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The next generation of X-ray sources will feature highly brilliant X-ray beams

that will enable the imaging of local nanoscale structures with unprecedented

resolution. A general formalism to predict the achievable spatial resolution in

coherent diffractive imaging, based solely on diffracted intensities, is provided.

The coherent dose necessary to reach atomic resolution depends significantly on

the atomic scale structure, where disordered or amorphous materials require

roughly three orders of magnitude lower dose compared with the expected

scaling of uniform density materials. Additionally, dose reduction for crystalline

materials are predicted at certain resolutions based only on their unit-cell

dimensions and structure factors.

1. Introduction

X-rays have been used to successfully determine the atomic

structure of crystalline materials of increasing complexity for

over 100 years. Obtaining the unit cells of simple crystals was

one of the first great achievements of X-rays (Bragg, 1913).

This method routinely allows the refinement of atomic posi-

tions in highly ordered crystals with better than 1 pm precision

(Stinton & Evans, 2007; Bell et al., 2009). Furthermore, protein

crystallography has obtained the structure of extremely

important organic molecules such as DNA (Watson & Crick,

1953) and penicillin (Crowfoot et al., 1949), which have greatly

impacted our understanding of life and medicine. However,

crystallography only determines the average atomic positions

in perfectly periodic crystalline structures. Thus, these

methods have not been able to address the materials that

cannot be crystallized, the location of defects in crystals, or the

atomic positions in disordered materials.

Atomic resolution has been achieved for surfaces using

scanning probes (Foster et al., 2001) and for very thin films

using transmission electron microscopy (Schweinfest et al.,

2001); however, interfaces can differ significantly from the

bulk. Since X-rays penetrate bulk materials, have sufficiently

short wavelength and have chemical sensitivity, they are ideal

for atomic-scale three-dimensional microscopy. Both X-ray

full-field imaging and scanning transmission microscopy have

had great success (Weiß et al., 2000; Johansson et al., 2007).

Although they can still be improved, these techniques can

never reach atomic resolution due to their reliance on optical

elements (Withers, 2007). Instead of using incoherent radia-

tion to image only ordered materials, it is possible to image

any material, up to the diffraction-limited resolution, using

coherent X-ray diffractive imaging (CXDI). In order to

accomplish this, one must solve for missing phase information

in the measured diffraction intensity and back propagate the

full complex field to the sample (Fienup, 1980; Miao et al.,
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1999). Since the interactions between particles and fields are

well understood at the atomic level, a quantitative image of

the atomic structure can be formed. The iterative phase

retrieval method has rapidly improved and CXDI is now

widely used to obtain the local distribution of electron

densities and lattice strain of nanocrystals (Newton et al., 2010;

Ulvestad et al., 2014; Kim et al., 2014). In addition, CXDI has

achieved great success in imaging non-periodic structures

(Miao et al., 2006; Chapman et al., 2006; Tripathi et al., 2011).

The necessary dose to image a sample at a particular

resolution, �x, has previously been suggested to scale as �x�n,

where n = 4 or 5 (Shen et al., 2004; Starodub et al., 2008;

Howells et al., 2009). This implies that a very large increase

in X-ray flux, compared with current available sources, is

necessary to reach atomic resolution. We will show that, with

increasing disorder, atomic resolution can be achieved at

doses well before the power-law scaling predicts. In x2 we will

discuss a method to predict the number of photons required to

image a particle at a desired resolution. As an example, we

generate the atomic positions of two materials, simulate their

diffraction pattern at various photon doses and use phase

retrieval algorithms to obtain a reconstructed image of the

atomic positions. In x4 we show the results of the recon-

structions, which validate the predictions made. Finally, in x5

we discuss the performance of currently available X-ray

sources and anticipate what next-generation sources in the

near future will be able to achieve.

2. Image quality

It is important to understand image quality for any microscope

and to predict what can be achieved under various conditions

in order to find limiting factors. In this case, we restrict

ourselves to images formed from far-field diffraction patterns,

such as in CXDI. The far-field kinematic scattering is

proportional to the Fourier transform of the electron density,

FðqÞ = �ðr0=RÞ
P

m fm expð�iq � rmÞ, where fm is the atomic

scattering factor of atom m. The expected image resolution

can be estimated from the spatial frequency, qc, where the

average signal-to-noise ratio (SNR) drops below some

threshold (see Appendix A for a detailed derivation of this

condition). Here, the resolution refers to the single-pixel

resolution, generally thought of as half of the actual resolu-

tion. For direct-space imaging a threshold of 5 is common

(Burgess, 1999), while for CXDI this threshold is usually set

to 1 (Chapman et al., 2006), which is also used here. This

condition may be written in terms of the number of photons

scattered and collected, IðqcÞ�at � ½1þ ð1þ 4&2Þ
1=2
�=2 � �,

where IðqÞ = I0hPðqÞjFðqÞj
2
iq is the azimuthally averaged

scattered flux, t is the exposure time, a is the area of the

detector pixels, � is the detector efficiency, & is the noise level

of the detector, and P is a geometric factor due to polarization

of the incoming X-rays. Although this relation is strictly valid

only for isotropically scattering samples, it also holds true for

scattering from crystalline materials, which have strong Bragg

diffraction peaks. This is because the cutoff spatial frequency

is limited by regions with low SNR (i.e. regions between Bragg

peaks), which are relatively uniform.

To meet the oversampling condition needed for CXDI, the

area of each detector pixel should be a = R2ð�=s�xÞ
2, where R

is the distance from the sample to the pixel, � � 4�x is the

photon wavelength, and s is the one-dimensional over-

sampling ratio along the maximum size of the sample, �x.

Restricting ourselves to a detector with azimuthal symmetry,

such as flat or spherical detectors, the exposure time needed

to adequately measure a single slice of Fourier space at the

desired single-pixel resolution, �x = �=qc, is

t ¼
s2�

I0��
2� PðqÞj ~FFðqÞj2
� �

q¼ qc
�x

; ð1Þ

where ~FFðqÞ = ðR=
ffiffiffiffi
V
p
ÞFðqÞ is the normalized scattering factor

and � � V=�x3 is the percent volume fraction of the particle.

For unpolarized X-rays, Pð’Þ = ð1=2Þð1þ cos2 ’Þ, which can

equivalently be achieved with linear polarization and suffi-

cient rotational freedom of the sample. Here, s represents the

oversampling ratio at the spatial frequency corresponding to

the desired resolution and must be chosen such that all lower

spatial frequencies are sufficiently sampled as well. Thus, flat

detectors, which oversample higher frequencies more, will be

at a disadvantage to curved detectors that more evenly sample

the Ewald sphere.

By using the normalized scattering factor, it is easier to see

the general trend in equation (1). The factor
ffiffiffiffi
V
p

is necessary

to normalize the intensity by the size of the particle. When the

correlation length is much smaller than the total size of the

particle, such as in amorphous materials or highly disordered

crystals, then the overall intensity scales with the number of

uncorrelated volumes. Apart from fluctuations in the coherent

speckle, which encode the location of each atom, the

normalized scattering factor is independent of particle size, in

this limit. However, perfect single crystals will not exhibit this

simple behavior. Instead, increasing the amount of material

redistributes the scattering by narrowing the Bragg peaks,

which includes the (000) peak present for all materials. As will

be seen later, the normalized scattered flux is then inversely

proportional to the size of the particle.

When the scattering angle is small, such that the measured

Fourier slice is roughly planar, the data represent a projection

of the sample and equation (1) represents the imaging time

necessary to distinguish a two-dimensional (2D) pixel of size

�x2 in the projection with statistical significance. In order to

extend this to three dimensions, the contribution of a three-

dimensional voxel in the sample must provide statistically

significant information in the projection. If the sample is

roughly uniform, the scattering from a single slice of thickness

�x gives the appropriate voxel contribution. Since over-

sampling must be maintained, the flux should be distributed

between s�x=�x such slices and multiplying equation (1) by

this factor gives the condition to obtain the three-dimensional

(3D) resolution, �x3. By extension, it would also be the

condition to obtain the same voxel resolution from the set

of tomographic projections necessary to obtain the full 3D
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spatial information, using dose fractionation (Hegerl &

Hoppe, 1976; McEwen et al., 1995).

It is possible to obtain a similar, more general, result by

considering taking a series of 2D slices, each satisfying equa-

tion (1). To sample the 3D Fourier space, the sample must be

rotated perpendicular to the incoming radiation direction

while oversampling all voxels up to the largest spatial

frequency needed for a particular resolution. To evenly sample

the entire Ewald sphere at the maximum spatial frequency, a

sample could be rotated in all possible directions with a solid

angle of �� = ð�q=qcÞ
2, thus requiring N = �ðs�x=�xÞ2 slices.

However, since each slice has n = ks�x sinð’mÞ sampling

points at the maximum spatial frequency, where ’m =

2 arcsinð�=4�xÞ is the maximum necessary scattering angle and

k = 2�/� is the wavenumber, the time spent at each rotation

angle should be normalized such that all voxels at the

maximum spatial frequency are only sampled a total time of t.

The oversampling ratio introduced by rotation can be set

independently of the detector oversampling, but for simplicity

we will let them be the same. The total exposure time is then

given by

N

n
t ¼

s3�

I0��
2� PðqÞj ~FFðqÞj2
� �

q¼ qc
�x

2 sinð’m=2Þ

sinð’mÞ
: ð2Þ

For small-angle scattering, where the maximum necessary

scattering angle is small, the normalized number of slices

reduces to N=n = s�x=�x and the total exposure time is the

same result as expected from dose fractionation.

The total exposure time needed can be reduced by

increasing the available flux or by making use of scattering

resonances. Additionally, it is not strongly dependent on the

sample size because any gain in scattered intensity due to

more material is negated by the additional sampling required.

In practice, however, it will be easier to image smaller samples

with the use of focusing to achieve a higher X-ray flux.

Furthermore, using a wavelength nearly three and a half times

the resolution desired and obtaining scattering in a good

amount of the full 4� solid angle can reduce the required

sampling time, as long as the atomic scattering factors do not

drastically reduce with lower energies.

It is important to note that flat detectors are exclusively

used in X-ray science, thus far. Such detectors unevenly

sample a Fourier slice when scattering angles become large.

Resampling the data will introduce further noise at high

spatial frequencies, further increasing the expected sampling

time to achieve a particular resolution. In addition, the

maximum scattering angle is significantly more restricted.

With an optimal maximum scattering angle near �=4, the

potential benefits in dose reduction due to increasing wave-

length are decreased as compared with curved detectors.

Since it is not always possible to set the desired over-

sampling ratio during the measurement, the data may later be

binned to obtain a lower oversampling ratio. The necessary

sampling time [equations (1) and (2)] will remain correct, with

the new oversampling ratio and the detector noise adjusted for

the number of pixels binned together, &0 = ð
P

j &
2
j Þ

1=2. In

addition, when measuring highly asymmetrical samples where

the percent volume fraction is small, it is possible to bin data

along one or two dimensions, as appropriate, to reduce the

necessary sampling time.

It is not practical to rotate the sample through all possible

orientations. Instead, it is more likely that the sample will be

rotated about a single axis only. When this is done, some

voxels at the maximum spatial frequency are unnecessarily

sampled too much. In addition, other spatial frequencies may

not be sampled at all due to limits in rotation angle, sweeping

of the Ewald sphere when the maximum scattering angle is

large, and necessity to block the direct beam. This reduces the

expected resolution; thus, equation (2) represents a minimum

necessary total sampling time. In some cases, the missing data

can be overcome by additional information such as constraints

on the set (Thibault et al., 2006) or redundancy from over-

lapping projections such as in ptychography (Tripathi et al.,

2011). In addition, away from resonances the scattering factors

are primarily real and the scattered intensity becomes

centrosymmetric, which can be used to fill in missing infor-

mation or to increase SNR (Takahashi et al., 2009).

To consider the general trend of equation (2), take for

instance a uniform spherical particle whose scattering factor is

proportional to j1ðq�xÞðq�xÞ
�1, where j1ðq�xÞ is the spherical

Bessel function of the first kind. Since we are interested in

resolutions much smaller than the particle itself, we can

consider the limiting case q�x	 1. In this case the scattering

intensity due to the particle form factor decays as q�4. Using

equation (2) we see that for a uniform density particle the total

time needed to image a particle would be ðN=nÞ t / �x�5. This

assessment is discouraging, since reaching atomic resolution

for even high-Z materials would require of the order of 105

improvement in average flux, which will not be feasible for any

X-ray source within the next few decades. Fortunately, as we

will see in x4, this is not the case because the particle is in fact

made of discrete objects, resulting in order at the atomic scale.

3. Method

We created the atomic positions of two particle types. First,

a crystalline Au particle was created using the known face-

centered cubic unit-cell parameters (Jette & Foote, 1935).

Several defects were introduced, including one screw dis-

location of nominal width 5 Å with slip plane ð111Þ and

Burger’s vector ½1�110� a=2. Additionally, two vacancies and two

interstitials, with local distortion size of 5 Å, were added. The

particle was shaped into an asymmetric spheroid with nominal

diameter of 20 nm, containing 2
 105 atoms. Secondly, an

amorphous Au particle was created using the ideal amorphous

solid model with hard spheres (Lee et al., 2010). First, a single

atom is generated and 4 � l � 12 atoms distributed randomly

around it, such that they are all ‘touching’ the central atom.

This cluster forms a seed, upon which further atoms are added

without violating minimum interatomic distances. The number

of atoms in the seed strongly influences the final packing ratio

of the particle generated. Here we use l = 9 resulting in a

packing ratio of 0.60. The amorphous Au particle, like the
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crystalline particle, consists of 2
 105 atoms and is the same

size and shape.

Once we had the positions of all atoms [Fig. 1(a)], we

simulated diffraction data by performing an explicit Fourier

transform (FT) onto a regular Cartesian 3D grid [Fig. 1(b)].

For each atom type in the particle the FT is performed sepa-

rately and scaled using an estimated q-dependent scattering

factor and Debye–Waller factor at 10 keV photon energy near

room temperature (Waasmaier & Kirfel, 1995; Peng et al.,

1996). Although we have ignored higher-order thermal diffuse

scattering (TDS) beyond the Debye–Waller factor, its contri-

bution can be significant for low-Z materials when

approaching the Debye temperature (Als-Nielsen &

McMorrow, 2011). TDS will contribute an incoherent back-

ground to the scattering intensity due to phonons in the

material. This can become a significant problem in regions of

low coherent scattering, such as between Bragg peaks in

highly ordered crystalline materials. Since CXDI is optimal for

relatively small particles, of the order of a few hundred

nanometers or less, the error introduced by TDS is expected to

be minimal for materials like Au at room temperature.

However, there will be many cases where TDS will need to be

subtracted by using other measurements, theoretical predic-

tions or approximately by observing loss in coherent speckle

visibility (Wu et al., 1999; Holt et al., 1999).

Since the grid oversamples the diffraction pattern it is

smoothly varying between neighboring voxels on the grid, and

the diffraction intensity was calculated only for the center of

each voxel and not integrated over the entire voxel volume.

Actual measured data will be a recombined series of 2D slices.

To achieve appropriate oversampling at large spatial

frequencies during rotation of the sample, small spatial

frequencies will be oversampled much more. We simply

counted the number of times each voxel on the 3D grid would

be sampled assuming a curved detector and independent two-

axis rotation. These counts are multiplied to our simulated 3D

diffraction pattern before applying Poisson statistics. This

circumvents the extremely costly technique of simulating a

series of 2D diffraction patterns and then mapping those

pixels to the 3D Cartesian grid. Since interpolation (Rasche et

al., 1999) is used to map the data, which is affected by the

instrument resolution function (Sinha et al., 1998; Song et al.,

2007), additional errors will be introduced in measurements.

Alternatively, a cylindrical grid can be used, which more

accurately represents the measured sampling, in conjunction

with the fast polar-FT (Averbuch et al., 2006; Fenn et al., 2007)

for phase retrieval. However, this is significantly more

computationally costly due to the ill-defined inverse polar

transform and very memory intensive due to the storage of the

highly over-sampled data near the origin.

To illustrate the minimum error that is introduced by

discretizing the diffraction data, the electron density is

obtained by performing the inverse fast Fourier transform

(FFT) of the simulated full complex diffraction data [Fig. 1(c)].

Since no effort was made to match voxel positions with atom

positions, the recovered electron density for each atom loca-

tion extends beyond a single pixel. However, finding local

maxima in the electron density combined with subpixel shifts

allows us to recover the approximate location of the atoms and

their atomic number [Fig. 1(d)]. The recovered locations have

a mean absolute error (MAE), ð1=NÞ
PN

j jjrj � r0jjj, and

maximal error (ME), maxj2½N� jjrj � r0jjj, of 0.12 Å and 0.22 Å,

respectively, which is far below the voxel size used of 0.78 Å.

Reconstruction of the electron density from simulated

diffraction intensities is carried out using the hybrid input–

output (HIO) algorithm (Fienup, 1982) and difference map

(DM) algorithm (Elser, 2003). The only real space constraint

used is a support, which defines the approximate particle’s

shape, that is allowed to change through the shrinkwrap

method (Marchesini et al., 2003b). Although it is possible to

start the recovery from a completely random guess, recovering

a set of discrete objects is notoriously time-consuming. The

reconstruction process essentially traverses randomly through

a very large phase space until it comes close to the solution

(Elser, 2003). Since the efficacy of phase retrieval algorithms

has already been vetted (Marchesini et al., 2003a; Quiney,

2010; Miao et al., 2015) and it is known that only trivial

ambiguities in the solution exist under appropriate conditions

(Bates, 1984), it is not necessary to start with completely

random guesses to determine the achievable resolution. It is

only necessary to not bias any particular stagnation point or

near solution point of the noisy data. To reduce the number of

total iterations needed, we start the reconstructions with a

linear combination of the actual solution and random complex
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Figure 1
Method of simulation. (a) Atomic positions are generated (color is used to better indicate depth), which are (b) Fourier transformed to a regular
Cartesian 3D grid (scattered photons shown on log scale). (c) An inverse fast Fourier transform of the full complex scattered wave gives the electron
density from which (d) the atomic positions and atomic number (indicated by size) can be recovered. Dashed spheres designate the actual atomic
positions for comparison.



values within the support. The actual solution is first randomly

sub-pixel shifted and convolved with a Gaussian point spread

function (PSF). To reduce the chance of bias, the PSF is chosen

with a full width at half-maximum greater than the final image

resolution and the random values allowed to vary of the order

of the maximum electron density. The initial support is

obtained from a reconstruction of the low-frequency data, but

can also be acquired by an autocorrelation (Crimmins et al.,

1990) or use of locator sets (Fienup et al., 1997). At least some

reconstructions were also started with just the noise inside of

the support and agree with reconstructions from the better

initial guesses. An average reconstruction is formed by

combining the best 11 of 15 total reconstructions after

adjusting for any trivial ambiguities such as constant

phase offset, relative particle translation, and the complex

conjugated mirror image. From this, the mean absolute

error (MAE) between the recovered and actual

phase of the diffraction pattern is calculated and

averaged azimuthally along shells of constant jqj,

ð2=�Þhjj� 0ðqÞ � �ðqÞ : � 0 � � 2 ð��; ��jjiq. Here, the MAE is

normalized such that a value of 0 would be a perfect corre-

lation between measured and recovered, 2 is a perfect anti-

correlation (i.e. � phase shift), and 1 is equal correlation and

anti-correlation or no correlation at all. We defined the single-

pixel resolution of the recovered electron density as �=qc,

where qc is the lowest spatial frequency where the MAE

becomes greater than 0.5. This is equivalent to the phase

retrieval transfer function (PRTF) commonly used to define

resolution when the solution is not known, except that the

PRTF measures how well the set of solutions compare with

each other instead of a known solution (Chapman et al., 2006;

Tripathi et al., 2011). Thus, if the recovered solutions always

stagnate in the same local minima during phase retrieval, the

PRTF will indicate a better resolution than actually achieved.

We use the PRTF to check that we have not biased our

solutions with the given starting guesses.

4. Results and discussion

To test the predictions of equation (2), we have simulated the

diffraction data for several materials and used CXDI to

reconstruct their atomic position. For this, we assume a photon

energy E = 10 keV, a perfect photon capture efficiency of the

detector � = 1, and no detector noise & = 0. Here we use a one-

dimensional oversampling s = 2, which is sufficient to achieve

high probability of reconstruction success but in some cases

can be lower (Miao et al., 1998).

The crystalline Au diffraction intensity was simulated with

a wide range of time-integrated photon flux (TIPF) between

6 
 1014 photons mm�2 and 1 
 1019 photons mm�2. The

resolution obtained using CXDI of these simulations matches

extremely well to the predictions from equation (2) until the

expected resolution becomes lower than the pixel size.1 The

resolution versus TIPF initially follows a power law decay

proportional to �x�5 [Fig. 2(a)], as expected. This power law

decay would continue forever for scattering from a sample

with uniform electron density. However, for a sample with

correlations, in this case long-range order producing Bragg

peaks, the cutoff frequency that determines resolution will

jump across the regions of increased SNR, as indicated by the

sharp drop at 1 
 1018 photons mm�2 in Fig. 2(a), for instance.

The resolution at which this curve becomes discontinuous is

directly tied to the spatial frequencies of the Bragg peaks.

Additionally, the size of the jumps will depend primarily on

the relative intensity of the Bragg peaks. From the expected

q�4 fall-off of the intensity away from the Bragg peaks, we

can estimate the start of the jump by the spatial frequencies

where the azimuthally averaged intensity between two Bragg

peaks is at its minima. The start of the first jump (derived in

Appendix B) is

q1 �
qb

2

40�þ 1

30�þ 1

� �
; ð3Þ

where � = jFð000Þj
2=mbjFbj

2 is the ratio of intensity from the

(000) Bragg peak and the lowest non-forbidden reflections at

qb, with multiplicity of mb due to symmetry. Since the inten-

sities can be obtained from the structure and atomic form

factor, this can be calculated a priori for known structures. The

end of the jump will be given by

q2 �
18

11
qb �

5

8
q1: ð4Þ

Although the Bragg peaks become more narrow with larger

particle size, it does not modify the start and end location of

the jump. The reduction in TIPF to reach atomic resolution is

thus always the same, albeit the absolute TIPF changes.

For crystalline Au, the first jump is due to the {111} Bragg

peaks at q111 = 2.67 Å�1 with � � 0.177. Thus, q1 � 1.7 Å�1

and q2 � 3.3 Å�1. In other words, we expect a jump once we

reach approximately 1.9 Å resolution and jump to approxi-

mately 0.95 Å resolution. As also observed in Fig. 2(a), this

jump results in a factor of 30 reduction in TIPF to reach

atomic resolution as compared with the power law decay.

Since achievable resolution from equation (2) and from

simulated results are a measure of the average resolution, we

show the local resolution of a recovered vacancy and screw

dislocation compared with known atomic positions. The

known vacancy, as viewed from the [110] direction, is missing

a central atom and distorts a small neighborhood of atoms

around it [Fig. 2(b)]. At 2 
 1018 photons mm�2 the vacancy is

fully recovered, including the full neighboring distortion

[Fig. 2(c)]. The MAE and ME are within recoverable atom

position limits [Fig. 2(a)]. At 1.5 
 1018 photons mm�2 the

vacancy is still seen [Fig. 2(d)]. The central atom is missing as

expected but the distortion of neighboring atoms is incom-

plete. Finally, the vacancy is not recovered for 1018 photons

mm�2 [Fig. 2(e)]. Only a very slight distortion from the

perfectly periodic lattice is recovered. The screw dislocation

when viewed from the [111] direction appears as a continuous

shift of atoms from one unit cell to the next [Fig. 2( f)]. At 2 
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compared with the absolute minimum.



1018 photons mm�2 this shift is fully recovered within the pixel

resolution [Fig. 2(g)]. At 4 
 1017 photons mm�2 the screw

dislocation can be recognized due to its spatial extent, but the

atomic positions are not correct [Fig. 2(h)]. Finally, at 1 


1017 photons mm�2, the dislocation can no longer be seen and

an almost perfectly periodic structure is recovered [Fig. 2(k)].

Similarly, the amorphous Au diffraction intensity was

simulated with a wide range of TIPF between 3 


1014 photons mm�2 and 1 
 1018 photons mm�2. Again, the

resolution obtained using CXDI of these simulations matches

very well to the predicted resolution from equation (2) until

the expected resolution becomes lower than the pixel size.

Below approximately 1 
 1016 photons mm�2 the result is

identical to crystalline Au, following the �x�5 power law decay,

since the average electron density is the same for both above

5 Å resolution [Fig. 3(a)]. Similar to crystalline Au, amor-

phous Au exhibits a discontinuity in resolution compared with

TIPF because of short-range atomic order resulting in a broad

peak in the liquid structure factor. Although the exact

discontinuity cannot be determined theoretically, the first

jump will be in the vicinity of the closest interatomic distance

and will be significantly larger compared with the crystalline

case. For amorphous Au, a jump from 3 Å to the resolution

limit of 0.78 Å occurred at 1 
 1017 photons mm�2. The jump
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Figure 2
Crystalline Au particle. (a) Achievable resolution at various photon statistics, where the solid line is the theoretical model described by equation (2) and
circles are reconstructions using CXDI from simulated photon statistics. The horizontal dashed line indicates the pixel size below which the current
simulations cannot reach, and the dashed line which follows much of the theoretical curve indicates the expected �x�5 fall-off for a uniform particle. To
show local resolution, a subset of recovered atomic positions near a vacancy (b)–(e) and near a screw dislocation ( f )–(k) are shown, where atomic
position ME and MAE (a) are also given. (b) For the actual atomic position near a vacancy there is an atom missing at the center surrounded by an
inward distortion of neighboring atoms within 5 Å. (c) This is fully recovered by 2 
 1018 photons mm�2. (d) With 1.5 
 1018 photons mm�2 the vacancy
and distortion can still be identified. (e) By 1018 photons mm�2 the vacancy is no longer present and only a slight distortion of neighboring atoms is seen.
( f ) For the actual atomic position near a screw dislocation, a shift of atoms by a unit cell occurs as seen from the [111] direction with characteristic width
of 5 Å. (g) This is effectively recovered by 2
 1018 photons mm�2 within the expected resolution. (h) With 4
 1017 photons mm�2 the dislocation can still
be recognized. (k) Finally, at 1017 photons mm�2, only a periodic atomic structure is recovered. The dashed spheres designate the actual atomic positions
for comparison.



results in a three orders of magnitude reduction in TIPF to

reach atomic resolution as compared with the power law

decay.

Again, we show local resolution of the recovered particle,

this time at its center and at the top edge. The actual atomic

positions [Figs. 3(b) and 3( f)] are fully recovered by 1.5 


1017 photons mm�2 [Figs. 3(c) and 3(g)]. At 1017 photons mm�2

[Figs. 3(d) and 3(h)] all but one atom matches the known

solution in both the center and edge region. Finally, at 6 


1016 photons mm�2 [Figs. 3(e) and 3(k)] a large number of

atomic positions are incorrect. The ME [Fig. 3(a)] shows a

clear discontinuity at 1 
 1017 photons mm�2, just as predicted

by equation (2).

Although the exact expected resolution is dependent on the

material used, some generalizations can be made since inter-

atomic distances are similar for all solids. First, the major

difference between materials will be the overall electron

density, where the X-ray scattering intensity is proportional

to its square. For instance, aluminium (Al), which has a very

similar structure to crystalline Au, will simply shift the

required TIPF at any resolution, in this case an increase by a

factor of approximately 40. Biological systems will require

even more: roughly three orders of magnitude as compared

with Au.

A very important change in the scattering is due to the

arrangement of the atoms themselves. As has already been

discussed, the disorder of amorphous materials spreads scat-

tering in Fourier space, allowing a distinct advantage in

achieving sufficient SNR for all required spatial frequencies.

Real materials will fall between the case of a perfect crystal

and ideal amorphous solid, which have been used as examples

to illustrate their difference.
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Figure 3
Amorphous Au particle. (a) Achievable resolution for various photon statistics, where the solid line is the theoretical model described by equation (2)
and circles are reconstructions using CXDI from simulated photon statistics. The horizontal dashed line indicates the pixel size below which the current
simulations cannot reach, and the dashed line which follows much of the theoretical curve indicates the expected �x�5 fall-off for a uniform particle. To
show local resolution, a subset of recovered atomic positions at the center (b)–(e) and edge ( f )–(k) of the particle are shown, where atomic position ME
and MAE (a) are also given. The actual atomic position at the center (b) and edge ( f ) of the particle are fully recovered by 1.5 
 1017 photons mm�2 (c)
and (g). At 1017 photons mm�2 (d) and (h), all but one atom matches the known solution for the center and edge, respectively. Finally, at 6
 1016 photons
mm�2 (e) and (k) a large number of atomic positions are incorrect.



Another important change in scattering will occur due the

finite size of the particle. Although the additional scattering

due to more material will be exactly canceled due to additional

sampling required for larger particles, the scattering distribu-

tion is also slightly modified with particle size (Fig. 4). As the

particle size increases, Bragg peaks become more narrow.

Thus, larger particles will generally require more TIPF to

achieve the same resolution. The arrangement of atoms is

unimportant for resolutions significantly greater than the

atomic scale, where the TIPF is observed to be directly

proportional to particle size. However, below atomic resolu-

tion, while the TIPF for crystalline materials remains

approximately linearly dependent on particle size, the TIPF

for amorphous materials becomes independent of particle

size. Thus, the relative reduction in TIPF when reaching

atomic resolution becomes greater for larger amorphous

particles and is independent of particle size for crystalline

materials, as was predicted (Appendix B). In the limit of small

particle size, the crystalline and amorphous case become

identical.

5. Conclusion

The realization of true atomic resolution using CXDI will

require a number of technical problems to be resolved,

including high-dynamic-range detectors with high quantum

efficiency and low dead-time to reduce waste of illuminating

photons. Possibly the most challenging and costly requirement

is to obtain sufficiently brilliant X-ray sources to perform

experiments within reasonable time periods. Current third-

generation sources such as APS, SPring-8, NSLS II and

Petra III have a brilliance of (5
 1013 to 2
 1015) photons s�1

mm�2 mrad�2 (0.1% bandwidth)�1 near 10 keV (Bilderback et

al., 2010). Estimates of usable coherent flux suggest that these

sources require of the order of one year of measuring to reach

atomic resolution for materials with high electron density. As

an example, one of the best 2D resolutions achieved thus far is

3 nm for a silver cube using 1
 1013 photons mm�2 (Takahashi

et al., 2009). Adjusting for oversampling, electron density,

photon energy and volume fraction, an ideal measurement on

a 100 nm gold sphere could have achieved a 2D resolution of

1.1 nm or a 3D resolution of 3.8 nm using the same TIPF. This

falls in line with predictions made by equations (1) and (2).

Next-generation sources, such as the proposed multi-bend

achromat synchrotron and energy-recovery linac, will provide

roughly two orders of magnitude increase in brilliance

(Eriksson et al., 2008). This makes achieving atomic resolution

a real possibility under ideal conditions for radiation-hard

samples. The necessity to increase the brilliance of X-ray

sources can be alleviated by using partially incoherent radia-

tion for CXDI to increase the usable photons (Thibault &

Menzel, 2013; Abbey et al., 2011). Even when full atomic

resolution cannot be achieved, order within the particle can

lower the flux requirement compared with the simple expected

power law decay of an equivalent uniform sample. For

instance, crystals with large unit cells produce Bragg peaks at

low spatial frequencies (Shirage et al., 2013), which can help to

image defects on the length scale of the unit cell. We remark

that this method of analysis is valid for any material, including

organic samples that cannot be crystallized, which may one

day be imaged using fast probes (Neutze et al., 2000).

APPENDIX A
Condition of adequate signal-to-noise

We make use of the Shannon sampling theorem, which states

that a band-limited signal can be accurately described when

sampled at the Nyquist rate (Shannon, 1949; Nyquist, 1928). In

other words, if a power spectrum is measured only up to some

maximum frequency, qc, the best expected average image

resolution is �x = �=qc. Strictly speaking, with the use of a

discrete Fourier transform, this will be the pixel size. In order

to separate two nearby objects, it is required that they are

separated by at least two pixels, so the true image resolution

may be thought of as twice the pixel resolution. Resolution

numbers in this paper refer to the pixel size that adequately

describes the signal of a band-limited Fourier spectrum.

Although the diffraction of real objects is never truly band-

limited, the power spectrum rapidly decreases for larger

frequencies and a frequency cutoff can be defined for which

higher frequencies can no longer be measured reliably within

some noise.

In this case we are not interested in an observer’s ability to

discern between a signal and noise and thus do not use signal

detection theory (Peterson et al., 1954) or the useful simplifi-

cation of the Rose model (Rose, 1948). Instead, we are only

interested in the spatial frequency where noise significantly

alters the power spectrum. In that respect we look at the SNR

averaged over shells of constant q,
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Figure 4
Particle size dependence. Theoretical attainable resolution for amor-
phous Au particles (top panel) and crystalline Au particles (bottom
panel) of different sizes: 20 nm (green), 10 nm (blue), 5 nm (purple) and
2.5 nm (black). Amorphous and crystalline Au are identical for
resolutions greater than approximately 5 Å, where the required TIPF
is linearly proportional to particle size. Below atomic resolution the
required TIPF becomes independent of size for amorphous particles.
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Although most materials are sufficiently isotropic to consider

the azimuthal average only, it is possible to define the SNR

and spatial resolution along any direction independently. By

signal we mean the expected photons scattered from the

object of interest captured by a detector of size a with

quantum efficiency � during time t, 	ðqÞ = IðqÞ�at. This signal,

sometimes referred to as contrast, excludes photons directly

from the illumination function, sometimes referred to as

unscattered photons in the language of the Born approxima-

tion. For CXDI, the object is illuminated approximately by a

plane wave, which leads to unscattered photons only near q =

0. This is different from traditional microscopy, where the

measured photons across the entire image can have a signifi-

cant contribution from photons that do not contribute to the

image signal contrast. The total noise, 
ðqÞ = ½	ðqÞ þ &2�
1=2, is

due to the Poisson statistics of photon shot noise and addi-

tional noise introduced by the detector, &. In the limiting case

that &2 � 	ðqÞ then hSNRðqÞiq � h
ffiffiffiffiffiffiffiffiffi
	ðqÞ

p
iq, the average

scattered photon amplitude. In the other case, when &2 	

	ðqÞ, hSNRðqÞiq � h	ðqÞiq=&. To continue further, we must

assume that the sample scatters photons relatively isotropi-

cally, such that variations in 	ðqÞ are small for constant q.

Later, we will see that this is not strictly necessary. The aver-

aged SNR is then
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� �
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As we have already assumed, the variations in 	ðqÞ are small;

thus, ½	ðqÞ � h	ðqÞiq�=h	ðqÞiq is also small and we may

expand this term to first order to find

SNRðqÞ
� �

q
�

	ðqÞ
� �

q

	ðqÞ
� �

q
þ &2

h i1=2
1þ

1

2
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q
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" #�1

¼
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h i1=2
: ð7Þ

We are interested in the maximum spatial frequency, qc, for

which the average SNR is above some threshold, �, for all

q � qc. Using (7), this condition is

IðqÞ
� �

q� qc
�at �

�2

2
1þ 1þ 4

&2

�2

� �1=2
" #

: ð8Þ

Since we are interested in the smallest spatial frequency where

the average SNR falls below some threshold, we are primarily

concerned with regions of Fourier space to which few photons

scatter. For non-isotropically scattering samples, such as

crystals, it is the signal between Bragg peaks that will define qc.

Thus, equation (8) holds even for scattering from crystals.

APPENDIX B
Crystalline discontinuities

For crystalline materials it is possible to determine when the

expected resolution will become discontinuous as a function of

dose. Since it is the regions of low SNR that determine the

resolution, the cutoff frequency [equation (8)] will jump across

regions of high SNR, such as Bragg peaks. Far from a Bragg

peak, the asymptotic form of the scattered intensity can be

used. Thus, the (000) contribution to the azimuthally averaged

intensity is then

I0

� �
q
/ Z 2=q4; ð9Þ

where the unit-cell structure factor, Fðq ¼ 0Þ= Z, is the sum of

atomic numbers in the unit cell. It is not important to know the

absolute intensity, since only the ratio of two Bragg peak

intensities will later be used. The contribution from any other

Bragg peak at qb 6¼ 0 to the azimuthally averaged intensity

has the asymptotic form

Ib

� �
q
/

mbjFðqbÞj
2

4qqbðq� qbÞ
2 ; ð10Þ

where mb is the peak multiplicity, given by the number of

symmetry-equivalent reflections. The first discontinuity will be

due to a jump across the first non-forbidden Bragg peak,

scaled by an additional factor of inverse wavevector due to

rotation in three dimensions as seen in equation (2). The start

of this jump is determined by the minima in inter-peak

intensity and is given by

d

dq

1

q
I0

� �
q
þ Ib

� �
q

	 
� �
q1

¼ 0:

Using equations (9) and (10) a quadratic expression is

obtained,

10�0;bðqb � q1Þ
3
qb ¼ q3

1ð2q1 � qbÞ; ð11Þ

where �0;b = Z 2=mbjFðqbÞj
2. This has four roots, one of which

is the correct turnover point between q = 0 and qb. Although

the analytic roots can be written, they are generally far too

complicated to be used directly. The recommendation is to

find the numeric root. Nonetheless, an approximate analytic

root can be found by looking near qb=2, half way between the

two Bragg peaks. Using a first-order Taylor series expansion,

the approximate turnover point is given by

q1 �
qb

2

40�0;b þ 1

30�0;b þ 1

� �
; ð12Þ

which is valid when �0;b ’ 10�1. The jump ends when the same

intensity is reached on the other side of the first Bragg peak.

Thus, if this Bragg peak is sufficiently separated from others,

such that a low-intensity region exists directly after the peak at

qb, then the end point is given by
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q2
2ðq2 � qbÞ

2
¼ q2

1ðqb � q1Þ
2=�; ð13Þ

where � = 1þ 4�0;b½qbðqb � q1Þ
2=q3

1�. This quadratic equation

has analytic roots, but once again it is simpler to calculate the

solution numerically. It is also possible to estimate the end

point by looking for a root near 2qb � q1 which has the same

separation as the start point to the Bragg center. By

performing a first-order Taylor series expansion, the end point

is given by

q2 � 2qb � q1 �
ðqb � q1Þ ð2qb � q1Þ

2
� q2

1=�
� �

2ð2qb � q1Þð3qb � 2q1Þ

�
18

11
qb �

5

8
q1; ð14Þ

where the second approximations assumes the intensity at q1 is

dominated by hIbiq1
. By following the same method, the jumps

across higher Bragg peaks can also be determined, but are not

derived here.
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