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Dead-time losses are well recognized and studied drawbacks in counting and

spectroscopic systems. In this work the abilities on dead-time correction of a

real-time digital pulse processing (DPP) system for high-rate high-resolution

radiation measurements are presented. The DPP system, through a fast and slow

analysis of the output waveform from radiation detectors, is able to perform

multi-parameter analysis (arrival time, pulse width, pulse height, pulse shape,

etc.) at high input counting rates (ICRs), allowing accurate counting loss

corrections even for variable or transient radiations. The fast analysis is used to

obtain both the ICR and energy spectra with high throughput, while the slow

analysis is used to obtain high-resolution energy spectra. A complete

characterization of the counting capabilities, through both theoretical and

experimental approaches, was performed. The dead-time modeling, the

throughput curves, the experimental time-interval distributions (TIDs) and

the counting uncertainty of the recorded events of both the fast and the slow

channels, measured with a planar CdTe (cadmium telluride) detector, will be

presented. The throughput formula of a series of two types of dead-times is also

derived. The results of dead-time corrections, performed through different

methods, will be reported and discussed, pointing out the error on ICR

estimation and the simplicity of the procedure. Accurate ICR estimations

(nonlinearity < 0.5%) were performed by using the time widths and the TIDs

(using 10 ns time bin width) of the detected pulses up to 2.2 Mcps. The digital

system allows, after a simple parameter setting, different and sophisticated

procedures for dead-time correction, traditionally implemented in complex/

dedicated systems and time-consuming set-ups.

1. Introduction

Quantitative analysis in X-ray and �-ray experiments requires

accurate and precise estimation of input photon counting rate

(ICR or �) and photon energy, even at high counting rate

conditions. High ICR environments are typical of synchrotron

applications, medical X-ray imaging, industrial imaging and

security screening, and instrumentation with good counting

and energy-resolving capabilities (ERPC: energy-resolved

photon counting systems) is considered desirable (Fredenberg

et al., 2010; Kraft et al., 2009; Iwanczyk et al., 2009; Szeles et al.,

2008; Taguchi & Iwanczyk, 2013). At high ICRs, counting

distortions, degradation of energy resolution and changes in

energy calibration start to appear. Dead-time losses, pile-up

(tail and peak pile-up) and baseline shifts (mainly due to

thermal drifts, poor pole-zero cancellation and AC couplings)

are the major drawbacks at high ICR environments and,

therefore, high-performance spectrometers must be char-

acterized by a well defined dead-time modeling, pile-up

rejection (PUR) and baseline restoration (BLR) (Gilmore,

2008; Knoll, 2000; ICRU, 1994; Laundy & Collins, 2003).
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Concerning the counting process, the dead-time (DT or �)

of the systems is the major drawback, producing both count

losses and distortions of the counting statistics. Generally,

when the arrival of events is random in time (e.g. for X-rays

from tubes, from radioactive decays and from synchrotron

sources with a flat fill time structure) (Bateman, 2000), dead-

times are classified into two main categories: (i) non-paralyz-

able dead-time (also known as non-extendable, non-cumula-

tive or type I) (Yu & Fessler, 2000) and (ii) paralyzable dead-

time (also known as extendable, cumulative or type II) (Yu &

Fessler, 2000). Non-paralyzable dead-time is produced at each

time an event is recorded and any arrival event from the

recorded time to the � period will not be recorded. In the

paralyzable model, each arrival event, whether recorded or

not, produces a dead-time � and any new arrival event with a

delay less than � from the previous arrival event extends the

dead-time and will not be recorded. This model results in

paralysis, i.e. an increasing ICR will result in a lower measured

output counting rate (OCR or R). A third model (also known

as type III) (Yu & Fessler, 2000) can be defined when a PUR is

used (this technique is generally used to mitigate pile-up

distortions in radiation measurements). The model of the

dead-time of type III is similar to that of type II but the onset

of paralysis is ‘twice as fast’, since if two events arrive within �
of each other neither event will be recorded. The transmission/

throughput functions (i.e. the relation among OCR, ICR and

DT) of these dead-times have been studied and widely

presented in the literature (Arkani et al., 2013; DeLotto et al.,

1964; Carloni et al., 1970; Pommé et al., 1999, Pommé, 1999; Yu

& Fessler, 2000; Bateman, 2000).

Dead-time also affects the counting statistics, even if the

original process can be described by a simple Poisson distri-

bution. As shown well in both theoretical (Choi, 2009; Muller,

1967, 1971, 1972; Pommé, 1999, 2008) and experimental

(Arkani & Raisali, 2015; Denecke & de Jonge, 1998; Hashi-

moto et al., 1996; Pommé et al., 1999) works, the recorded

counts of a counting system with dead-time can be char-

acterized by a non-Poisson counting uncertainty and by time-

interval distributions (TIDs) different from the typical expo-

nential shape.

Of course, dead-time distortions strongly depend on the

counting rate conditions, generally related to the �� product,

and small values are considered desirable (�� << 1). Therefore,

at high ICRs, the counting systems should be characterized

by small dead-time values to minimize the distortions and

simplify the corrections.

Generally, to control the length and type of dead-time, a

well defined dead-time is imposed on every event counted.

Dead-time of type I or type II, greater than the dead-time of

the counting chain, is typically imposed on the recorded

counts. However, this approach fails at high ICRs, first,

because long dead-times strongly reduce the throughput of the

system and, second, it does not take into account additional

counting losses due to pile-up. The presence of pile-up

requires a more complex analysis of the dead-time losses,

often modeled as the series arrangement of two dead-times

(Choi, 2009; DeLotto et al., 1964; Muller, 1972; Pommé, 2008).

Dead-time corrections can be divided into two main cate-

gories (Pommé, 2008; Michotte & Nonis, 2009; Redus et al.,

2008): (i) the live-time mode and (ii) the real-time mode. Live-

time correction is hardware implemented. Live-time is incre-

mented by counting a timed pulse train of known frequency

only in the time intervals when the system is free to record the

events. The real-time mode, off-line software implemented, is

based on the knowledge of the throughput formula and the

dead-time value (i.e. by applying the inversion of the

throughput formula).

Differential methods for spectral counting correction

(classified as live-time modes) have been proposed and used

to also investigate variable and transient radiations (loss-free

counting and zero dead-time methods) (Westphal, 2008; Upp

et al., 2001). These methods are based on the concept of

adding N counts, rather than simply a single count, to a pulse

height channel whenever an event was stored (N should equal

1 plus a weighting factor representing the estimated number of

events that were lost since the last event was stored).

In this work, we will present the abilities on dead-time

correction, investigated through both theoretical and experi-

mental approaches, of a real-time digital pulse processing

(DPP) system, recently developed by our group, for high-rate

high-resolution radiation measurements. Currently, several

spectroscopic systems are developed by using DPP techniques

(Arkani et al., 2014; Arnold et al., 2006; Bolić & Drndarević,

2002; Cardoso et al., 2004; Gerardi et al., 2007; Dambacher et

al., 2011; Meyer et al., 2001; Nakhostin & Veeramani, 2012;

Papp & Maxwell, 2010), where the detector output signals, i.e.

the output signals from charge-sensitive preamplifiers (CSPs),

are directly fed into fast digitizers and then processed by using

digital algorithms. As widely recognized, the digital approach

gives many benefits against the analog one, among which: (i)

the possibility to implement custom filters and procedures,

which are challenging to realise in the analog approach, (ii)

stability and reproducibility (insensitivity to pick-up noise as

soon as the signals are digitized) and (iii) the possibility to

perform multi-parameter analysis for detector performance

enhancements and new applications. Concerning the dead-

time, DPP systems are free from the dead-time due to the A/D

conversion and data storage time of the traditional multi-

channel analyzers (MCAs). Moreover, by employing parallel

or pipelined procedures, treatment dead-time (the dead-time

that can arise when the on-line algorithms are applied to treat

the incoming data) can be eliminated. Generally, dead-time

in DPP systems is mainly due to the digital pulse shaping,

allowing simple dead-time modeling and the possibility to

obtain low �� values even at high ICRs.

Our system, based on an innovative processing architecture,

is able to perform an accurate estimation of the true ICR, a

fine pulse height (energy) and shape (peaking time) analysis

even at high ICRs. Through two pipelined shaping branches

(fast and slow channels), the system is able to minimize and

correct the typical high rate distortions (dead-time distortions,

pile-up and baseline shifts) in radiation measurements and,

due to the pipelined analysis, no treatment dead-time is

introduced. Generally, the fast channel is used to obtain the
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ICR and energy spectra with high throughput, while the slow

channel is used to obtain energy spectra with high energy

resolution. The event/pulse data from both channels (arrival

time, pulse height, pulse width, peaking time), provided in

listing mode, together with some housekeeping data (the

starting time of the packed data acquisition, the sum of the

time widths of the fast shaped pulses, the number of both fast

and slow detected pulses, etc.), allow the correction of trans-

mission dead-time and counting loss corrections even for

variable or transient radiations.

The dead-time modeling, the throughput curves, the

experimental TIDs and the counting uncertainty of the

recorded events of both the fast and the slow channels,

measured with a planar CdTe (cadmium telluride) detector,

will be presented. The results of dead-time corrections,

performed by different methods, will be also reported and

discussed, pointing out the error on ICR estimation, the

simplicity of the procedure and the easy implementation in a

real-time mode.

The counting capabilities together with the pulse shape and

height abilities, presented in our previous works (Abbene et

al., 2013a,b; Gerardi & Abbene, 2014), will give a complete

overview of our digital strategy on the development of high-

rate high-resolution radiation systems.

2. DPP system

In this section, we will present a brief description of our DPP

system. A detailed description of the system is reported in our

previous work (Gerardi et al., 2014). The DPP system consists

of a digitizer and a PC, where the user can control all digitizing

functions, the acquisition and the analysis. The pulse proces-

sing analysis is performed by using a custom DPP firmware,

developed by our group and uploaded to the digitizer. We

used a commercial digitizer (DT5724, CAEN SpA, Italy)

(http://www.caentechnologies.com), housing four high-speed

ADCs (16-bit, 100 MS/s), four buffers of external memory

(8 MByte wide each) and four channel FPGAs (ALTERA

Cyclone EP1C20). Each ADC channel, AC coupled, is char-

acterized by three full-scale ranges (�1.125 V, �0.5625 V and

�0.2813 V). The digital pulse processing is carried out by the

channel FPGAs, in which our DPP method is implemented

(DPP firmware). Each channel FPGA

packs output data and sends them to

another FPGA (ROC FPGA) that

collects asynchronously the packets

from all four channels and transmits

them, via USB channel (or via optical

link), to the PC. The PC runs a C++

program able to control all digitizer

functions, to acquire packed data, to

produce on-line histograms, counting

rate display and to store all received

information in dedicated binary files.

By using a common external clock,

N digitizers can be assembled and

synchronized to realise a digitizing

system with 4�N channels. The acquisition start of each unit

can be synchronized using a daisy-chain cascade, with the

starting pulse coming from the master unit. In this way, the

timing of each unit can use the same time base and starts from

zero synchronously.

The DPP firmware was developed by our group and

successfully used for both off-line and on-line analysis

(Abbene et al., 2010, 2012, 2013a,b, 2015; Abbene & Gerardi,

2011; Gerardi & Abbene, 2014). The DPP method is able to

perform multi-parameter analysis (event arrival time, pulse

shape, pulse height, pulse time width, etc.) even at high ICRs.

A general overview of the method is presented below (see also

Fig. 1). The DPP method is based on two pipelined shaping

steps: a fast and a slow shaping. The preamplifier output

waveform (CSP output waveform) is shaped by using the

classical single delay line (SDL) shaping technique (Knoll,

2000). SDL shaping is obtained by subtracting from the

original pulse its delayed (by using a programmable delay

time) and attenuated fraction. SDL shaping gives short

rectangular output pulses with fast rise and fall times. In fact,

the falling edge of the pulse is a delayed mirror image of

the leading edge. These features make SDL shaping very

appealing for timing and pulse shape and height analysis

(PSHA) at both low and high counting rates. Through the fast

SDL shaping the following operations are performed: (i) pulse

detection and time-tag triggering, (ii) time width measurement

of the SDL-shaped pulses, (iii) fast pulse height analysis

(PHA), that provides energy spectra with high throughput,

and (iv) pile-up rejection for the slow branch. Concerning the

pulse detection, the trigger is generated and time-stamped

through the ARC (amplitude and rise time compensation)

timing marker (at the leading edge of the SDL pulses) and its

amplitude (25% of the peak value) defines the new amplitude

threshold (ARC threshold) for SDL pulse width estimation.

The estimation of the ARC cross timing is improved by using a

linear interpolation (time resolution < 1 ns). The width of each

SDL pulse is calculated from the difference between the times

when the leading and the falling edges cross the ARC

threshold. Through the fast branch, the system is able to

provide, for each detected event, the following results: (i)

trigger time stamp, (ii) pulse width, (iii) fast pulse height. Fig. 2

shows the CSP output waveform and the fast shaped pulses,
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Figure 1
The main operations and outputs of the digital pulse processing (DPP) firmware.



related to X-rays from an Ag-target X-ray tube impinging on a

CdTe detector with an ICR of 2.2 Mcps (cps = counts s�1) (the

experimental set-up is described in x4).

The PUR performs a selection of time windows of the CSP

waveform for the slow shaping (Fig. 3). Each selected time

window of the CSP waveform is termed ‘Snapshot’, while the

width of this window, user-chosen, is termed ‘Snapshot Time’

(ST). The selection is related to the reference time of each fast

SDL pulse (it occurs near the maximum amplitude of the

related CSP pulse), i.e. to the time when the falling edge of the

SDL pulse crosses the ARC threshold. If two detected fast

SDL pulses are within ST/2 of each other, then neither pulse

will be selected; i.e. a pulse is accepted if it is not preceded and

not followed by another pulse in the ST/2 time window

periods. We stress that the PUR only works on the temporal

positions of the CSP pulse peaks, i.e. it selects the snapshots

before any useful operation for slow shaping. The slow

shaping is characterized by two main features: (i) it performs

the PSHA on each selected snapshot, and (ii) due to an

automatic baseline restoration (based on the analysis on single

pulses), it allows high rate measurements. The pulse height

analysis (that provides energy spectra with high energy reso-

lution of each PUR selected event) is performed by applying

an optimized low-pass filter (e.g. trapezoidal filter) to all the

samples of each slow SDL-shaped pulse. The energy resolu-

tion strongly depends on the ST values; as the shaping time of

classic analog systems, long ST values give better energy

resolution. Through the slow branch, the system is able to

provide, for each selected pulse, the following results: (i)

trigger time stamp, (ii) pulse height and (iii) the peaking time.

The shape (peaking time) of the pulses and its correlation with

the pulse height is very helpful for improving the detector

performance. Pulse shape discrimination (PSD) techniques

were successfully used, in our previous works (Abbene &

Gerardi, 2011; Abbene et al., 2012, 2013a,b, 2015; Gerardi &

Abbene, 2014), to minimize incomplete charge collection

effects, pile-up and charge sharing.

We stress that this PSHA, performed on isolated time

windows containing a single CSP pulse, allows a strong

reduction of the corruptions that the traditional analysis

produces to adjacent pulses (residual tails at the end of shaped

pulses), thus minimizing baseline shifts at high ICRs.

The output results from both channels are provided in

listing mode, where each list is characterized by a user-chosen

number of event-sequences (typical fast channel sequence:

arrival time, fast energy and pulse width; typical slow channel

sequence: arrival time, slow energy and peaking time).

Moreover, to perform investigations, with high time resolu-
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Figure 3
Selection, through the PUR, of a time window of the CSP waveform for
the slow shaping. Each selected time window is termed ‘Snapshot’, while
the width of this window is termed ‘Snapshot Time’ (ST). The selection is
related to the reference time of each fast SDL pulse: a pulse is accepted if
it is not preceded and not followed by another pulse in the ST/2 time
window periods; if two detected fast SDL pulses are within ST/2 of each
other, then neither pulse will be selected. The PSHA is performed on the
snapshot window with benefits at high ICRs (minimization of baseline
shifts, etc.). The pulses represent X-rays from an Ag-target X-ray tube
impinging on a semiconductor detector (CdTe detector) with an ICR of
2.2 Mcps. A ST of 2 ms was used.

Figure 2
(a) The digitized waveform from the preamplifier (CSP output waveform)
and the pulses from the fast SDL shaping. (b) A zoom of the signals
clearly shows the fast detection of the pulses from the waveform; some
piled-up pulses are also shown. The pulses represent X-rays from an Ag-
target X-ray tube impinging on a semiconductor detector (CdTe detector)
with an ICR of 2.2 Mcps.



tion, on variable and transient radiations (multiscaling and

spectral modes), each data list is tied to some housekeeping

data, such as: the starting time of the packed data acquisition,

the sum of the time widths of the detected pulses (total

detection dead-time), total number of fast shaped pulses, total

number of analysed events (after PUR), total number of pile-

up events, etc. These data, continuously updated, allow the

analysis of the time evolution of the total photon counting rate

to be performed and allow the detection and the measurement

of any transmission dead-time. Of course, the time resolution

of this analysis depends on the counting rate and the chosen

number of packed event-sequences. Moreover, the data within

each list (i.e. the sequences: arrival time, energy, etc.) allow a

finer analysis of the time evolution of the energy spectra (e.g.

changes of the rate of some energy lines in the spectrum) and

loss-counting corrections can be easily performed.

3. Dead-time modeling

In this section, the dead-time modeling, throughput functions,

time-interval distributions and counting uncertainties of the

two shaping channels will be presented and discussed.

3.1. Dead-time of the fast channel

As will be shown in the experimental results (x5), the dead-

time of the fast channel can be modeled as a single paralyzable

dead-time (type II). The pulse detection is performed in the

fast channel by looking for the fast SDL output pulses

exceeding an amplitude threshold (leading edge detection).

Pulses that are large enough to cross this threshold are

counted. The width of the fast SDL output pulses at the

threshold causes an extending dead-time (type II). If a second

pulse arrives while the first pulse is still above the threshold,

the second pulse overlays the first, and extends the dead-time

by its width from its arrival time. Because the system counts

threshold crossings, it will count only the first pulse. If �F is the

fast dead-time, RF the output counting rate and � the input

counting rate, the throughput function is given by the

following relation (Gilmore, 2008; Knoll, 2000),

RF ¼ � exp ��� Fð Þ: ð1Þ

As is widely reported in classic textbooks on radiation

detection (Gilmore, 2008; Knoll, 2000), equation (1) is

obtained by calculating the probability of time-intervals,

between consecutive events, longer than �F, i.e. by integrating

the exponential time-interval distribution, typical of a Poisson

process, between �F and1. As discussed in the Introduction,

dead-time also affects the shape of the TID. The TID of the

recorded events after a single dead-time of type II can be

described by the following function (Pommé et al., 1999;

Pommé, 2008; Muller, 1971),

f FðtÞ ¼ �
X1
j¼ 1

U t � j� Fð Þ
�� t � j�Fð Þ
� � j�1

ð j� 1Þ!
exp �j�� Fð Þ; ð2Þ

where Uðt � j�Þ is the Heaviside step function. Due to the

effect of the dead-time, the TID, described by (2), is repre-

sented by a piecewise polynomial function, i.e. characterized

by a different shape from the exponential function, typical of a

Poisson process.

However, at low ��F product values and at long time

intervals (if compared with the involved dead-time), the TID

tends towards the Poisson exponential shape. In the following,

we will present some calculated TIDs (Fig. 4) of a single dead-

time of type II [by using equation (2)] and we will discuss the

limits of the exponential approximation of the TID. By using

equation (2), we calculated the TIDs at three different ��F

product values of 0.03, 0.3 and 3. The ��F values are related to

the experimental conditions presented in this work: � values

from 220 kcps to 2.2 Mcps and a dead-time �F equal to 138 ns

(the estimation of the fast dead-time �F will be presented in

x5). Fig. 4(a) shows the calculated TID by using � = 220 kcps

(��F = 0.03). The TID is zero between 0 and �F, constant

between �F and 2�F, and at time intervals longer than 2�F

can be modeled with an exponential function. Indeed, by

performing an exponential fitting, at times >2�F, we obtained

�FITTING = 220 kcps, that is equal to the � used for the calculus

of the TID. Fig. 4(b) shows the TID at 2.2 Mcps (��F = 0.3).

Here, the TID follows an exponential shape at times longer

than 5�F. Fig. 4(c) shows two TIDs at 2.2 Mcps but char-

acterized by different ��F product values: ��F = 0.3 (dashed

gray line, with �F equal to 138 ns) and ��F = 3 (solid gray line,

with �F equal to 1.38 ms). The different slope of the two TIDs

is clearly evident. In particular, the exponential fitting of the

TID with ��F = 3 gives �FITTING = 1.3 Mcps, even at time

intervals > 20�F. Therefore, at high ��F product values, the

exponential fitting, despite the good agreement with the

calculated TID data, gives an error on the � estimation.

Since the dead-time models of type I and II lead to identical

results in the limit of small dead-time losses (i.e. small ��
values), the exponential modeling of the TID of the fast

shaped pulses can be compared with the similar behaviour of

the non-paralyzable (type I) dead-time, which is characterized

by zero value for t � �F and by an exponential TID for t > �F

(Muller, 1967; Pommé, 1999).

These results justify the following exponential modeling of

the TID of the fast shaped pulses for small ��F values. At small

��F values (��F � 0.03), we will use the following piecewise

model for the TID of a single dead-time �F of type II (fast

channel),

f �F ðtÞ ¼

0 0 < t < � F

� expð���FÞ �F � t � 2�F

� expð���FÞ

� exp½��ðt � 2�FÞ�
t 	 2� F

8>>>>>><
>>>>>>:

: ð3Þ

The counting uncertainty of the recorded counts are also

affected by dead-time. In particular, the relative uncertainty

on the recorded counts NF of the fast channel (type II) is given

by the following relation (Pommé et al., 1999; Yu & Fessler,

2000),
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�ðNFÞffiffiffiffiffiffi
NF

p ¼ 1� 2�� F exp ��� Fð Þ
� �1=2

: ð4Þ

3.2. Dead-time of the slow channel

The slow channel performs a multi-parameter analysis

(arrival time, energy and peaking time) on each pulse selected

by the PUR, within a time window of the CSP waveform equal

to �ST/2, centered at the peak position. The value of this

window, chosen by the user, generally represents the best

compromise between the energy resolution and the

throughput in the slow energy spectra (the ST acts as the

shaping time constant of an analog shaping amplifier). The

dead-time of the slow channel should be modeled as a single

dead-time of type III, i.e. characterized by the following

throughput function (Yu & Fessler, 2000),

RS ¼ � exp �2��S

� �
; ð5Þ

where RS is the output counting rate and �S is the slow dead-

time equal to ST/2. However, due to the finite width of the

pulses of the fast channel, higher throughputs than the values

expected from equation (5) would be observed (i.e. a lower

dead-time than ST/2) (Pommé et al., 1999, 2008; Michotte &

Nonis, 2009; Yu & Fessler, 2000). Indeed, the slow channel

should be modeled through the cascade of two paralyzable

dead-times: the first of type II (fast dead-time equal to �F) and

the second of type III (slow dead-time �S equal to ST/2).

In the following, a simple modeling of the cascade of type II

(with ��F << 1) and type III will be presented. To our

knowledge, the modeling of the cascade of dead-times of type

II with type III has not been presented in the literature. For

an exponential TID, the probability that an event can be

preceded or followed by another event, within the time

interval �S, is the same. We define PLOSS as the probability that

one pulse is rejected by the arriving of a new event, within the

interval (0, �S). The probability that one event is accepted by

our PUR, i.e. no event is present in the two time intervals

(��S, 0) and (0, �S), is equal to (1� PLOSS)(1� PLOSS). At low

��F product values (��F << 1), PLOSS, by using the TID of

equation (3), is given by

PLOSSðtÞ ¼
R�S

0

f �F ðtÞ dt

¼
R2�F

�F

� exp ��� Fð Þ dt

þ
R�S

2�F

� exp ��� Fð Þ exp ��ðt � 2�FÞ
� �

dt

¼ ��F exp ��� Fð Þ

þ exp ��� Fð Þ 1� exp ��ð�S � 2� FÞ
� �� �

ffi 1� exp ��ð�S � �FÞ
� �

: ð6Þ

Therefore, the output counting rate R �S of the slow channel can

be given by
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Figure 4
Calculated time-interval distributions (TIDs) of the recorded counts of
the fast channel (dead-time of type II) by using equation (2) at different
��F values. (a) TID (thick gray line) at 220 kcps (��F = 0.03); there are
no dead-time distortions at time intervals longer than 2�F and the
exponential best fitting (thin red line), performed at times >2�F, gives an
estimated �FITTING equal to the true �. (b) TID (thick gray line) at
2.2 Mcps (��F = 0.3); here, there are dead-time distortions at time
intervals smaller than 5�F; the exponential best fitting (thin red line), at
time intervals > 5�F, gives an estimated �FITTING equal to the true �. (c)
TIDs at � = 2.2 Mcps; the TID at ��F = 0.3 (dashed gray line, �F = 138 ns)
is compared with the TID at ��F = 3 (solid gray line, �F = 1.38 us); the
exponential fitting of the TID at ��F = 3 gives an estimated �FITTING =
1.3 Mcps (different from the true � = 2.2 Mcps), even at time intervals
greater than 20�F.



R �S ¼ RF 1� PLOSS

� �2

¼ � exp ��� Fð Þ 1� PLOSS

� �2

¼ � exp ��ð2�S � � FÞ
� �

: ð7Þ

Notice that the same result is obtained,

without approximation, if the fast dead-

time is of type I.

The relative uncertainty on the

recorded counts NS of the slow channel

can be written as (Pommé et al., 1999;

Yu & Fessler, 2000)

�ðNSÞffiffiffiffiffiffi
NS

p ¼

	
1þ 2f exp ��ð2�S � �FÞ=2

� �

� 1� 1þ �ð2�S � �FÞ
� �

exp ��ð2�S � �FÞ=2
� �� �
1=2

;

ð8Þ

where f is a fraction of the counts in the slow energy spectrum.

Equation (8) is derived by the theoretical relation for a single

dead-time of type III; we take into account the cascade of

dead-time of type II and dead-time of type III by using the

cascade corrected total dead-time (i.e. 2�S � �F).

4. Experimental procedures

To investigate the counting capabilities of the DPP system,

a planar CdTe detector was used (XR100T-CdTe, S/N 6012,

Amptek, USA) (http://www.amptek.com), with a thickness of

1 mm (absolute efficiency of 64% at 100 keV) and equipped

with a resistive-feedback CSP (decay time constant of the

resistive-feedback circuit is around 100 ms). The gain of the

CSP is 0.82 mV keV�1 and the rise time of the CSP output

pulses is around 60 ns (59.5 keV X-rays). As is well known,

CdTe/CdZnTe detectors (1–2 mm thick) are very appealing for

X-ray spectroscopy in the energy range 1–100 keV (Auricchio

et al., 2011; Del Sordo et al., 2009; Owens, 2006; Takahashi &

Watanabe, 2001; Turturici et al., 2014, 2015).

The high-rate spectroscopic abilities of the DPP system,

connected to the CdTe detector, were investigated in our

previous works (Abbene et al., 2013a,b; Gerardi & Abbene,

2014). Table 1 shows the spectroscopic response of the system

at low and high rates, in terms of energy resolution (FWHM),

at 59.5 keV (241Am source). The electronic noise of the CdTe

detector coupled to the DPP system (by using ST = 30 ms) is

0.4 keV (FWHM). The results highlight, beside the excellent

high-rate spectroscopic abilities, the flexibility of the system to

perform measurements for both optimum energy resolution or

high throughput.

In this work, we measured the response of the system to an

Ag-target X-ray tube (Amptek, Inc. USA) with Al (1 mm

thick) and Ag (25.4 mm thick) filters. X-ray spectra were

measured by using a tube voltage of 30 kV and tube current

values between 5 mA and 60 mA (ICR up to 2.2 Mcps).

5. Measurements and results

In this section, experimental results on the counting rate

capabilities of the system, through the fast and slow channels,

are shown. As will be presented in the following subsections,

the DPP system is characterized by two main features: (i) the

dead-time modeling of both the fast and the slow channel is

well defined and (ii) thanks to the low dead-time values of the

fast channel, accurate estimation of the true ICR can be

performed.

5.1. Dead-time correction and counting rates in the
fast channel

Fig. 5 shows the measured throughput curve (i.e. the RF

versus tube current) of the fast channel. Each experimental

point was obtained by evaluating the mean value of RF values

of 400 acquisitions (each acquisition consists of 20000 events).

The experimental curve is in good agreement with the typical

throughput function of the single paralyzable dead-time

model [the dead-time model described by equation (1)].
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Table 1
Spectroscopic response of the DPP system coupled to the CdTe detector at 59.5 keV (241Am
source).

Energy resolution
FWHM (%) at
59.5 keV

ICR
(kcps)

Throughput
(%) Shaping mode Set-up

1.3 0.2 99 Slow PSHA High energy resolution
(ST = 30 ms)

2.5 850 1.5 Slow PSHA and pulse shape
discrimination (PSD)

High energy resolution
(ST = 3 ms)

7.2 850 80 Fast PHA High throughput
(fast SDL shaping
delay of 200 ns)

Figure 5
Experimental throughput curve from the fast channel. The experimental
points are in good agreement with the throughput function (red line) of a
single paralyzable dead-time (the coefficient of determination is equal to
0.9999; this parameter indicates how well experimental data fit the model
and a value close to 1 indicates that the model perfectly fits the data)
(Draper & Smith, 1998). Errors of experimental points are too small to be
visible in the figure.



Through a curve fitting with the following function,

RF ¼ AI exp �AI� Fð Þ; ð9Þ

where I is the tube current and A is a constant, we estimated,

with a confidence level (CL) of about 99.7%, �F = (138.0 �

0.6) ns. Therefore, it is possible to estimate the input counting

rate � by applying the real-time dead-time correction, i.e. by

solving the throughput equation (1) iteratively. Of course, this

method requires the experimental measurement of the

throughput curve and therefore the measurement of multiple

X-ray spectra at different ICRs (multiple measurements). In

the following, a different method, able to perform accurate

estimation of � with a single measurement (i.e. by performing

a measurement at a single ICR condition), will be presented.

As discussed in x3 and reported in the literature (Arkani &

Raisali, 2015; Denecke & de Jonge, 1998; Pommé et al., 1999),

due to the small dead-time �F of the fast channel (138 ns), the

simple exponential fitting of the experimental TID, at time

intervals >5�F, can give an accurate estimation of the input

counting rate up to 2.2 Mcps (��F = 0.3). Fig. 6 shows the

experimental TID, through the fast channel at 2.2 Mcps; the

trigger times of the event-data, histogrammed with a time bin

width of 10 ns, were used. The exponential fitting, performed

at time intervals >5�F, gives �TID = (2232000� 6000) cps (CL =

99.7%). The estimated �TID from the measured TIDs versus

the tube current is characterized by a very good linear beha-

vior (nonlinearity < 0.5%), as shown in Fig. 7. Moreover, to

check the �TID values, we also estimated �F by fitting the

throughput curve (RF versus �TID; for simplicity, this curve was

not reported in the paper) with the single paralyzable function

[equation (1)], obtaining a dead-time �F,TID = (137 � 0.9) ns

(CL = 99.7%), in good agreement with the dead-time (138 �

0.6 ns) estimated from the experimental throughput curve (i.e.

RF versus tube current).

The digital system, through the fast channel, is able to

perform the estimation of the true � by using several dead-

time correction methods. In the following, we summarize all

techniques used to estimate the true �, pointing out if each

method needs a single measurement of multiple measure-

ments:

(i) �REAL, obtained through the real-time correction [i.e. by

using equation (1)] from the measured throughput curves

(multiple measurements);

(ii) �TID, estimated from the exponential best fit of the

measured TIDs (single measurement);

(iii) �LIVE, obtained through the relation NF/(Tacq� Twidth),

where NF is the total number of the detected pulses by the fast

channel, Tacq is the total real acquisition time, while Twidth is

the total detection dead-time, calculated as the sum of the time

widths of the fast shaped pulses (single measurement);

(iv) �TW, obtained by using a different real-time correction,

based on the paralyzable throughput function [equation (1)]

and the dead-time �FAST,TW estimated through the mean value

of the time widths of the detected pulses (single measure-

ment). Fig. 8 shows the time width distribution of the fast

pulses at � = 752 kcps. From the time width data, we obtained

a constant �FAST,TW = (129 � 10) ns (CL = 99.7%) for all

counting rates (from 200 kcps to 2.2 Mcps).

The � values (related to �TID), estimated through the

various correction methods, are shown in Fig. 9. We used �TID

as the reference input counting rate, due to the good linearity

with the tube current. To better point out the counting

corrections, the RF values are also reported in Fig. 9. At

200 kcps, all correction methods are characterized by low

errors, <0.8%. By applying the real-time correction, up to

counting rates of about 2.2 Mcps, the uncertainty of �REAL is

<0.6%, while the error on �TW is <1.6%. For comparison

purposes, the live correction was also reported. As clearly

shown in Fig. 9, the error on �LIVE (<7.8% at 2.2 Mcps) is

greater than for the other correction methods, mainly due

to its major sensibility to the pulse pile-up (Pommé, 2008;
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Figure 7
�TID estimated from the measured time-interval distributions (TIDs) of
the pulses of the fast channel versus the tube current (nonlinearity <
0.5%).

Figure 6
Measured time-interval distribution (TID) of the events of the fast
channel (thick gray line) at 2.2 Mcps (��F = 0.3) with a time bin width of
10 ns. The exponential best fitting (thin red line), performed at time
intervals >5�F, is in good agreement with experimental data (the
coefficient of determination is equal to 0.9997).



Michotte & Nonis, 2009); moreover, �LIVE values are always

lower than the expected values as happens in the live time

correction.

We calculated the standard deviation of the recorded counts

of 400 measurements. Fig. 10 shows the ratio between the

measured standard deviation of NF and (NF)1/2 (i.e. the

expected standard deviation in a Poisson process) versus the

��F product values. At 2.2 Mcps (i.e. ��F = 0.3), the counting

uncertainty is clearly less than the value expected from

Poisson statistics, with a percentage deviation of about 30%.

The experimental points are in agreement with equation (4)

and with the values obtained in the literature, in both simu-

lations and experiments (Pommé et al., 1999; Yu & Fessler,

2000) with counting systems characterized by a single paral-

yzable dead-time. This result points out that the system is able

to associate the proper standard deviation on the fast recorded

counts.

5.2. Dead-time correction and counting rates in the
slow channel

Fig. 11 shows the measured throughput curve (i.e. RS versus

tube current) of the slow channel by using ST = 3 ms. Each

experimental point was obtained by evaluating the mean value

of RS of 400 acquisitions (each acquisition consists of the

selected events by the PUR from the 20000 events from the

fast channel; the number of the selected events changes with

the rate). The experimental curve was fitted with the following

equation,

RS ¼ BI exp �BI�ð Þ; ð10Þ

where I is the tube current and B is a constant, giving a total

dead-time � equal to (2.87 � 0.04) ms (confidence level CL =
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Figure 11
Measured throughput curve from the slow channel. The throughput
function of the cascade of dead-time of type II and type III [equation (7)]
is in good agreement with the experimental points (the coefficient of
determination is equal to 0.9998). Errors of experimental points are too
small to be visible in the figure.

Figure 9
� values estimated through different dead-time correction methods. Each
� value is related to the �TID. The RF values, related to �TID, are also
reported.

Figure 10
Ratio between the measured standard deviation of NF and (NF)1/2 (i.e. the
expected standard deviation in a Poisson process) versus the ��F product
values.

Figure 8
Measured time width distribution of the fast pulses at 752 kcps.



99.7%). This value is equal to (2�S � �F), clearly pointing out

the good agreement between the experimental curve and the

throughput function of the cascade of type II and type III

dead-times up to ��F = 0.3 [equation (7)].

Fig. 12 shows the measured TIDs, through the slow channel,

at 200 kcps, 752 kcps and at 2.2 Mcps, with a time bin width of

100 ns. The shapes of the distributions show an agreement

with both simulated and experimental TIDs (single dead-time

of type III) in the literature (Pommé et al., 1999). These results

show that the low dead-time of the fast channel produces

negligible effects in the TIDs of the slow channel. However,

due to the high distortions of the slow dead-time, the

measured TIDs from the slow channel do not allow accurate �
estimations through a simple exponential fitting. Therefore,

each slow channel high-resolution spectrum should be tied to

the � information provided by the fast channel, characterized

by very low dead-time distortions.

In the following, we present some appealing strategies, in

terms of both simplicity and accuracy, that can be used to

provide the scaling ratio for the spectral counts and its error

with a single measurement:

(i) Estimation of � through the exponential fitting of the

TID from the fast channel and calculation of the scaling ratio

K = �TID /RS; this is the best strategy in terms of accuracy, but

requiring the implementation of a best-fit procedure;

(ii) Estimation of �F through the mean value of the time

width of the fast pulses and calculation of �TW by inversion of

the formula (1); the scaling ratio is given by

K � ¼ �TW=RS: ð11Þ

(iii) Estimation of �F through the mean value of the time

width of the fast pulses; since RS follows the relation

RS ¼ � exp ��ð2�S � � FÞ
� �

¼ � exp ��ð�FÞ
� �

exp ��ð2�S � 2� FÞ
� �

¼ RF exp ��ð2�S � 2� FÞ
� �

; ð12Þ

it is possible to estimate the scaling ratio K ** through

K �� ¼
�

RS

¼ ln
RF

RS

� �
1

ð2�S � 2� FÞRS

: ð13Þ

At 2.2 Mcps, by using the estimated �F,TW = (129 � 10) ns, the

measured RS, RF and 2�S = ST = 3 ms, a � value (2200000 �

50000 cps) was obtained, through equation (13), with a

percentage deviation of 1.4% from the �TID (2232000 �

6000 cps); therefore, taking into account this maximum error,

it is possible to correct the counts in the slow spectra though

this simple procedure up to 2.2 Mcps.

Fig. 13 shows the ratio between the measured standard

deviation of NS and (NS)1/2 versus the �(2�S � �F) product

values. We calculated the standard deviation of the recorded

counts of 400 measurements. As in the fast channel, the

counting uncertainty is different from the value expected from

Poisson statistics (maximum percentage deviation of about

15%), but this difference is much smaller than the measured

fast channel one. Moreover, the experimental points are in

agreement with equation (8) and with the values obtained in
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Figure 12
Measured time-interval distributions (TIDs) of the events of the slow
channel at (a) 201 kcps, (b) 752 kcps and (c) 2.2 Mcps, with a time bin
width of 100 ns. The counts were normalized to the maximum number of
detected events.



the literature, in both simulations and experiments (Pommé et

al., 1999) with counting systems characterized by a single pile-

up rejection (type III).

Of course, a smaller difference with the Poisson counting

uncertainty can be gradually obtained when small fractions

of the spectral counts (ROI) are considered (Pommé et al.,

1999).

6. Conclusions

The high rate abilities of a real-time DPP system on dead-time

correction are presented. The system through a fast and a slow

channel is able to provide counting and energy spectra at

different resolution and throughput conditions. The results of

X-ray spectra measurements (up to 2.2 Mcps) highlight two

main features of the DPP system: (i) the dead-time modeling

of both the fast and the slow branch is well defined: a single

dead-time of type II for the fast channel and a cascade of

dead-time of type II and type III for the slow channel; and (ii)

thanks to the low dead-time values of the fast channel, low

dead-time distortions are present and accurate estimation of

the true input counting rate can be performed. Accurate

counting rate estimations were performed by using the time

widths and the time-interval distributions of the pulses from

the fast channel.

Moreover, the DPP output results, provided in timed

packed listing mode, together with the housekeeping data,

allow counting loss corrections even for variable or transient

radiation sources, with time resolutions depending on the ICR

and the chosen number of radiation events.

We stress that the digital system allows, after a simple

parameter setting, different and sophisticated procedures for

dead-time correction, traditionally implemented in complex/

dedicated systems and time-consuming set-ups.
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Figure 13
Ratio between the measured standard deviation of NS and (NS)1/2 versus
the �(ST � �F) product values.
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