; tÞ
� �2

dt=T þ �1; ð9Þ

where �1 is the baseline and is usually equal to 0. Numerically,

�1 is the contrast factor of the speckle patterns obtained in the

shortest integration time in the XSVS measurements. When

the integration time is much shorter than the sample relaxa-

tion timescale, then �1 is equal to �0 ¼ limT!0 �ðTÞ for both

XSVS and XPCS. The dynamic information of the sample

motions is extracted by fitting the experimental �ðq;TÞ with

equation (9).

So far we have been describing the theory in terms of the

statistics of classical waves. However, it is well known that

when the scattering intensity is low the discrete nature of the

scattered radiation will be significant and even dominant. In

this case the signal is depicted as the number of events or

counts K. The probability density function Pðt;T;KÞ, which

denotes the probability of detecting K counts in the time

interval from t to t þ T with a given integrated intensity ~IIðt;TÞ,

follows the Poisson distribution (Mandel, 1958),

Pðt;T;KÞ ¼
½~IIðt;TÞ�K

K!
exp �~IIðt;TÞ

� �
: ð10Þ

Therefore, the probability density of photon events K for a

given integration time T is the average of equation (10) over

an ensemble of ~II. The resulting form is the negative-binomial

distribution function (Mandel, 1959; Goodman, 2007)

PðKÞ ¼
�ðK þMÞ

�ðK þ 1Þ�ðMÞ

M

hKi þM

� �M
hKi

M þ hKi

� �K

; ð11Þ

which is a convolution of the gamma and the Poisson distri-

butions. The moment analysis of the negative-binomial

distribution gives a normalized variance varK (Mandel, 1959),

varKðq;TÞ ¼ �ðq;TÞ þ
1

hKðq;TÞi
: ð12Þ

Equation (12) deviates from equation (8) or the speckle

contrast �ðq;TÞ by the term of the mean count hKi. When hKi

is large, the photon beam is semi-continuous. As a result, the

signal variation varK (the quantal measure of the intensity) is

identical to var~II (the classical wave measure). The negative-

binomial distribution also reduces to the gamma distribution.

On the other limit of low degeneracy when hKi is small, the

signal variance is dominated by the particle property of the

beam and the classical Poisson distribution is recovered.

Therefore, the negative-binomial distribution is applicable to

all intensity levels in XSVS experiments, and the contrast

factor � (or 1=M) can be determined directly in all cases by

fitting the probability density of photon counts from the

experimental XSVS results to the negative-binomial distri-

bution [equation (11)]. The dynamic information is then

extracted from the contrast factor at different integration time

T using equation (9).

Depending on the exact nature of the dynamical process

taking place, equation (9) leads to various analytic expressions

(Bandyopadhyay et al., 2005). For samples undergoing a

diffusive motion, equation (9) becomes

�ðq;TÞ ¼ �1

exp½�2�ðqÞT� � 1þ 2�ðqÞT

2½�ðqÞT�2
þ �1: ð13Þ
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3. Experiment

The coherent X-ray scattering was performed at the ID10A

beamline Tröika at the European Synchrotron Radiation

Facility (ESRF) in Grenoble, France. A single-bounce Si(111)

crystal monochromator was used to tune the X-ray energy to

8 keV with a relative bandwidth of ��=� ’ 10�4. Higher-

order X-rays were removed by a Si mirror placed downstream

of the monochromator. A transversely partial coherent beam

was tailored to a spot size of 10 mm � 10 mm, using beryllium

compound refractive lenses and beam-defining slits. A set of

guard slits was placed just upstream of the sample to block

the diffraction fringes from the beam-defining slits. Under

these conditions, the partially coherent X-ray flux was

�1010 photons s�1. The scattered light was recorded using a

Maxipix photon-counting detector (Ponchut et al., 2011) with

55 mm � 55 mm pixel size located 2.2 m downstream of the

sample. The sample-to-detector distance was adjusted to

match the speckle size to the pixel size and optimize the

optical contrast (Bandyopadhyay et al., 2005). A vacuum flight

path with kapton windows on both ends was installed between

the sample and the detector to reduce air absorption and

scattering.

The sample was prepared from a suspension of charge

stabilized colloidal silica spheres (purchased from Duke

Scientific, radius 250 nm) by replacing the initial solvent

(water) with propylene glycol (PG). The concentration of the

suspension was kept low (<2%) in order to reduce inter-

particle correlations (Orsi et al., 2012). As a consequence the

colloids could diffuse freely, which is a good model system

for Brownian motion. The colloidal suspensions were filled

in 1 mm quartz capillaries and placed in a temperature-

controlled SAXS chamber to keep the sample temperature at

285 K throughout the data acquisition. As this sample does

not present any signs of beam damage, the speckle patterns

were recorded repeatedly in sequences of a few thousand

frames such as for a regular XPCS experiment. The integra-

tion time for each speckle pattern is 1 ms, and the detector

readout time is 0.29 ms (Ponchut et al., 2011).

The recorded images are corrected to a flat-field image to

reach a uniform quantum efficiency across the entire detector

chip. Fig. 1(a) demonstrates a scattering pattern averaged over

2000 successive images. Since the detector is illuminated by an

isotropic field of X-ray radiation, ensemble averages were

calculated over pixels in iso-q rings. Fig. 1(b) shows a waterfall

plot of the photon count intensities of a collection of pixels

within the circular region labeled in Fig. 1(a). The waterfall

plot helps identify bad pixels, sample instability, misassign-

ment of the direct beam position, or signs of radiation damage.

It provides also a good intuitive support to predict the time-

scale of the sample motion from the lifetime of the speckles.

Since no sign of radiation damage was observed and the

detector readout time is much shorter compared with the

integration time, scattering patterns with longer integration

time (i.e. multiples of 1 ms) were obtained by summing

multiple sequential images pixel-by-pixel, and then used for

the XSVS analysis.

4. Results

The contrast factor �ðq;TÞ of the speckle patterns is extracted

by the photon statistics analysis. The experimental probability

density PðKÞ of detecting K photons is obtained by histo-

gramming the photon counts over an ensemble of equivalent

pixels and over a number of speckle patterns recorded with

the same integration time T under the same illumination

condition. The experimental PðKÞ is directly fitted with the

negative-binomial distribution function by equation (11), with

M and hKi as adjustable parameters. Fig. 2 presents the

photon probability density PðKÞ from experiments (markers)

for four different integration times T of 1, 2, 4 and 8 ms. The

fits with the negative-binomial distribution (solid lines in

Fig. 2) match the experimental PðKÞ well throughout the

entire range of K for all integration times. The fitted numbers

of coherent modes M are 1.8, 3.4, 5.0 and 5.9, respectively, for

the selected integration times, so that by equation (6) the

contrast factors �ðq;TÞ are 0.54, 0.30, 0.20 and 0.17. The beam

coherence degenerates with the increase of the integration

time T.
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Figure 1
(a) Scattering pattern from a diluted silica colloidal suspension. The
image is an average over 2000 measurements with 1 ms integration time.
The dark shadow of the beam stop and the dark column in the scattering
pattern were masked out for analysis. The rings schematically mark a
collection of pixels at q = 2.95 � 10�3 Å�1 with a width of �q ’ 1.0 �
10�4 Å�1. (b) Waterfall plot of the photon counts of pixels within the q
ring labeled in (a). Color bars are shown as a visual aid.



The background scattering from the kapton windows

influences the contrast of the scattering patterns. The intensity

is weak and Poisson distributed, so that it cannot be eliminated

simply by subtracting it from the sample scattering patterns.

However, it is a reasonable approach to reduce the Poisson

signals of the background scattering by fitting with hKi as a

parameter. In Fig. 2, the calculated hKi from the scattering

intensity are 1.9, 3.9, 7.8 and 15.6 photons pixel�1. The fitted

hKi values, on the other hand, are 1.6, 3.5, 7.1 and

14.4 photons pixel�1. We explain this small systematic discre-

pancy as an effect of the background scattering from the

kapton windows. Both approaches are adjusted to the best fit

to the experimental PðKÞ. In Fig. 2, we show fits where both M

and hKi are left as adjustable parameters and, for comparison,

fits where only M is an adjustable parameter. While both

procedures lead to reasonably good fits, it is clear that fitting

also for hKi leads to better results in this case where the

background scattering is non-negligible and difficult to

quantify.

For comparison, fittings using the gamma distribution

function by equation (5) are also shown, as dashed lines, in

Fig. 2. The gamma distribution clearly fails to describe the

PðKÞ values for low-scattering cases, and the discrepancy is, as

expected, especially pronounced for the measurements with

short integration times (e.g. 1 ms). As the integration time

increases, the scattering patterns become more continuous and

the wave-like property of the scattered X-rays dominates. The

gamma distribution lineshape approaches that of the fitted

negative-binomial distribution function (e.g. results for T =

8 ms). Therefore, the gamma distribution is only conditionally

applicable to speckle patterns with high scattering levels as

used in SVS with laser light scattering. In this work the

negative-binomial distribution as a universal approach is used

to fit the experimental PðKÞ for all integration times and over

all iso-q rings.

The contrast factors �ðq;TÞ obtained from fitting the

experimental PðKÞ with equation (11) for integration times

that are 2n multiples of 1 ms, where n is an integer, are shown

as solid markers in Figs. 3(a)–3(c) as a function of T for three

different values of the momentum transfer q. These experi-

mentally determined �ðq;TÞ values are then modeled by

equation (13) with three adjustable parameters �1, �1 and

�ðqÞ, the last of which describes the relaxation rate associated

with the sample motion. The fitted curves are shown as dashed

lines in Figs. 3(a)–3(c) with the relaxation rate �ðqÞ to be (a)

4.72 � 0.91 s�1, (b) 8.95 � 0.66 s�1 and (c) 9.36 � 2.01 s�1.

The same experimental data are also used to calculate the

(XPCS) intensity autocorrelation gð2Þðq; �Þ from equation (1)

over a sequence of 5000 successive scattering patterns, and

averaged azimuthally over pixels in given iso-q rings. The

relaxation rate �ðqÞ is extracted by fitting gð2Þðq; �Þ with

equation (3). Figs. 3(a)–3(c) also show the experimental (open

markers) and the fitted (solid lines) gð2Þðq; �Þ as a function of

time delay � for the same three iso-q rings as in the XSVS
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Figure 3
Autocorrelation functions gð2Þðq; �Þ plotted as a function of the time delay
� from the XPCS analysis and speckle contrast factors �ðq;TÞ as a
function of the integration time T from the XSVS analysis over three q
rings of pixels (a) at q = 2.63 � 10�3 Å�1, (b) at q = 2.74 � 10�3 Å�1 and
(c) at q = 2.95 � 10�3 Å�1. The experimental gð2Þðq; �Þ (empty circles) are
fitted by equation (3) (solid line) for the XPCS analysis. The experimental
�ðq;TÞ (filled circles) are fitted by equation (13) (dashed line) for the
XSVS analysis. Note that the horizontal axis is labeled as ‘Time’ for
simplicity but has different meanings for the two methods.

Figure 2
Photon count statistics analysis performed over an ensemble of pixels
marked in the circular region in Fig. 1(a) for four integration times.
Markers represent the photon count probability density PðKÞ from the
experiments, and solid lines are the fitting curves using the negative-
binomial distribution function [equation (11)], dashed lines are the fitting
curves using the gamma distribution function [equation (5)] and dotted
lines are the fits using equation (11) with M as the only fitting parameter,
while hKi is calculated from the measured photon counts. The results are
plotted as a function of reduced count K/hKi, so that PðKÞ values with
different integration times can be stacked in the same figure.



analysis. The relaxation rate �ðqÞ obtained by XPCS analysis

are (a) 6.40 � 0.08 s�1, (b) 6.60 � 0.10 s�1 and (c) 7.58 �

0.09 s�1.

The relaxation rates �ðqÞ obtained from XPCS (open

markers) and XSVS (close markers) are compared for all q

values in Fig. 4. The results from both methods match well

within the experimental errors.

It should be noted that, while the XSVS results in Fig. 4

have larger statistical errors than the XPCS measurements,

these can be reduced by repeating the experiment under the

same illumination conditions (e.g. on a fresh location on the

sample, if needed).

For Brownian samples, the diffusion coefficient D0 can be

obtained by

�ðqÞ ¼ D0q2: ð14Þ

The fact that the relaxation rates follow a quadratic depen-

dence on the momentum transfer �ðqÞ / q2 demonstrates that

the silica particles in PG undergo indeed a simple Brownian

motion and hence the diffusion coefficient is obtained by

fitting �ðqÞ as a linear function of q2, with values D0 ¼ 9.99 �

1.75 � 105 Å2 s�1 for XSVS (dashed line) and D0 ¼ 9.44 �

0.40 � 105 Å2 s�1 for XPCS (solid line) (c.f. Fig. 4). The two

values agree with each other within experimental error.

5. Discussion and conclusion

Similar to XPCS, XSVS is also a photon-starved technique. In

this work the averaged count hKi over rings of pixels varies

from 0.6 photons pixel�1 to a few thousand photons pixel�1 for

the XSVS analysis. The most important practical constraint for

the photon statistical approach comes from the need of the

experimental PðKÞ to have at least three points [i.e. Pð0Þ, Pð1Þ

and Pð2Þ] for the curve-fitting. This is somehow similar for

XPCS where a (statistically significant) number of two photon

events are needed to calculate correlation functions. Once this

condition is satisfied, there is no hard limit for the feasibility of

the photon statistical approach. However, the possibility of

using this approach still depends greatly on the scattering

intensities hKi. Fig. 5 shows the calculated probability

densities of receiving 1 and 2 photons by using the negative-

binomial distribution function with equation (11) as a function

of M under various scattering levels: 10, 1, 0.1, 0.01 and

0.001 photons pixel�1. In this work, 15 rings with 14–190 pixels

were analyzed over 2048 patterns with the shortest integration

time of T = 1 ms. The largest number of sampling N for the

photon statistics analysis is about 4� 105. The feasibility of the

measurement can be evaluated by Pð1Þ and Pð2Þ [particularly

Pð2Þ]. In Fig. 5(b), Pð2Þ at hKi = 0.001 photons pixel�1 lies in

the 10�6 range. For example, with the largest sampling size

4 � 105 for our analysis, there is still less than one pixel

receiving two photon counts. Hence, the photon statistics

approach is not applicable at hKi = 0.001 photons pixel�1 or

lower scattering levels. Pð2Þ at hKi = 0.01 photons pixel�1 lies

in the 10�4 range. Only a few tens of pixels receive two photon

counts. To improve the experimental statistics, the sampling

size needs to be increased. However, Pð2Þ at hKi =
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Figure 4
Relaxation rate �ðqÞ of the sample Brownian motion as a function of
scattering vector q obtained by XPCS (empty circles) and XSVS (filled
circles). Straight lines are fitted by equation (14) for XPCS (solid line)
and for XSVS (dashed line).

Figure 5
Calculated probability density of receiving 1 and 2 photons. (a) Pð1Þ and
(b) Pð2Þ with the negative-binomial distribution function by equation (11)
under different scattering levels with hKi = 0.001, 0.01, 0.1, 1.0 and
10 photons pixel�1 as a function of the number of coherent modes M.



0.1 photons pixel�1 lies in the 10�2 range. A few thousand

pixels receive two photons. Here, in a ring of pixels at q =

4.0 � 10�3 Å�1 with hKi = 0.58 photons pixel�1, there are

3.5 � 104 pixels receiving two photon counts. Under the

current experimental conditions the contrast factor � should

be able to be extracted from scattering patterns at the hKi =

0.1 photons pixel�1 scattering level by using the photons

statistics approach. From both Figs. 5(a) and 5(b) the prob-

ability densities Pð1Þ and Pð2Þ are much more sensitive to hKi

than to the number of coherence modes M at low scattering

levels hKi < 1. Hence, the number of samplings can be eval-

uated based on the scattering level hKi.

The accuracy of contrast factor � is greatly influenced by the

detection noise, especially at low scattering levels. According

to equation (12), the Poisson noise can introduce a maximum

of detection error of 1/hKi. At low scattering cases, for

example hKi < 1, the Poisson error 1/hKi is larger than 1. The

contrast factor � has a value between 0 and 1 by definition.

Therefore, the error introduced by Poisson noise is larger than

100% of the contrast factor. The signal-to-noise ratio can be

increased by repeating the experiment.

As reported by DeCaro et al. (2013), judging by the 1=e

point of gð2Þðq; tÞ and �ðq;TÞ at the same q, the XSVS method

is 20 times more sensitive than the XPCS method under the

same detector repetition rate. However, the XSVS method is

not limited by the detector repetition rate. The integration

time T can be reduced even further, for example by using a

(mechanical or electronic) shutter. Hence, XSVS is capable of

studying faster dynamics. However, based on the previous

discussion, the time window of XSVS is limited by the scat-

tering level hKi. The possibility of receiving two photons Pð2Þ

should be calculated based on hKi, and the number of

samplings should be evaluated judging by Pð2Þ:
Our results show that the quantum statistical model for the

scattering from a partially coherent source described by the

negative-binomial distribution function works remarkably

well for the XSVS analysis. The problem then relies on how to

interpret the quantal measure (i.e. K) from the detection

results, which is detector dependent. The photon-counting

detectors are preferred because of their fast readout rate,

having zero electronic noise, and most importantly the direct

reading of photon counts K (Radicci et al., 2012; Ponchut et al.,

2011). In addition, with pixelated photon-counting detectors it

is highly unlikely to have charge-sharing problems like CCD

detectors have. However, when the X-rays impinge on the

border of neighboring pixels, depending on the exact thresh-

olding scheme, there is a finite probability that a photon is mis-

assigned or doubly counted. Random errors such as this can be

reduced by repeating the experiment to have better sampling

of the photon counts KðTÞ. Newly developed pixelated

detectors such as the Medipix3 family (Gimenez et al., 2011;

Ballabriga et al., 2013) enable the communication of adjacent

pixels, which further reduces the risk of assigning photons to

the wrong pixels. These new photon-counting detectors are

ideal for XSVS, as demonstrated by the photon statistics

approach proposed in this paper.

This work demonstrates the feasibility of the speckle

statistics approach to speckle visibility experiments by making

a direct comparison between XSVS and XPCS results using

third-generation synchrotron radiation sources. In this situa-

tion the XSVS data series can be constructed by time binning

frames recorded in an XPCS experiment. The analysis from

both methods will provide identical results if the detector

readout time is negligible in comparison with the acquisition

time. However, the main motivation for XSVS is to enable

measurements where XPCS does not work. Pushing the limits

of the phase space that can be explored by coherent scattering

towards even faster times, reaching perhaps timescales of the

order of microseconds is, for instance, one of the main moti-

vations behind building instruments such as the Coherent

Hard X-ray beamline at the NSLS-II (Fluerasu et al., 2011).

Since the present detector technology is not yet at a level

where frame repetition rates of 1 MHz are possible, accessing

such timescales is not possible with XPCS. On the other hand,

XSVS does not require such repetition rates but only the

capabilities of controlling the exposure (integration) time to

this resolution, a feature that modern pixelated detectors have

already accomplished. XSVS can also present important

benefits in terms of reducing artifacts associated with beam

damage, one of the main problems in the study of soft and

biological materials. Even though the longest integration times

required by XSVS are longer than the integration times of

individual frames in a XPCS series, the total dose at any given

location on the sample can be smaller. This is particularly

useful if the dose can be distributed over different samples or

over different locations across the sample. The error bars on

any measurement can then be reduced by simply repeating

nominally the same experiment on a fresh sample, a feature

shared, for example, with many high-energy experiments, but

not with XPCS. The fact that separate measurements are

performed for different integration times also opens new

possibilities such as increasing the beam attenuation (and

hence reducing the beam damage) only for the longer inte-

gration times, while using the entire available flux and maxi-

mizing signal-to-noise ratio for the shorter integration times.

In conclusion, here we demonstrate the photon statistics

approach to X-ray speckle visibility spectroscopy by studying

the coherent X-ray scattering from a dilute colloidal suspen-

sion of hard-sphere-like silica particles. The contrast factor of

single speckle patterns is obtained by fitting the experimental

probability density P(K) of photon counts with the negative-

binomial distribution, which is then used to extract the

dynamic information of the sample. The results from the

XSVS analysis are in excellent agreement with those obtained

by the well established XPCS method, and open exciting new

possibilities for studies of fast dynamics or experiments with

beam-sensitive soft and biological materials focusing at the

new third-generation synchrotron sources.
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