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Supplementary material :

Relation between deviatoric stress and deviatoric strain

When using white beam Laue microdiffraction, only the deviatoric part of the strain

tensor can be retrieved from Laue patterns, since the volume of the crystal lattice is not

measured. In this appendix, we show that this limitation prevents measurement of the

deviatoric stress tensor when dealing with poorly symmetric crystal lattices. Only for

cubic crystals, or for materials for which the elastic stiffness tensor C is isotropic, can the

deviatoric stress be estimated.

Let σ and ε be the stress and elastic strain tensors. The deviatoric stress and strain, σd

= dev(σ) and εd = dev(ε) respectively, read

σd = K : σ , εd = K : ε (1)
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or, using the Einstein convention for repeated indexes, σd
ij = Kijklσkl and εd

ij = Kijklεkl.

Here, K is the deviatoric projector, i.e. a fourth-order tensor that extracts the deviatoric

part of any symmetrical second order tensor; it reads

K = I− J , Iijkl = 1
2(δikδjl + δilδjk) , Jijkl = 1

3δijδkl , (2)

with δij the Kronecker delta (δij = 1 if i = j, δij = 0 if i 6= j). The elastic constitutive

relation reads

σ = C : ε (3)

with C the elastic stiffness tensor. When multiplied by tensor K, one obtains

σd = K : σ = K : C : ε , or σd
ij = KijklCklmnεmn (4)

showing that the deviatoric stress σd can be derived from the deviatoric elastic strain εd

only if

K : C = C : K . (5)

Only under such a condition can equation (4) be writen

σd = C : εd . (6)

Note that both K and C are symmetrical tensors, but this does not imply that the product

K : C is symmetric as well. We detail below the consequences of condition (5) for different

symmetries of the elastic stiffness, generally associated with the symmetry of the crystal

lattice.

1. In case of elastic isotropy, the elastic compliance reads

C = 3kJ + 2µK (7)

with k and µ the compressibility and shear modulus respectively. Since J : K = K :

J = 0 and K : K = K, condition (5) is fulfilled and equation (6) applies.

2. For cubic symmetry, it is convenient to introduce tensors Λ = e1 ⊗ e1 ⊗ e1 ⊗ e1 +

e2 ⊗ e2 ⊗ e2 ⊗ e2 + e3 ⊗ e3 ⊗ e3 ⊗ e3 with e1, e2, and e3 three unit vectors aligned

with the directions of the cubic symmetry (⊗ is the dyadic product), Ka = Λ − J,
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and Kb = K−Ka = I−Λ. The following general expression holds for the stiffness

tensor C

C = 3kJ + 2µaKa + 2µbKb . (8)

Since Ka : K = K : Ka = Ka and Kb : K = K : Kb = Kb, condition (5) is fulfilled

and equation (6) applies.

3. For general anisotropy,

K : C = (I− J) : C = C− J : C (9)

and therefore one only has to evaluate the symmetry of J : C. Noting that

JijmnCmnkl = 1
3δijCmmkl and CijmnJmnkl = 1

3δklCijmm (10)

and with the major symmetry of C (i.e. Cijkl = Cklij), one has thus to check under

which conditions

δijCmmkl = δklCmmij ∀i, j, k, l (11)

(with implicit summation on m).

(a) If i 6= j and k 6= l, condition (11) is trivially fulfilled.

(b) If i = j and k 6= l, or i 6= j and k = l, condition (11) leads to C11kl + C22kl +

C33kl = 0 ∀k 6= l. This is realized for full isotropy, transverse isotropy, and for

cubic, orthotropic, quadratic, and rhomboedric symmetries, not for monoclinic

and triclinic materials.

(c) If i = j and k = l, condition (11) reads C11ii + C22ii + C33ii = C11kk + C22kk +

C33kk ∀i, k (with no summation on i and k). This is realized only in case of

complete isotropy and cubic symmetry.

In summary, the local constitutive relation σ = C : ε can be transformed into σd = C :

εd only when one deals with material exhibiting local isotropic elasticity C or for crystals

with a cubic crystal lattice. In all other cases, one cannot evaluate the stress tensor (nor its

deviatoric part) from the only knowledge of the deviatoric elastic strain. As an illustrative

example, one can consider the case of a triclinic lattice, for which the stiffness tensor C
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has 18 independent coefficients; it is easy to verify that all shear stress components depend

on the trace of the elastic strain, which is unknown.
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