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Calculations are presented of the electronic structure and X-ray spectra of

materials with correlated d- and f-electron states based on the Hubbard model,

a real-space multiple-scattering formalism and a rotationally invariant local

density approximation. Values of the Hubbard parameter are calculated ab initio

using the constrained random-phase approximation. The combination of the

real-space Green’s function with Hubbard model corrections provides an

efficient approach to describe localized correlated electron states in these

systems, and their effect on core-level X-ray spectra. Results are presented for

the projected density of states and X-ray absorption spectra for transition metal-

and lanthanide-oxides. Results are found to be in good agreement with

experiment.

1. Introduction

Many-body perturbation theory and the GW approximation

starting from density functional theory (DFT) calculations or

the real-space multiple-scattering (RSMS) Green’s function

theory have become popular approaches to calculating the

excited state electronic structure and spectra of condensed

matter systems (Rehr & Albers, 2000; Onida et al., 2002) in

recent decades. In particular, this approach has been widely

successful in describing the electronic structure of weakly

interacting s–p bonded system. On the other hand, this

formalism often falls short in the description of localized

correlated 3d and 4f systems. In these cases the single-electron

DFT or quasi-particle spectra are often in striking disagree-

ment with spectroscopic data (Fabris et al., 2005). A straight-

forward approach to addressing these shortcomings is based

on adding Hubbard model corrections, e.g. within the local

density approximation (LDA) (Anisimov et al., 1991, 1993,

1997). This approach adds a spin- and orbital-dependent

potential parameterized by two parameters, U and J, to the

LDA-Hamiltonian to account for the screened Coulomb

interaction between these localized states. Though highly

simplified, the model accounts for the gap corrections

observed in the density of states of these materials. Besides

electronic structure, related spectra that include such Hubbard

corrections are needed to interpret experimental data. To this

end, Ahmed et al. (2012) established a proof of principle for an

LDA+U extension of the RSMS approach. This real-space

Green’s function method is now widely used to calculate X-ray

spectra, for example in the FEFF codes (Rehr & Albers,

2000). The implementation of Hubbard corrections in this

framework was, however, limited to d-state systems.

In this paper, we generalize the approach to both d- and f-

electron systems, together with an automated way of calcu-

lating the Hubbard parameters U. The approach is imple-
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mented within the modular RSMS code FEFF9 (Rehr et al.,

2010). The FEFF9 code is highly automated and includes

many-body effects such as the electron self-energy and

Debye–Waller factors. The efficiency of this code has been

demonstrated by calculations for a wide range of materials.

Moreover, the approach builds in all-electron full-relativistic

initial states and self-consistent semi-relativistic final states,

and does not depend on crystal or point-group symmetry.

Consequently, the code is applicable to aperiodic materials

such as nanostructures, biological materials or crystals with

impurities throughout the periodic table. For these reasons,

this method is both widely applicable and user-friendly

compared with many other codes. A major approximation is

the reliance of spherical scattering potentials, but, as seen in

the examples presented here, is not a serious limitation.

The main product of the current investigation is a gener-

alization of FEFF9 for d- and f-electron systems with new

modules that calculate Hubbard model corrections in the

electronic structure and X-ray absorption spectrum (XAS).

In particular, the Hubbard model parameters are calculated

within the constrained random phase approximation approach

using a generalization of that introduced by Ahmed et al.

(2012). This procedure is in contrast to many works where the

Hubbard parameters are either estimated or fitted to experi-

ment. The new code is tested on both d- and f-state materials

including transition-metal and lanthanide oxides. Compared

with similar calculations without the Hubbard corrections, we

find that this approach greatly improves the agreement with

experiment from direct [X-ray photoelectron spectroscopy

(XPS)] and inverse [bremsstrahlung isochromat spectroscopy

(BIS)] photoemission spectroscopy for these materials. In the

remainder of this paper, the theory and implementation are

discussed in x2, results in x3, and conclusions in x4.

2. Theory and implementation

In this section, we briefly review the theoretical approach used

to calculate the Hubbard potential and the implementation in

the RSMS Green’s function formalism.

2.1. RSMS Green’s function approach

X-ray absorption spectroscopy measures the X-ray

absorption coefficient �ðEÞ which characterizes the expo-

nential decay of the intensity of an X-ray beam passing

through a material. In the RSMS approach, �ðEÞ and other

physical quantities are expressed in terms of the quasiparticle

Green’s function Gðr; r0;EÞ. This is in contrast to conventional

approaches based on wavefunctions, and greatly simplifies the

calculations. In this approach the absorption coefficient �(E)

is given by

�ðEÞ / �
2

�
Imh’cðrÞj"̂" � rGðr; r0;Eþ EcÞ"̂" � r

0
j’cðr

0
Þi; ð1Þ

which is formally equivalent to the Fermi golden rule. This can

be seen formally by inserting the spectral decomposition of

the Green’s function,

Gðr; r0;EÞ ¼
X

k

’kðrÞ ’
�
kðr
0
Þ �ð"k � "FÞ=ðE� "k þ i�Þ;

into equation (1) and taking the imaginary part. Here j’cðrÞi is

the core state wavefunction, Ec the core level energy and "̂" the

photon polarization.

The spin and angular momentum projected density of states

�ðnÞl� ðEÞ at atomic position n, which is of special interest in this

paper, can be expressed in terms of the Green’s function,

�ðnÞl� ðEÞ ¼ �
1

�

X
m

RRn

0

G �;�0

Ln;L0nðr; r;EÞ r2 dr; ð2Þ

with Rn the Norman radius about atomic position n. This can

be derived, again using the spectral decomposition of G and

recognizing that the imaginary part of Gðr; r0;EÞ is the density-

matrix. G �;�0

Ln;L0n0 are the coefficients of the expansion of the

Green’s function about sites n and n0 in terms of spherical

harmonics,

Gðr; r0;EÞ ¼
X

L;L0;�

YLðr̂rÞG
�;�0

Ln;L0n0Y
�
Lðr̂r
0Þ; ð3Þ

where L = ðl;mÞ are the orbital and azimuthal quantum

numbers. Analogously we obtain the spin-dependent density

matrix for site n as

n��
0

Ln;L0n0 ¼ �
1

�

ZEf

dE

Z
cell

Im G ��0

Ln;L0n0 ðr; r;EÞ dr: ð4Þ

In the RSMS approach the Green’s function G is naturally

separated in the multiple-scattering series in contributions

from the central (absorbing) atom G c and multiple-scattering

(MS) contributions from the environment G sc, i.e. G =

G c þG sc. The scattering part can be expressed as a sum over

all MS paths that the photoelectron can take (Rehr et al., 2009,

2010), i.e.

G sc
L;L0 ¼ G

0
TG

0
þG

0
TG

0
TG

0
þ . . .

h i
L;L0
; ð5Þ

where the successive terms represent the different orders of

the scattering process. In this equation the scattering matrix T

and the bare Green’s function G
0

are represented in the

angular-momentum and site basis set: TLn;L0n0 = tLn�L;L0�n;n0

with the single-site scattering t matrix tLn and G
0

=

G0
Ln;L0n0 ð1� �nn0 Þ.

In the near-edge region the MS expansion is more effi-

ciently carried out to full order [full multiple-scattering (FMS)

expansion] by explicit matrix inversion,

G sc
L;L0 ¼ 1�G

0
T

� ��1

G
0

� �
L;L0
: ð6Þ

This can be seen by expanding the matrix inverse in powers

of the scattering T-matrix. For more details on the RSMS

Green’s function, see Rehr et al. (2009).

2.2. Hubbard correction

The construction of the Hubbard model potential V U
lm�ðEÞ

in our approach directly follows the LDA+U formalism of
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Anisimov et al. (1991, 1993). In this approach, a Hubbard

correction E U , which takes the Coulomb interaction between

localized correlated electrons into account, is added to the

LDA energy functional E LDA½n� of the system:

E n�ðrÞ; n�½ � ¼ E LDA n�ðrÞ½ � þ E U n�½ � � Edc n�½ �; ð7Þ

with the charge density n�ðrÞ, the density matrix n� and the

double-counting term Edc.

In order to obtain a rotationally invariant implementation,

that takes the full density matrix into account, we perform a

unitary transformation to diagonalize the density matrix. This

yields a new basis jl	i for all states to which the Hubbard

correction is applied. This approach is equivalent to a basis-

independent LDA+U approach (Liechtenstein et al., 1995).

We write the total energy as

E ¼ E LDA
þ

1

2

X
	;	0;�

U n��	 � n0
� �

n��	0 � n0
� �

þ
1

2

X
	;�0 6¼ 	;�

ðU � JÞ n�	 � n0
� �

n�	0 � n0
� �

: ð8Þ

Here, the double-counting term is represented by the average

occupation n0 = ð1=4l þ 2Þ
P

	� n�	. From the energy functional

the potential correction Vl	� to the LDA potential can be

obtained, i.e.

V U
l	� ¼ U

X
	0

n��	0 � n0
� �

þ ðU � JÞ
X
	0 6¼ 	

n��	0 � n0
� �

: ð9Þ

2.3. Constrained random phase approximation (cRPA)

The cRPA calculation (Aryasetiawan et al., 2006; Nilsson et

al., 2013) of the Hubbard parameter U starts by separating the

non-interacting polarization operator into two contributions:

P = Pl þ Pr. Here Pl represents the contribution to the

polarization due to the transitions between localized states to

which the Hubbard corrections are applied, e.g. 3d or 4f states,

and Pr is due to the remaining states. This separation is

possible if the corresponding band is narrow, as is typical for

strongly correlated materials. The effective Coulomb interac-

tion Uðr; r0; !Þ in the narrow band can then be calculated using

the relation

Uðr; r0; !Þ ¼ 1� 
Prðr; r0; !Þ
� 	�1


 ð10Þ

where the polarization is given by

Pr ¼
Xocc

i

Xunocc

j

 iðrÞ 
�
i ðr
0
Þ �j ðrÞ jðr

0
Þ

�
1

!� "j þ "i þ i0þ
þ

1

!þ "j � "i � i0þ

� �
: ð11Þ

Here, neither sum includes the narrow correlated band of

states. The Hubbard parameter is then calculated by averaging

the interaction over the atomic site n,

U ¼

Z Rn

0

dr dr0 j lðrÞj
2Uðr; r0; ! ¼ 0Þj lðr

0
Þj

2: ð12Þ

In the RSMS Green’s function approach, we can express the

zero frequency polarization operator in terms of the Green’s

function as

Prðr; r 0; ! ¼ 0Þ ¼ � 2Im

ZEf

�1

d!

2�

�

h X
L 6¼LH

GþL;L0 ðr; r 0; !ÞGþL;L0 ðr; r 0; !Þ

þGþLH;LH
ðr; r 0; !ÞGþLH;LH

ðr; r 0; !Þ

��ðr� RcÞ�ðr
0 � RcÞ

i
; ð13Þ

where LH = jl	i denotes the states the Hubbard correction is

applied to, and �ðrÞ is a smooth function which goes to zero at

r = Rc. This expression contains two approximations: we have

assumed that it is sufficient to use a spherical average of the

Coulomb interaction about a given site, since the correlated

states are limited in spatial extent; we have also neglected

off-diagonal angular-momentum elements of the Green’s

function.

2.4. Implementation

In our implementation we use a single-step LSDA calcu-

lation with the Barth–Hedin LSDA functional to obtain the

occupation numbers n�lm. For this calculation the spin polar-

ization for the ith atom mi = n
"

i � n
#

i has to be known. We use

the Hund’s multiplicity rule for free atoms to determine the

spin polarization. For a rotational invariant formalism, we

diagonalize the occupation matrix nlH;m;m
0 [as in equation (4)]

and express it in the diagonal basis jlH	i. Here, lH is the orbital

quantum number for which the Hubbard corrections is

applied. Thus, we construct the unitary transformation matrix

� �lm	 from the eigenvalues of the occupation matrix nmm0 . The

corrected self-consistent potential yields new solutions Rl	ðEÞ

and Hl	ðEÞ of the Schroedinger equation within the muffin-tin

spheres. Orbital dependent phase shifts ��l	ðEÞ are found by

matching these solutions with spherical Bessel functions at the

sphere boundaries. From these phase shifts the scattering

matrices are constructed as t �l	 = expð��l	Þ sinð��l	Þ. The scat-

tering matrices are transformed back using the unitary trans-

formation matrix to obtain tlm. Finally the Green’s function

is calculated using equation (5), from which we can calculate

the angular-momentum projected density of states, the X-ray

absorption spectrum and other physical quantities. With the

above implementation, Hubbard model calculations in FEFF9

are straightforward to make. They are governed by two

keywords in the FEFF9 input file feff:inp. The Hubbard

U parameter can be calculated automatically within the code

using the cRPA approach (x2.3), or a known value can be used.

The FEFF9 Hubbard calculations typically take about 2–4

times longer than regular non-spin-polarized FEFF9 calcula-

tions due to the need to explicitly treat the spin variables and

to calculate the DOS twice. However, as this new imple-

mentation is parallelized and scales near-linearly up to about

100 cores even on slow networks, the calculations are still very

efficient and much faster than the original d-state version, as
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well as being more user-friendly. For the cRPA calculations,

the Rcut parameter which describes the localization of the

Hubbard correlated orbitals (x2.3) needs to be chosen

appropriately. Since the localization has been shown to

depend only weakly on the crystal structure (Nilsson et al.,

2013), we expect elements with similar electronic structure to

have the same Rcut. Differences in the Hubbard parameter U

are due to different screening of the Coulomb interaction by

the extended s- and p-states. This approximation allows us

to compare the correlation in a group of elements, e.g. the

lanthanides. We find that this approximation yields reasonable

results over a wide group of elements and crystal structures.

3. Results

3.1. cRPA calculations

Calculations of the Hubbard parameter U were carried out

using the procedure of x2.3. The calculation of U depends on

the radial cut-off Rc in equation (13). We choose a cut-off that

yields a density of states (DOS) in good agreement with

experiment, following the method used for d-state materials.

This cut-off is then used to calculate U for a number of

lanthanide oxides in the La2O3 structure (space group P�33m1)

as well as other lanthanides in the close-packed hexagonal

structure (space group P63mmc).

We find Rc = 1.49Rn which yields a Hubbard parameter of

U = 6 eV for CeO2. This Hubbard parameter yields a DOS in

good agreement with experimental results. It also agrees with

Hubbard parameters used in LDA+U calculations (Fabris et

al., 2005; Castleton et al., 2007, and reference therein) of U ’

5–7 eV. The DOS depends only weakly on the Hubbard

parameters in this range (Table 1).

We also investigate the dependence of the cRPA U-value on

the unit cell volume for the example of CeO2. The crystal

structure was not changed for the calculations. Results of these

calculations are shown in Fig. 1. The effect of the lattice

constant can be seen in equation (11). With decreased lattice

parameter, the d-states become less localized, increasing the

transition matrix element in the polarization. On the other

hand, the energy bands are pushed further apart by a decrease

of the lattice constant, therefore diminishing the polarization

(Tomczak et al., 2009). The total change of the Hubbard

parameter is therefore material-dependent. A decrease of the

Hubbard parameter with decreased lattice parameter has also

been found for light actinides (Ahmed et al., 2014).

3.2. NiO

Hubbard corrections for transition metals have been

applied with some success (Ahmed et al., 2012; Jiang et al.,

2010) to correct the description of the localized d-states. As a

first test of our generalized method, we calculate the DOS and

XAS of NiO. We used a distorted crystal structure with a = b =

4.168 Å, c = 4.166 Å and 	 = � = 90.055� and 
 = 90.082�. The

Hubbard parameters U = 8.0 eVand J = 0.9 eV were used. The

Hubbard parameter U was calculated by the cRPA algorithm

(cf. x3.1).

Fig. 2 shows the DOS for NiO, calculated by FEFF9 and our

FEFF9+U code. We also compare with experimental results

(Zimmermann et al., 1999) obtained from XPS–BIS

measurements. It can be seen that the Hubbard correction

opens a band gap, which does not occur in a FEFF9 calcula-

tion. Also the DOS in the valence band is broadened by the

Hubbard correction, in good agreement with the experimental

result. The Hubbard model still underestimates the width of
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Figure 1
Dependence of the cRPA U on the unit cell volume. The line is inserted to
guide the eye.

Figure 2
Total DOS of NiO calculated with the FEFF9 and FEFF9+U
implementation compared with experimental results obtained from
XPS–BIS measurements. Experimental results are extracted from
Zimmermann et al. (1999).

Table 1
cRPA U-values compared with previously calculated values from Fabris et
al. (2005) [1] and Castleton et al. (2007) [2], and experimentally obtained
values from Herbst & Wilkins (1987) [3].

Material U (eV)
Uref (eV)
[1] [2]

Uexp (eV)
[3]

CeO2 6.0 5–7 –
Ce2O3 4.9 – –
La2O3 4.1 – –
	Pr 6.7 4.8 5.4
	Nd 7.3 4.8 6.3



the band gap. The cRPA U-value is a physically meaningful

quantity, which can be considered as the on-site Coulomb

interaction of the d-electrons in the static limit. In the ground

state of transition metal oxides (e.g. NiO, MnO) with partially

unoccupied d-orbitals, the Hubbard correction plays a major

role in estimating the band gap. However, due to the presence

of oxygen p-like states near the Fermi energy, and their non-

trivial hybridization with localized d-states, one must consider

the contribution from non-local dynamical self-energy

corrections. Within the scope of FEFF, this is done using the

GW self-energy formalism with a many-pole screening model

(Kas et al., 2007). This frequency-dependent GW correction

can account for the additional 1 eV band-gap correction on

top of the Hubbard correction with cRPA U = 8.0 eV, as was

earlier demonstrated in the O K-edge X-ray absorption near-

edge structure (XANES) and X-ray emission spectroscopy

(XES) for NiO and MnO (Ahmed et al., 2012).

Our FEFF9+U implementation increases the agreement

with experimental results (Kurmaev et al., 2008) for the O K-

edge XAS of NiO (Fig. 3). The Hubbard implementation

yields a better description of the two peaks below 545 eV.

These peaks are attributed to the O p-states, which are

strongly hybridized with Ni d-states (Ahmed et al., 2012). A

better description of the correlated Ni d-states therefore yields

the good agreement with experimental results.

3.3. CeO2

As a first example of an f material, we calculate the prop-

erties for CeO2 in the cubic fluorite lattice (space group

Fm�33m) (Skorodumova et al., 2001) using the experimental

lattice constant of 5.411 Å (Gschneidner, 2006). Converged

RSMS results are obtained using a cluster of 137 atoms around

the absorbing atom for the FMS calculation and a smaller

cluster of 43 atoms for the calculation of the self-consistent

muffin-tin potentials. For Hubbard calculations the calculated

value U = 6.0 eV was used and J = 0.3 eV (Nilsson et al., 2013).

The oxygen K-edge XAS was calculated as well as angular-

momentum projected density of states (LDOS).

Fig. 4 shows the total density of states of CeO2. The

experimental spectrum (Wuilloud et al., 1984) is aligned at the

upper valence band edge. The localized unoccupied f-states of

Ce yields a sharp peak above the Fermi energy in the total

density of CeO2. The valence band is mainly formed by the O

p-states. In good agreement with experimental results (Wuil-

loud et al., 1984), the FEFF9+U calculation predicts a sharp

peak with f-state character at the onset of the conduction

band, as well as a less intense occupied f-state peak in the

valence band. The f-state character of both peaks can also be

seen in the angular-momentum projected DOS in Fig. 5. The

most important quantity to describe the influence of the

Hubbard corrections is therefore the p–f energy difference

�Ep�f . Experimentally, this gap is found to be �E
exp
p�f = 6.1 eV.

Although the FEFF9 calculation does not yield a band gap

between the valence states and the unoccupied f peak, the

addition of Hubbard corrections increases the energy differ-

ence between the valence band and the unoccupied f peak.
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Figure 3
NiO O K-edge XANES calculated with FEFF9 and FEFF9+U
implementation compared with experimental results. Spectra are aligned
at the main peak. Vertical lines are inserted at the experimental main
peaks to guide the eye. Experimental results are extracted from Kurmaev
et al. (2008) and all spectra are aligned at the second main peak.

Figure 4
Total DOS of CeO2 compared with the experimental spectrum obtained
from XPS–BIS measurements. The experimental spectrum is extracted
from Wuilloud et al. (1984).

Figure 5
Total DOS for the Ce f-orbital states. Solid lines show spin-up DOS,
dashed lines the spin-down DOS.



This difference �Ep�f (Fig. 4) is underestimated in calcula-

tions without the Hubbard correction by approximately 2 eV.

The addition of Hubbard corrections increases the difference

to �E U
p�f = 6.0 eV. Previous DFT calculations underestimate

the p–f band gap, even with the addition of Hubbard correc-

tions, by more than 50% (Da Silva et al., 2007).

Fig. 5 shows the angular-momentum projected DOS for

the Ce f-states. As expected (Anisimov et al., 1997), a gap

opens up between the occupied and unoccupied states when

the Hubbard corrections are applied. The spectrum varies

only slowly with respect to the Hubbard parameter. Fig. 6

shows the dependence of the p–f difference on the Hubbard

parameter U. For all calculations J = 0.3 eV was used. As

expected, the band gap is increasing linearly with the Hubbard

parameter and the slope of this increase is smaller than 1, since

the Ce f orbitals are partially filled.

Fig. 7 shows the oxygen K-edge absorption spectrum for

CeO2. The addition of a Hubbard potential shifts the first

excitation to higher energies due to the increased gap between

the conduction band and the unoccupied f peak. The Hubbard

correction also introduces an absorption peak at 535 eV in

good agreement with experimental results (Douillard et al.,

1994), that is missing in a FEFF9 calculation. The absorption

at the main peak at 542 eV and at higher energies is not

changed by the corrections.

This is in good agreement with previous studies of CeO2

oxygen K-edge absorption (Douillard et al., 1994). The peaks

B at 538 eV and C at 542 eV represent transition of the O 1s

states into O 2p states hybridized with Ce d- and p-orbitals,

respectively. Peak A at 535 eV is interpreted as transitions into

O 2p states hybridized with the Ce 4f states. Therefore the

Hubbard corrected spectrum shows that these three distinct

peaks and changes with respect to the FEFF9 spectrum occur

mainly at the peak A.

3.4. Ce2O3

XAS and DOS were calculated for Ce2O3 in the hexagonal

lattice (space group P�33m1) with lattice constants of a =

7.35 Bohr and c = 11.45 Bohr (Bärnighausen & Schiller, 1985).

The Hubbard parameter U = 4.9 eV was calculated by a cRPA

calculation and we found the best agreement with experi-

mental results for J = 1.0 eV. In the O K-edge XAS in Fig. 8,

the FEFF9 calculation displays an additional peak at low

energies, that does not occur in the experimental spectrum

(Garvie & Buseck, 1999). This additional peak is due to the

underestimation of the Ce f-state energies in the FEFF9

calculation (Nishida et al., 2009). Similar to the spectrum of

CeO2 the spectrum shows the three peaks A at 531 eV, B at

534 eV and C at 536 eV, although the peak B has a greatly

reduced oscillator strength compared with CeO2. The peak A

at 535 eV once again represents transitions to the O p-states

hybridized with Ce f-states and is only well described with the

introduction of Hubbard corrections for the f-states. The

Hubbard corrected spectrum is in good agreement with

experimental results (Garvie & Buseck, 1999).
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Figure 8
Ce2O3 O K-edge XAS comparing the FEFF9+U with the FEFF9
calculation and experimental result extracted from Garvie & Buseck
(1999). Spectra are aligned at the main peak. A, B and C denote the main
experimental peaks.

Figure 6
Dependence of the p–f energy difference �Ep�f on the Hubbard
parameter U. The line is inserted to guide the eye.

Figure 7
CeO2 O K-edge XAS comparing the FEFF9+U with the FEFF9
calculation and experimental result extracted from Douillard et al.
(1994). A, B and C denote the main experimental peaks.



The correction of the Ce f-state energies can also be seen

in the TDOS in Fig. 9. FEFF9 and FEFF9+U calculations

are compared with experimental results from XPS–BIS

measurements (Allen, 1985). FEFF9 displays two distinct Ce

f-state peaks around the Fermi level. The Hubbard corrections

shift the unoccupied f-state peak to higher energies and the

occupied peak to the O p-state valence band in good agree-

ment with experimental results.

4. Conclusion

We have presented a generalized real-space multiple-scat-

tering implementation of the Hubbard model for strongly

correlated systems. This approach can treat localized states of

d- or f-character. It can calculate the Hubbard U parameter

automatically using a cRPA algorithm. Resulting values of U

are in good agreement with other sources and with experi-

ment. Our approach is included in the FEFF9 code for X-ray

spectroscopy and yields density of states as well as many types

of spectra. It is easy to use and efficient due to the RSMS

formalism and efficient MPI parallelization. Results are

presented for the f-state lanthanide CeO2 and Ce2O3, where

we find good agreement with experiment.
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