
research papers

1182 http://dx.doi.org/10.1107/S1600577515013715 J. Synchrotron Rad. (2015). 22, 1182–1189

Received 7 May 2015

Accepted 20 July 2015

Keywords: Python; Py4Syn; data acquisition;

devices.

Py4Syn: Python for synchrotrons

H. H. Slepicka,* H. F. Canova, D. B. Beniz and J. R. Piton

CNPEM-LNLS, Brazilian Synchrotron Light Laboratory, Campinas, São Paulo, Brazil.

*Correspondence e-mail: hhslepicka@gmail.com

In this report, Py4Syn, an open-source Python-based library for data acquisition,

device manipulation, scan routines and other helper functions, is presented.

Driven by easy-to-use and scalability ideals, Py4Syn offers control system

agnostic solution and high customization level for scans and data output,

covering distinct techniques and facilities. Here, most of the library

functionalities are described, examples of use are shown and ideas for future

implementations are presented.

1. Introduction

It is widely recognized that data acquisition is one of the most

important processes within any laboratory. From manually

to automatically, it can be executed in many ways, using

commercial and open-source frameworks. As this process is

related to plenty of technologies involving a continuous

evolution of techniques, there is a growing need for a frame-

work capable of allowing scientists to define their own code.

Therefore, it is crucial that the development of new data

acquisition frameworks allows the creation of scripts. This

should be conceived in a simple fashion, not only for custom

routines but also for complex scans. Nevertheless, the frame-

work must not be tied to a particular solution or data format.

Nowadays, for almost every technique in use, custom soft-

ware is developed using its own standards, scripting language

and data output. Among all frameworks for data acquisition

and devices manipulation, we evaluated four solutions used

or tested by Brazilian Synchrotron Light Laboratory (LNLS)

beamlines.

SPEC (Certified Scientific Software, 2015), developed by

Certified Scientific Software, is widely used by the X-ray

scientific community and offers support to a large amount of

equipment and also EPICS (Argonne National Laboratory,

1994). SPEC’s code already covers most of the needs

regarding scans and device manipulation but on the other

hand this tool is not open-source, charging an annual fee for

every license in use if support and updates are needed. By

having its environment based on a single thread, a large set

of possibilities, like parallel processing, would depend on

external code or tools. As SPEC is not an open-source solu-

tion, changes in its core code, for corrections and improve-

ments, are more difficult. As in any commercial solution, bugs

discovered and modifications are subject to the company’s

discretion. The development of custom code, e.g. different

scan routines, requires SPEC’s own programming language,

quite similar to C, and in some occasions its error messages are

not clear.

OpenGDA (Diamond Light Source, 2003), by Diamond

Light Source, offers an open-source framework for data

acquisition using Java and based on the Eclipse RCP graphical

ISSN 1600-5775

2015 International Union of Crystallography

http://crossmark.crossref.org/dialog/?doi=10.1107/S1600577515013715&domain=pdf&date_stamp=2015-08-06

interface and counts on an embedded Jython interpreter for

scripting and control over the command line. For custom

developments of scripts and the GUI, users have a steep

learning curve, mainly in terms of the requirement of Java

programming language and Jython.

Another evaluated solution was APSpy (Toby et al., 2013),

maintained by the Advanced Photon Source (APS). This is an

open-source Python-based beamline control scripting tool

with EPICS support. As an open-source solution and devel-

oped in Python, the learning curve from users was smooth,

but, as mentioned on the tool website, this code was developed

for operations at station 1-ID at APS, with configuration

details specific to this beamline inside the code. Also, a large

effort would be required to remove the specific configurations

and behaviors.

In addition to the described tools, there are custom scripts

developed in-house, another very common solution. Usually,

those scripts are made to solve a specific problem in a very

short time, in most of the cases at the cost of quality, resulting

in a non-standardized code, difficult to maintain and of low

reliability. This diversity of control software creates an envir-

onment which limits the collaborations and exchange of codes

among facilities and perhaps even among different experi-

mental stations in a given facility.

In this manuscript we report on Py4Syn (http://py4syn.

readthedocs.org/), an open-source Python-based library which

provides, from its basic principles, high-level abstraction for

device manipulation, scan routines, interactive data plots,

fitting of functions and customized data output. This is an

advance over frameworks currently in use throughout some

experimental stations.

2. Architecture

With the aim of producing a modular, readable and easy-to-

use library, Py4Syn was implemented using Python program-

ming language. Python, combined with some of its standard

packages, e.g. Numpy (NumPy Developers, 2013), Matplotlib

(Hunter, 2007), SciPy (Jones et al., 2007), provides a strong

and easy-to-learn platform. Also, it offers integration with

code written in other languages like C and Fortran as it adopts

shared libraries for critical performance tasks (Behnel et al.,

2011). Therefore, it is possible to reach a nearly real-time

feedback of control instrumentation and data as Py4Syn offers

a perfect integration with EPICS, the control software in use

at LNLS beamlines, through a high-level Python library,

PyEpics (Newville, 2014a). Mainly, our software is organized

in a modular converged triad: ‘epics’, ‘utils’ and ‘writing’; these

are carefully described below.

3. Epics module

Briefly, this module holds helper classes to manipulate most of

the common devices present at beamlines like motors, coun-

ters and CCDs, among others.

3.1. Devices structure

In Py4Syn the devices are divided between two main

groups, the ‘Scannables’ and the ‘Countables’, as described in

the scheme in Fig. 1.

The ‘Standard device’ interface in Py4Syn holds the basic

information of every device, while only a mnemonic field

is present so far. The Scannable interface represents the

common operations of all devices that can be used in a scan

routine, e.g. define a setpoint, read the current value, check

limit values, check if the device is idle or busy, among others.

On the other hand, the Countable interface represents all

equipments that can monitor or acquire signals and, as with

the Scannable interface, this implements common methods

like defining the acquisition time, starting/stopping an acqui-

sition, etc. Altogether, these interfaces provide a standard to

create and manipulate devices inside the library and also allow

new custom device development and transparent use of the

existing functionalities.

4. Utils module

The utils module is composed of helper functions for motor

movement, counters, scans, plots and fit. Below, we will

describe each component of this module.

4.1. Motor functions

One of the most common tasks in a beamline is the setup of

experiments, which requires the precise moving of motors and

devices. Hence, to speed up the processes, Py4Syn comes with

a large set of built-in functions for the most common opera-

tions, e.g. check the limits of all motors, absolute/relative

motors movement and more. Most of these commands have a

syntax similar to the corresponding ones normally used in a

software known to many beamlines, SPEC. We chose to keep

this syntax to reduce the learning curve for beamline scientists

and users (see Fig. 2).

4.1.1. Pseudo motors. In Py4Syn, in addition to the

common motor implementation using the EPICS motor

record, we also provide the possibility to create a pseudo

motor, or virtual motor, by defining relationships between a

virtual axis and the real ones. In order to represent this rela-

tionship, the user can provide a custom formula using plain

Python language and for this purpose functions defined in

maths and NumPy libraries are also available. Especially for

research papers

J. Synchrotron Rad. (2015). 22, 1182–1189 H. H. Slepicka et al. � Py4Syn 1183

Figure 1
All devices extend from the ‘Standard device’ interface and also from the
‘Scannable’ or ‘Countable’ interfaces according to the device type and
desired functionality.

NumPy functions, users must explicitly name them, for

example, numpy.linalg.solve(). As many of the axis rela-

tion formulas depend on the real and target motors and virtual

motors positions, Py4Syn offers six special functions to reach

this values as shown in Table 1.

A real-world example would be implementing the control of

a double-crystal monochromator with fixed exit, where the

second crystal must be translated in two directions t and g

(Fig. 3) to keep the beam height at the exit constant along the

rotation. Assuming the rotation center of the monochromator

is in the middle of the surface of the first crystal, the incoming

beam at an angle �0 and the reflected beam at an angle �h

define (Fig. 3) the translations t and g of the center of the

second crystal with respect to the center of the first crystal.

Using the geometric relationships of Fig. 3, the equations

defined below are for the translations, t (1) and g (2), and also

the Bragg angle (3), which is defined by the crystal and energy

according to Bragg’s law,

t ¼
h

sin �0 þ sin �0 tan �h

; ð1Þ

g ¼
h tan �h

sin �0 þ sin �0 tan �h

ð2Þ

and

�B ¼ arcsin
0:62

dE

� �
; ð3Þ

where d is the spacing between the planes in the atomic lattice

in nm and E is the energy of the incident beam in keV.

Assuming a Si(111) crystal, it is possible to map this

monochromator and its degrees of freedom using pseudo

motors inside Py4Syn as shown in Fig. 4.

4.1.2. Validations and error handling. One of the main

concerns regarding motor movements, especially in virtual

motors, is the validation of this action prior to the real

movement. In Py4Syn, the motor and pseudo motor classes

implements a method called canPerformMovement which

provides limit checking and calculates whether the desired

movement can be executed regardless of hardware limits. In a

negative response, an explanatory message is returned and the

execution is stopped; otherwise, the movement occurs directly.

However, if any of the motors involved in a movement stops

for limit switch or failure, then an error message is raised as an

output.

4.2. Counter functions

The counter functions follow almost the same syntax

familiar to SPEC users. So far only a few functions are needed,

as counting represents a very simple process.

Using Py4Syn, one can create a new counter, enable or

disable a specific channel, start and stop a counting process

and more (see Fig. 5). The full list of functions and also usage

examples can be found in the library manual.

4.2.1. Pseudo counters. As in the pseudo motors imple-

mentation, Py4Syn offers the creation of pseudo counters, or

virtual counters, by defining a custom formula to obtain the

value of a virtual channel using real device channel values.

Similarly to the pseudo motor, the user can supply a custom

formula using plain Python language and functions available

in maths and NumPy libraries. To access the real counter

values, a special code is needed. An example is presented in

Fig. 6, where two counters, det and mon, exist and the spec-

troscopy is calculated in a virtual channel. For instance, one

would be the incoming intensity (I0) and the other the

transmited intensity (I1). In this case the formula for the

pseudo counter relationship would be C[det]/C[mon] where

C[mnemonic] corresponds to the value in the channel defined

by the given mnemonic.

4.3. Plot functions

In order to reach the best performance and achieve a near

real-time live plot, a plotter class based on the Matplotlib

multiprocess example was implemented. When created, this

research papers

1184 H. H. Slepicka et al. � Py4Syn J. Synchrotron Rad. (2015). 22, 1182–1189

Table 1
Special functions provided by Py4Syn in order to recover real and target
positions of motors and virtual motors.

Function Description Usage

A Actual position of a motor A[mne]
T Target position of a motor T[mne]
AD Actual dial (encoder) position of a motor AD[mne]
TD Target dial (encoder) position of a motor TD[mne]
AR Actual raw (steps) position of a motor AR[mne]
TR Target raw (steps) position of a motor TR[mne]

Figure 3
Angles and distances defined in the monochromator circle of rotation.

Figure 2
Example script for motor setup movement and position check using
Py4Syn.

plotter spawns a new process respon-

sible for data plotting and graph

screen updating without overhead to

the main thread, responsible for the

scanning and other activities. All data

and configuration parameters are

transferred to the spawned process

using a FIFO queue. So far it supports

only simple plots with subplots and

axis overlays, as shown in Fig. 7. We

are looking forward to implementing

more visual resources and tools such

as axis formatting in the near future.

4.4. Scan functions

Scans are the main operation used

at beamlines, either for data acquisi-

tion as for setup, e.g. finding the beam,

or alignment of samples, among

others. In Py4Syn all scans are step

scans. Thus, for every point specified,

the devices will be properly set to a

new value and when all of them reach

the respective setpoints a count

process will start. At the end of this

counting the process will repeat until

the end of the points list. Py4Syn can

handle three scan types: scan, mesh

and timescan, which we describe now.

4.4.1. Scan. Different from the

other types, when using the scan all

devices in use must have the same

number of steps since they will step

together. One can specify as many

devices as wanted, in view of the fact

that the library has no limit regarding the number of devices in

a scan. Therefore, only devices that implement the Scannable

interface can be used.

The simplest syntax of the scan command inside Py4Syn is

represented in the formula below, where device1 . . . deviceN

can be either the mnemonic of a motor previously registered

research papers

J. Synchrotron Rad. (2015). 22, 1182–1189 H. H. Slepicka et al. � Py4Syn 1185

Figure 5
Example script for counter and channels setup, counting process over a
monitor and counting over time using Py4Syn.

Figure 6
Example script for a pseudo counter using Py4Syn.

Figure 4
Example script for double-crystal monochromator using Py4Syn pseudo motors.

or a reference to any device that implements the Scannable

interface, start1 . . . startN are scalar values defining the

initial setpoint, end1 . . . endN are the final setpoints, steps

represents the number of steps to be executed in this scan and

time is the value (in seconds) to be used for the count process,

scanðdevice1; start1; end1; deviceN; startN; endN;

steps; timeÞ

A scan command can also be invoked using an array of points

instead of a start/end pair to create a custom list of points. The

points parameter is an array or list of setpoints and the main

restriction is that the number of elements must be equal to the

value informed in the steps parameter. One can also inform

either an array for one device and a start and end pair for

another; there is no restriction regarding this, except the

number of steps rule mentioned earlier,

scanðdevice1; points1; deviceN; pointsN; steps; timeÞ

Another available option is the use of an array or list of delay

values after the time parameter in order to generate a delay

prior to a next point acquisition. This functionality is very

useful when, for example, one wants to carry out a sequence of

counts in the same position or wait until the next setpoint is

moved to. Also the time parameter can be replaced by an

array or list of values in order to produce custom count times

for every point. In this case the length parameter must be the

same as the number of points. In general, at least one device

must be informed with the corresponding start/end pair or

points. The parameters time and delay are optional. If not

explicit, time receives the value ‘1’ (corresponding to 1 s of

counting time) and delay receives ‘None’, which means that

no delay will be added to the process. The scan command

syntax can be fully defined by the following expression,

scanð½device; ½½start; end�; points��þ; steps; ½time�; ½delay�Þ

4.4.2. Mesh. Mesh allows users to define a specific number

of steps for every device, producing an N-dimensional matrix,

where for each step of the current device the next one will go

through all of its respective points and so on for all devices

in use. Similarly to the scan command, there is no limitation

regarding the number of devices involved. The only restriction

is that the used devices must implement the Scannable inter-

face. The most simple syntax of a mesh command inside

Py4Syn is

meshðdevice1; start1; end1; steps1; deviceN; startN;

endN; stepsN; timeÞ

This command also supports an array of points instead of a

start/end pair to create a custom points list, but in this case the

steps parameter must not be used. One can also inform either

an array for one device and a start and end pair for another.

This way the general syntax of a mesh is presented below, with

a restriction: at least one device must be informed with the

corresponding start, end and steps group or points array.

Time and delay follow the same rules as Scan where, if not

present, time receives the value ‘1’ and delay receives ‘None’,

resulting in no delay.

meshð½device; ½½start; end; steps�; points��þ; ½time�; ½delay�Þ

4.4.3. Timescan. In this special type of scan no single device

is used as this scan runs over time. It is very useful to monitor

signals, especially during setting up and commissioning of

experiments and adjusts. When invoking a timescan, time,

delay and repeat are optional parameters. The default values

are 1 for time (corresponding to 1 s of counting time), 1 for

research papers

1186 H. H. Slepicka et al. � Py4Syn J. Synchrotron Rad. (2015). 22, 1182–1189

Figure 7
Graph comparing three EXAFS spectra: at the top, comparing the sample value and the natural logarithm of the relationship between ionization
chambers I0 and I1; at the bottom, the reference value given by the natural logarithm of the relationship between I1 and I2.

delay (representing a delay of 1 s between each point) and�1

for repeat, which means that this scan will run until it receives

a user interruption. The general syntax of a timescan is

timescanð½time�; ½delay�; ½repeat�Þ

4.4.4. Callbacks. Callbacks are user-defined custom func-

tions that are executed at certain moments during the scan-

ning process. For now, there are seven callbacks available at

Py4Syn:

(i) Pre Scan Callback. This callback is executed at the

beginning of a scan, e.g. move all motors to the start position.

(ii) Pre Point Callback. This callback is executed before a

point (before motors movement, or any other device setup),

e.g. send specific configuration to detectors.

(iii Pre Operation Callback. This callback is executed

before the operation, before launching the counters, e.g. open

the shutter.

(iv) Operation Callback. This is the main callback and it is

executed while the counters are running, e.g. prepare robotic

arm to next sample.

(v) Post Operation Callback. This callback is executed after

the operation, after the counters stop and before the plot and

screen update, e.g. close the shutter.

(vi) Post Point Callback. This callback is executed right after

the operation callback and before a new movement, e.g. data

management routines.

(vii) Post Scan Callback. This callback is executed at the end

of the scan, e.g. send an email to the user.

To define a custom callback, users must supply a function

that receives a special parameter (Fig. 8), named **kwargs.

This parameter is a dictionary containing the scan object

(scan), an array with index value for each device (idx) and

another array with the value of each device (pos).

4.4.5. Scan functions core flowchart. All scans execute the

same core operations. Here we describe these operations

according to the flowchart presented in Appendix A.

Once the scan command is invoked, all parameters are

validated according to the scan type (scan, mesh and time-

scan). If any of the parameters is invalid or missing, an error

is raised and the scan routine ends. After the verification of

parameters, a setup of Plotter, FileWriter and data storage

map is executed and a custom callback function, the

Pre Scan Callback, is called if defined.

Entering the scan main loop, the Pre Point Callback func-

tion is executed prior to all other tasks and after elapsing of

the proper delay time, if present. Right after the delay time, all

devices are set to the corresponding setpoint and the scan

framework will wait until the last of them reaches the target

value or stop. Previous to the count process starting, another

callback, Pre Operation Callback, is invoked and after the

start of all counters, while the count process is still running,

Operation Callback is executed and allows users to create

custom processes while the framework waits for the count to

finish.

As soon as the counting process is finished, and the

acquired data are saved on the corresponding key of the data

map, the Post Operation Callback is called to provide data

processing prior to plot, print on screen and save data on disk

(if the partial write option is enabled). After all, another

callback, Post Point Callback, is executed prior to advancing

to the next point.

After completing the list of points a Gaussian fit is executed,

if the FIT_SCAN flag is enabled. Then statistical information

such as peak value, peak position, center of mass, among

others, are presented to the user and become available after

the scan through the proper get method. Finally, if partial

write is disabled, all data are flushed to disk. Furthermore, in

the case of any error or user interruption during the scan

process, all the collected data are saved on disk using the

corresponding FileWriter to avoid data loss.

4.4.6. Handling the data. When running a scan, the data are

saved to disk, partial or not, if the proper output was config-

ured, but, despite all this, data are stored in a dictionary kept

in memory in order to provide fast access to the data for

processing and visualization. This dictionary, which can be

accessed through the global variable SCAN_DATA or the

getScanData() method, contains valuable information about

the data acquired but also a reference to the scan object as

shown in Table 2.

4.4.7. Special variables. In the scan module there are a few

global variables that can be read and configured. These vari-

ables offer the possibility of customizing the scan behavior and

also access information generated by the scan routines as we

present in Table 3. The complete list including the corre-

sponding methods to get and set the variables values is

available in the library documentation.

4.5. Fit Functions

Py4Syn makes use of the LMFIT library (Newville, 2014b)

which provides a high-level interface for curve fitting for

Python using the Levenberg–Marquardt method. This library

offers a model approach for the curve-fitting problem and

research papers

J. Synchrotron Rad. (2015). 22, 1182–1189 H. H. Slepicka et al. � Py4Syn 1187

Figure 8
Example script for a custom callback code in a scan using Py4Syn.

counts using many built-in models, such as step and peak-like

models. Also the models can be mixed and transformed in a

composite model providing a powerful tool for curve fitting of

linear and non-linear models.

The fit module also contains an implementation of a one-

dimensional total variation denoising filter (Condat, 2013) for

data analysis and to improve curve-fitting results.

5. Writing module

The writing module contains the FileWriter interface that is

the abstraction layer between the data generated in Py4Syn

scans and any file format, e.g. text, binary, xml, HDF (HDF

Group et al., 2014). By implementing two simple methods,

writeHeader and writeData, one is capable of creating a

Python class to produce a file in the format and structure that

supply its needs, e.g. HDF with NeXus (Klosowski et al., 1997),

without changes in the scan command and code.

By default, to avoid problems for users regarding data

analysis software compatibilities, the DefaultWriter produces a

SPEC/PyMCA-like text file as data output. We chose to keep

this format as it is the most common in use on our beamlines

and beamlines abroad.

6. Conclusions

Py4Syn is a new solution for data acquisition and device

manipulation, not only for synchrotron facilities but for any

kind of laboratory. By being a control system agnostic solution

and based on Python, its acceptance and use by scientists in

our laboratory has shown that Py4Syn successfully met the

locally desired needs.

So far the library is in use at LNLS at the following

beamlines: small-angle X-ray scattering (SAXS1 and SAXS2),

X-ray micro-tomography (IMX), X-ray absorption and fluor-

escence spectroscopy (XAFS2 and DXAS), X-ray diffraction

(XRD1) and also ultraviolet and soft X-ray spectroscopy

(PGM, SGM, TGM and SXS).

As this library is still an ongoing work, there are function-

alities yet to be implemented and integrated, such as support

for diffractometers and reciprocal space calculation,

improvements in the plotter and increasing the number of

default devices and simulations, among other users’ requests.

APPENDIX A
Scan functions core flowchart

The scans core flowchart as described in x4.4.5 is presented

in Fig. 9. The simple boxes represent routines that can be

implemented or customized by users, e.g. ‘Execute Operation

Callback’, that can be changed using the proper method

setOperationCallback, as shown in x4.4.4.

research papers

1188 H. H. Slepicka et al. � Py4Syn J. Synchrotron Rad. (2015). 22, 1182–1189

Figure 9
Py4Syn scan functions core operations flowchart.

Table 3
Part of the special variables available in the Py4Syn scan module and its
contents.

Variable Content

SCAN_DATA Dictionary that contains all scan-related data
SCAN_CMD String with the last scan command executed
FWHM Double that represents the FWHM value
FWHM_AT Double that represents the FWHM position
COM Double that represents the COM (center of mass) value
PEAK Double that represents the peak value
PEAK_AT Double that represents the peak position
MIN Double that represents the minimum value
MIN_AT Double that represents the minimum value position
FITTED_DATA Array that represents the best fit values
FIT_RESULT ModelFit with fit result information
FIT_SCAN Boolean that represents if we should or not fit the scan

data at end of scan; default is ‘True’
PRINT_SCAN Boolean that represents if we should or not print to the

terminal the scan information; default is ‘True’
PLOT_GRAPH Boolean that represents if we should or not create the

real-time plot; default is ‘True’

Table 2
Scan data dictionary indexes and contents.

Index Content

points Array of points, [0, 1, 2, 3, . . . , N]
scan_object Reference to the scan object
devices mnemonic For each device used in the scan an entry to store

this device value across the scan is created
counters mnemonic For each counter registered an entry to store this

device value across the scan is created
scan_start Timestamp of scan start
scan_end Timestamp of scan end
scan_duration Scan duration (scan_end � scan_start)
Any other user data Any value you want, must be created using the

createUserDefinedDataField

research papers

J. Synchrotron Rad. (2015). 22, 1182–1189 H. H. Slepicka et al. � Py4Syn 1189

Acknowledgements

This work was partially funded by Petrobras through the

Labweb II project. The authors gratefully acknowledge the

SOL group members for their help testing the library. The

authors are also grateful for the guidance and valuable

suggestions of the two anonymous referees. Many thanks to

Dr Daniela Coelho for providing the EXAFS data for the

plotter example, Dr Eduardo Miqueles for the revision and

help with LaTex formatting, Dr Harry Westfahl Jr for the

revision and to the beta users for their valuable suggestions

and trust.

References

Argonne National Laboratory (1994). EPICS; experimental physics
and industrial control system, http://www.aps.anl.gov/epics/.

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D. S. &
Smith, K. (2011). Comput. Sci. Eng. 13, 31–39.

Certified Scientific Software (2015). SPEC, software for diffraction,
http://www.certif.com/content/spec/.

Condat, L. (2013). IEEE Signal Process. Lett. 20, 1054–1057.
Diamond Light Source (2003). GDA – generic data acquisition, http://

www.opengda.org.
HDF Group et al. (2014). Hierarchical Data Format, version 5, http://

www.hdfgroup.org/HDF5.
Hunter, J. D. (2007). Comput. Sci. Eng. 9, 90–95.
Jones, E., Oliphant, T., Peterson, P. & others (2001). SciPy: Open

source scientific tools for Python, http://www.scipy.org.
Klosowski, P., Koennecke, M., Tischler, J. & Osborn, R. (1997).

Physica B, 241–243, 151–153.
Newville, M. (2014a). PyEpics, Epics Channel Access for Python,

http://cars.uchicago.edu/software/python/pyepics3/
Newville, M. (2014b). LMFIT, Non-Linear Least-Squares Minimiza-

tion & Curve-Fitting for Python, http://lmfit.github.io/lmfit-py/.
NumPy Developers (2013). NumPy, http://www.numpy.org/index.

html.
Toby, B., Sukumar, L., Almer, J. & Jemian, P. (2013). APSpy: Beam

line control scripting with Python and EPICS for APS and others,
http://subversion.xray.aps.anl.gov/admin_bcdaext/APSpy.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5034&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5034&bbid=BB1
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5034&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5034&bbid=BB2
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5034&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5034&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5034&bbid=BB5
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5034&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5034&bbid=BB6
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5034&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5034&bbid=BB7
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5034&bbid=BB8
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5034&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5034&bbid=BB9
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5034&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5034&bbid=BB10
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5034&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5034&bbid=BB12
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5034&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5034&bbid=BB11
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5034&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5034&bbid=BB13
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5034&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5034&bbid=BB3
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=fv5034&bbid=BB3

