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Coherent X-ray diffraction imaging (CXDI) is one of the techniques used to

visualize structures of non-crystalline particles of micrometer to submicrometer

size from materials and biological science. In the structural analysis of CXDI,

the electron density map of a sample particle can theoretically be reconstructed

from a diffraction pattern by using phase-retrieval (PR) algorithms. However, in

practice, the reconstruction is difficult because diffraction patterns are affected

by Poisson noise and miss data in small-angle regions due to the beam stop and

the saturation of detector pixels. In contrast to X-ray protein crystallography,

in which the phases of diffracted waves are experimentally estimated, phase

retrieval in CXDI relies entirely on the computational procedure driven by the

PR algorithms. Thus, objective criteria and methods to assess the accuracy of

retrieved electron density maps are necessary in addition to conventional

parameters monitoring the convergence of PR calculations. Here, a data analysis

scheme, named ASURA, is proposed which selects the most probable electron

density maps from a set of maps retrieved from 1000 different random seeds

for a diffraction pattern. Each electron density map composed of J pixels is

expressed as a point in a J-dimensional space. Principal component analysis is

applied to describe characteristics in the distribution of the maps in the J-

dimensional space. When the distribution is characterized by a small number of

principal components, the distribution is classified using the k-means clustering

method. The classified maps are evaluated by several parameters to assess the

quality of the maps. Using the proposed scheme, structure analysis of a

diffraction pattern from a non-crystalline particle is conducted in two stages:

estimation of the overall shape and determination of the fine structure inside the

support shape. In each stage, the most accurate and probable density maps are

objectively selected. The validity of the proposed scheme is examined by

application to diffraction data that were obtained from an aggregate of metal

particles and a biological specimen at the XFEL facility SACLA using custom-

made diffraction apparatus.

1. Introduction

Coherent X-ray diffraction imaging (CXDI) is a lens-less

imaging technique for visualizing the structures of non-crys-

talline particles with dimensions from submicrometers to

micrometers at resolutions of several tens of nanometers

(Miao et al., 2008). In CXDI experiments, a spatially isolated

non-crystalline particle is illuminated by a coherent X-ray

beam, and the Fraunhofer diffraction pattern is recorded by

an area detector with a sufficiently high sampling frequency to

satisfy the oversampling condition (Miao et al., 2003) (Fig. 1a).

Then, in principle, the electron density map of the specimen

particle can be reconstructed by applying phase-retrieval (PR)

algorithms (Fienup, 1982) to the oversampled diffraction
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pattern. Because of the large penetration depth of X-rays with

short wavelengths, CXDI has the potential to visualize thick

specimens larger than 500 nm at a resolution of several tens of

nanometers without sectioning or chemical labeling.

Since the first demonstration in 1999 (Miao et al., 1999),

many CXDI experiments utilizing synchrotron X-rays have

demonstrated the potential to visualize internal structures of

non-crystalline particles from materials science and biology

(Williams et al., 2003; Shapiro et al., 2005; Miao et al., 2006;

Nishino et al., 2009; Takayama & Nakasako, 2012; Nam et al.,

2013). CXDI experiments utilizing X-ray free-electron lasers

(XFELs) are expected to achieve structure analyses of non-

crystalline particles at higher resolutions than those in

synchrotron experiments (Seibert et al., 2011; Loh et al., 2012;

Nakasako et al., 2013; Hantke et al., 2014; Xu et al., 2014;

Kimura et al., 2014). In XFEL-CXDI experiments, the high

brilliance and ultra-short duration of XFEL pulses enable us

to collect diffraction patterns from non-crystalline particles by

single shots in the ‘diffraction before destruction’ scheme

(Neutze et al., 2000; Chapman et al., 2006a, 2014). Further-

more, the high repetition rates of XFEL pulses enable us to

collect a huge number of diffraction patterns in a short period

of time. Thus, fast, automatic and accurate structure analyses

are necessary for efficient utilization of XFELs by overcoming

inherent problems in PR calculations as described below.

In general, diffraction patterns lose phase information. In

X-ray protein crystallography, the phase information is

experimentally estimated according to changes in diffraction

intensities, for instance, caused by heavy-atom labeling of

protein molecules (Drenth, 2007). In CXDI, the phase deter-

mination of diffracted X-rays is entirely performed by a

computational procedure with little experimental evidence to

support the retrieved phases. Mainly owing to the beam stop

and saturation of detector pixels, diffraction patterns miss data

in very small-angle regions which contain structural informa-

tion regarding the overall shape and total electrons of

specimen particles. In addition, diffraction patterns are

affected by Poisson noise in X-ray detection. Because of these

factors, it is often difficult to obtain a unique solution for

electron density maps of specimen particles.

In this regard, as a representative example, we show elec-

tron density maps retrieved from a diffraction pattern of an

aggregate of 250 nm gold colloidal particles [Figs. 1(a) and

1(b)]. We conducted 1000 trials of PR calculations using

different initial maps, which we roughly classify into three

groups. The maps in the first group almost approximate the

shape of the aggregate [left-hand panel in Fig. 1(c)], but those

in the second group appear as aggregates of degraded or fused

particles [middle panel in Fig. 1(c)]. For the maps in the third

group, there are no electron densities that can be attributed to

gold colloidal particles [right panel in Fig. 1(c)]. In addition, in

the first group, electron density maps display significant fluc-

tuations with almost the same overall shapes. It should be

noted that the parameters conventionally used to examine the
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Figure 1
(a) Schematic illustration of our CXDI experiment using the KOTOBUKI-1 apparatus and the MPCCD Octal and MPCCD Dual detectors at BL3 of
SACLA. (b) A representative diffraction pattern from an aggregate of 250 nm gold colloidal particles after merging two MPCCD detectors. (c) Three
types of electron density map retrieved from the diffraction pattern in panel (b). The scale bars indicate 500 nm.



correctness of the maps are occasionally better in the second

or third group than those in the first group.

As one of the current fashions to obtain plausible electron

density maps, researchers perform hundreds of PR-calculation

trials for a single diffraction pattern starting from random

initial maps. Subsequently, part of retrieved maps, which have

similar shapes to each other and display good scores of criteria

for evaluation, are averaged. Frequently, retrieved maps are

compared with particle images observed in optical microscopy

(OM) and/or electron microscopy (EM). However, because

the internal fine structures in thick specimens are difficult

to observe except by CXDI, high-resolution structures of

reconstructed maps cannot be confirmed by other imaging

techniques. As previously mentioned, because CXDI itself

provides little physical evidence to confirm the accuracy of a

retrieved phase set, any scheme for assessing the results of

structure analyses is necessary to provide opportunities for

more objective selection of retrieved electron density maps.

In the previous studies, we proposed schemes to reconstruct

the three-dimensional electron density maps of biological

macromolecules in future XFEL-CXDI experiments (Kodama

& Nakasako, 2011; Oroguchi & Nakasako, 2013). We treated

the phase-retrieved projection electron density maps

composed of J pixels as points in a J-dimensional space, the ith

axis of which represents the electron density value of the ith

pixel. In this study we also treat a large number of electron

density maps retrieved from a diffraction pattern as points in a

multidimensional space. Because it is difficult to visualize the

distribution of maps in the multidimensional space directly, we

attempt to describe the characteristics of the distribution

within a small number of dimensions through multivariate

analyses. By classifying the maps and calculating parameters

to assess their qualities, we evaluate the correctness and

accuracy of the maps.

Here we present the proposed scheme, named ASURA, in

detail and apply the scheme to experimental diffraction

patterns from non-crystalline particles collected at the XFEL

facility SACLA.

2. Method

2.1. Outline of the proposed scheme

In many PR calculations, the support shape and internal

electron density distribution within the support are simulta-

neously estimated. In the proposed scheme, we separate the

PR process into two stages (Fig. 2): the determination of the

most probable overall support shape, and the subsequent

estimation of electron density distribution with fine structures

inside the support to explain the diffraction pattern.

First, we prepare N (1000 in this study) electron density

maps having J pixels (50 � 50 or 60 � 60 in this study). The

maps are retrieved from a diffraction pattern starting from

different initial maps with random electron densities. The

electron density of the ith pixel in a map is regarded as the

value of the ith axis in the J-dimensional space. Thus, each

electron density map can be represented as a point in the

J-dimensional space.

Principal component analysis (PCA) is applied to the set of

maps in the J-dimensional space (van Heel & Frank, 1981).

When the PCA suggests the possibility that the variance

among the N electron density maps can be described pre-

dominantly by a small number of principal components (PCs)

with a minimal loss of information, the k-means clustering

method (MacQueen, 1967) is applied to classify the maps in a

space spanned by a small number of PCs. By referring to the

averaged map and the parameters used to examine the accu-

racy in each class, we objectively select the best support shape

for the subsequent analysis. In the selection, we can refer to

the maximum size of the particle estimated by the auto-

correlation function of the diffraction pattern (Kobayashi et

al., 2014). The particle shapes from OM and/or EM may be

helpful for the selection if available in this stage.

In the second stage, the fine structures inside the best

support are estimated. We apply PCA to the N electron

density maps retrieved under the fixed support condition. The

N maps are classified by the same procedure in the first stage.

We select the best class which is composed of maps with high

accuracy and supported by several parameters defined in the

following section. Finally, we obtain a map averaged for the

components of the best class. In this stage, OM and/or EM

provide little structural information to select the most prob-

able electron density maps with fine internal structures.
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Figure 2
Flowchart of the two-stage structure analysis. The details are described in
the Method section of the main text.



2.2. PR algorithms used in the proposed scheme

In the first stage, we retrieve the projection electron density

maps from a diffraction pattern by combining the hybrid-

input–output (HIO) (Fienup, 1982) and shrink-wrap (SW)

(Marchesini et al., 2003) algorithms (HIO-SW), which were

developed in our previous study (Kodama & Nakasako, 2011;

Oroguchi & Nakasako, 2013; Nakasako et al., 2013; Sekiguchi

et al., 2014a). The initial support is estimated as an area where

the autocorrelation function calculated from the diffraction

pattern becomes asymptotically close to zero (Kobayashi et

al., 2014). The following equation is used as a real-space

constraint in the HIO algorithm,

�kþ1 rð Þ ¼

(
� 0k rð Þ r 2 Support and � 0k rð Þ � 0;
�k rð Þ � �� 0k rð Þ otherwise;

ð1Þ

where �k rð Þ is the map at the beginning of the kth HIO-cycle.

� 0k rð Þ is the inverse Fourier transformation of a structure factor

with the observed amplitude and the phase calculated from

�k rð Þ. �kþ1 rð Þ is an electron density map generated for the next

cycle. � is the weight parameter fixed throughout HIO itera-

tions.

After the hth set of HIO iterations of n cycles, the support is

updated by the SW algorithm to exclude areas with densities

less than a specified threshold after convoluting the following

Gaussian to the HIO-retrieved map as a low-pass filter,

Gh rð Þ ¼
1

2��h
2

exp � rj j2=2�h
2

� �
: ð2Þ

The value of the standard deviation �h is changed cycle-

dependently. The new support is defined as the area, the

electron density of which is higher than a threshold value

calculated by multiplying a parameter � by the maximum

density in the low-pass-filtered map.

In the second stage, we used the oversampling smoothness

(OSS) algorithm (Rodriguez et al., 2013) to obtain the most

probable electron density map inside the best support. The

real-space restraint used is

� 00k ðrÞ ¼

(
� 0kðrÞ r 2 Support and � 0kðrÞ � 0;

�kðrÞ � ��
0
kðrÞ otherwise;

�kþ1ðrÞ ¼

(
� 00k ðrÞ r 2 Support;

F
�1 G 00k ðSÞWðSÞ
� �

r =2 Support;
ð3Þ

WðSÞ ¼ exp �
1

2

S

�

� �2
" #

;

where F �1 is the inverse Fourier transform and G 00 Sð Þ is the

Fourier transform of � 00k rð Þ. For maps j � j pixels in size,

parameter � changes from j to 1/j every 1000 iterations

linearly.

2.3. Multivariate analysis

We classify a large number (N) of electron density maps

with J pixels retrieved from a diffraction pattern in each stage.

However, it is difficult to visualize the distribution of maps in

the J-dimensional space. Thus, using PCA, we examine the

possibility that we can characterize the distribution in a low-

dimensional space with a minimal loss of information (van

Heel & Frank, 1981).

We define a matrix X to express N electron density maps

comprising J pixels as

X ¼

x11 � x1

� �
x12 � x2

� �
� � � x1J � xJ

� �
x21 � x1

� �
x22 � x2

� �
� � � x2J � xJ

� �
..
. ..

. . .
. ..

.

xN1 � x1

� �
xN2 � x2

� �
� � � xNJ � xJ

� �

0
BBB@

1
CCCA ð4Þ

where xij is the electron density at the jth pixel of the ith map,

and hxji is the averaged electron density of the jth pixel among

the N maps. Then, eigenvalues and eigenvectors of the

covariance matrix D = X tX are calculated. Eigenvectors

represent the directions along which N electron density maps

are distributed in the J-dimensional space. Eigenvalues are

indices reflecting the variance of the distribution. Each

eigenvector has J elements and can be visualized as images

with J pixels. When the eigenvectors for the L (L << J) largest

eigenvalues contribute predominantly to the variance among

the N maps, the distribution in the J-dimensional space can be

represented in an L-dimensional space with minimum loss of

information about distribution. Then, the distribution of the

maps is displayed as their projection onto the L eigenvectors.

The projections onto the L axes are mathematically calculated

as the inner product of the J-dimensional maps and the L

eigenvectors.

The maps projected onto the L-dimensional space are

classified by the k-means clustering method (MacQueen,

1967). Assuming that the maps are classified into M classes, we

minimize the sum of squared distances (T) between the maps

and the centroids of the classes, which is defined as

T ¼
PM

m¼ 1

P
yim 2m

yim � ym

� �� 	2
; ð5Þ

where yim is an L-dimensional vector indicating the position of

the ith map belonging to the mth class and hymi is the centroid

of the mth class.

2.4. Parameters characterizing phase-retrieved electron
density maps in each class

Here we use four parameters to characterize the phase-

retrieved electron density maps: the number of electron

density maps in each class defined by the k-means clustering;

crystallographic R-factor (Drenth, 2007); zero-angle diffrac-

tion intensity; and estimated effective resolution with phase-

retrieval transfer function (PRTF) (Chapman et al., 2006b). By

comparing the parameters and averaged electron density

maps in each class, we select the class yielding the most

probable electron density map.

2.4.1. Number of maps in each class. The number of maps

included in each class can be used as a criterion. This is based

on the idea that probable maps appear more frequently than

incorrect maps. The most frequently appearing maps are often
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accepted as probable maps in XFEL-CXDI analyses (Park et

al., 2013; Kimura et al., 2014; van der Schot et al., 2015).

2.4.2. Crystallographic R-factor. The crystallographic R-

factor (Drenth, 2007) is defined as

R ¼

P
S

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Iobs Sð Þ

p
� k

ffiffiffiffiffiffiffiffiffiffiffiffi
Ical Sð Þ

p��� ���P
S

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Iobs Sð Þ

p ; ð6Þ

where Iobs Sð Þ and Ical Sð Þ are the observed and calculated

diffraction intensities, respectively, at scattering vector S.

Ical Sð Þ is calculated using an averaged density map in each

class. The scale factor k is defined to equalize the sum of the

experimental and calculated diffraction intensity. Thus, the

crystallographic R-factor measures how the structure ampli-

tude calculated using the structure model is similar to the

observed set. The difference between observed and calculated

diffraction amplitude is conventionally used as an error

function or a convergence criterion from the beginning of

development for PR algorithms (Fienup, 1982).

2.4.3. Zero-angle diffraction intensity. In the calculated

diffraction intensity, the zero-angle diffraction I0 (forward

scattering) is proportional to the squared total sum of the

electron density. When a PR calculation is unsuccessful, I0

tends to become extremely large (Nishino et al., 2003). Here

we use the average of I0 within each class.

2.4.4. Estimated effective resolution with phase-retrieval
transfer function. To monitor the consistency of the retrieved

phases (i.e. electron density maps) within a class, we define an

average of phase terms at scattering vector S as

r Sð Þ ¼
PN
j¼ 1

exp i’ cal
j Sð Þ

� ������
�����
.

N; ð7Þ

where ’cal
j Sð Þ is the phase of the jth map in the class, and N is

the number of maps included in the class. The radial average

of r Sð Þ is known as the PRTF (Chapman et al., 2006b). In

CXDI, the PRTF is used to evaluate the effective resolution of

an average of reconstructed maps. To yield an effective reso-

lution, typical threshold values of PRTF are 0.5 (Jiang et al.,

2010) and 1=e (0.368) (Seibert et al., 2011).

Here we consider the relation of r Sð Þ with the figure of merit

(FOM) (Blow & Crick, 1959), which is a conventional criterion

for examining the reliability of the phase set in X-ray protein

crystallography and EM. The FOM is defined as

FOM Sð Þ ¼

P
k

P ’k Sð Þ
� �

exp i’k Sð Þ
� �����

����P
k

P ’k Sð Þ
� � ; ð8Þ

where P½’k Sð Þ� is an experimentally determined phase prob-

ability distribution function for the kth phase angle at the

scattering vector S. When the distribution of the phase angles

are measured finely, the sum of ’cal
j Sð Þ terms can be approxi-

mated as

PN
j¼ 1

exp i’cal
j Sð Þ

� �
�

P
k

P ’k Sð Þ
� �

exp i’k Sð Þ
� �

; ð9Þ

where
P

k P½’kðSÞ� = N. Consequently, we obtain the following

approximation,

r Sð Þ � FOM Sð Þ: ð10Þ

In single-particle analysis of cryo-electron microscopy, the

effective resolution of a reconstructed three-dimensional map

is often defined as the resolution where the radial average of

the FOM decreases to 0.5 (Rosenthal & Henderson, 2003). In

X-ray crystallography, electron density maps with radially

averaged FOM of 0.5 are commonly regarded as interpretable,

and thus researchers can build molecular models (Lunin &

Woolfson, 1993). For instance, the automated model building

software ARP/wARP is usually applied to electron density

maps of radially averaged FOM of around 0.5 at a resolution

of 2.5–3.0 Å (Perrakis et al., 1997). Thus we define the effective

resolution of an averaged map in the proposed scheme as the

resolution at which the radial average of the FOM, i.e. the

PRTF, decreases to 0.5.

3. Experimental procedure

3.1. Specimen preparation

Gold colloidal particles with a diameter of 250 nm (British

Bio Cell International Solutions, UK) were dispersed

randomly on silicon nitride membranes (Norcada, Canada)

by using a micropipette. Purified chloroplasts from Cyani-

dioschyzon merolae were dispersed on carbon membranes

under a humidity-controlled atmosphere, and then rapidly

frozen by liquid ethane according to the procedure reported

previously (Takayama & Nakasako, 2012; Takayama et al.,

2015).

3.2. XFEL-CXDI experiment and data processing

We performed a CXDI experiment at EH3 of BL3 (Tono et

al., 2013) at the XFEL facility SACLA. A specimen holder

fixing the membranes was set in a diffractometer named

KOTOBUKI-1 (Nakasako et al., 2013) and scanned against

incident X-ray pulses (Sekiguchi et al., 2014b). The intensity

and duration of single X-ray pulses with a photon energy of

5.5 keV were approximately 1010–1011 photons mm�2 pulse�1

and 10 fs, respectively. The X-ray pulses were supplied to the

experimental hutch at a repetition rate of 1 Hz by using a

selector device installed in the beamline. Diffraction patterns

were recorded by using multi-port CCD Octal and Dual

detectors (Kameshima et al., 2014) placed 1.6 m and 3.2 m

downstream from the specimen position, respectively. The

central aperture of the Octal detector and the thickness

of attenuators in front of the Dual detector were varied

depending on the diffraction intensity from specimens.

Subtraction of detector background noise and merging of

the diffraction patterns from the two detectors were carried

out by using our custom-made data-processing program suite

G-SITENNO (Sekiguchi et al., 2014a,b). Each diffraction

pattern was binned by summing 2 � 2 pixels into one pixel,

and the resulting 128 � 128 pixels were used for PR calcula-

tions.
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3.3. PR calculations

In the PR calculation in the first stage, we fixed the para-

meter � in equation (1) to be 0.9. In addition, the standard

deviation value of equation (2) in the SW calculation applied

after every 100 calculations was varied cycle-dependently. For

the hth cycle of the SW, the standard deviation value was given

by the following equation,

�h pixels ¼

(
2:0� 0:98h�1 �h�1 � 0:98 > 0:90;
0:90 �h�1 � 0:98 < 0:90:

ð11Þ

The parameter � defining the threshold value was empirically

determined and fixed throughout all SW support updates.

After 100 support updates by the SW, 1000 HIO iterations

were additionally performed to obtain the final electron

density map. Eventually, 11000 HIO iterations were

performed with each initial random map.

In the PR calculation in the second stage, we carried out

20000 OSS iterations by varying the parameter � in equation

(3) for 20 times with the input of a fixed support.

The retrieved electron density maps have large blank areas

outside the support, which originate from the oversampling.

Because these blank areas only increase computational cost of

the remaining analyses, a large part of them were trimmed

away. For example, reconstructed maps with 128 � 128 pixels

were reduced to 60 � 60 or 50 � 50 pixels by this procedure.

All data processing by the G-

SITENNO suite and PR calculations

with multivariate analyses were

performed on a supercomputer installed

in SACLA composed of 960 cores of

Intel Xeon CPU X5690 (3.47 GHz per

core) (Joti et al., 2015).

3.4. Multivariate analysis

The retrieved electron density maps

contain no information on absolute

translational positions as diffraction

patterns lose phases. Moreover, the

maps are ambiguous regarding the �-

rotation because of the Friedel’s centro-

symmetry. Thus, prior to PCA, the

electron density maps were super-

imposed regarding their centroids with

accuracy of 1 pixel, and then we

selected either the 0-rotation or �-

rotation of each map by calculating a

correlation coefficient for a selected

reference map.

We applied PCA to the �-rotated or

0-rotated electron density maps, and

then the maps were projected onto the

two-dimensional principal-component

space. These maps were classified by the

k-means clustering method assuming

ten classes through our experiences.

Classification by the k-means clustering method strongly

depends on the distribution of initial random centroids given

for assumed classes. Hence, we performed 100 independent

trials and adopted the clustering result with the minimum T.

4. Results

To examine the effectiveness and efficiency of the proposed

scheme, we targeted representative diffraction patterns of

non-crystalline particles from materials science and biology

obtained by the single-shot diffraction experiment. The

selected diffraction patterns displayed good signal-to-noise

ratios (SNRs) beyond a resolution of 50 nm. Here we describe

how the most probable electron density maps were deter-

mined through the two-stages analysis of PR calculation and

multivariate analysis.

4.1. Diffraction patterns

A diffraction pattern from an aggregate of 250 nm gold

particles was recorded in the reciprocal-space resolution range

from approximately 1.9 to 68.0 mm�1 (corresponding to a real-

space resolution of 525–14.7 nm). For the structure analysis,

we selected a region with diffraction intensity of approxi-

mately 10 photons pixel�1 and SNR > 3 (Fig. 3a).

The chloroplasts occasionally diffracted X-rays beyond a

resolution of 20 mm�1. We extracted a diffraction pattern with
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Figure 3
Representative diffraction patterns from an aggregate of 250 nm gold colloidal particles (a) and
from a chloroplast of C. merolae (b) shown at resolutions up to 17.4 mm�1 at the edge
(corresponding to a resolution of 57.4 nm in the real space). The intensity profiles along the
dotted lines in the diffraction patterns are shown in the lower panels. Error bars in the line profiles
are the square root of the intensity.



a good SNR up to a resolution of 17.4 mm�1 (corresponding

to 57.4 nm resolution in real space) (Fig. 3b). As typically

observed in the line profile, the SNR in each resolution shell

was almost better than 3 up to the edge of the extracted

region. The speckle pattern comprises concentric rings indi-

cating the globular overall shape.

4.2. Structure analysis of an aggregate of gold colloidal
particles

4.2.1. Overall shape. Through HIO-SW calculations with

the parameter � set as 0.04 we retrieved 1000 electron density

maps. After the PCA, the electron

density maps in a 60 � 60-dimensional

space were projected onto the plane

spanned by the first and second PCs

[Figs. 4(a) and 4(b)], which described

60% of the total variance among the

1000 maps. Most of the maps belonged

to one of three clusters designated as

I, II and III. For each class, after the

k-means clustering, we calculated the

averaged electron density map and

support shape (Fig. 4c) together with

the parameters used to assess the

quality of the class (Table 1).

Approximately half of the 1000 maps

belonged to classes 1 and 2 of cluster I

[Fig. 4(b) and Table 1]. Within each

class, the retrieved maps and support

shapes were very similar. The electron

density maps of ten gold colloidal

particles were well separated (Fig. 4c).

The averaged electron density maps

were closely similar between the two

classes as well as the averaged support

shapes, which exhibit sharp edges.

Among all of the classes, the R-factors

and effective resolutions of classes 1

and 2 were the first and second best,

respectively (Table 1).

The averaged electron density maps

of clusters II or III look like gold

colloidal particles fused (Fig. 4c), similar

to the map in the middle of Fig. 1(c).

Both the R-factors and effective reso-

lutions were worse than those in cluster

I (Table 1). Class 10, displaying large

zero-angle diffraction intensity, was an

assembly of maps obtained from failed

SW calculations [Fig. 4(c) and Table 1].

The averaged electron density map

spread extremely widely and was poor

with regard to the R-factor and effective

resolution.

Considering the quality of the aver-

aged electron density maps, support
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Figure 4
Results of the first stage of estimating the most probable overall support shape of an aggregate of
gold colloidal particles from the diffraction pattern in Fig. 3(a). (a) A projection of 1000 electron
density maps in the 3600-dimensional space onto the plane spanned by the first two PCs determined
in PCA. The positions of maps are indicated by symbols colored according to the classes determined
by the k-means clustering. (b) The distribution in panel (a) expressed as the frequency. (c) The
averaged electron density map and averaged support shape of each class. The scale bars indicate
500 nm. The values of parameters for each class are compiled in Table 1. (d) A magnified view of the
averaged electron density map of the selected class 1. (e) A PRTF curve calculated from 285
electron density maps belonging to class 1. The dotted lines are used to estimate the effective
resolution of the averaged map.

Table 1
Calculated criteria values for the classes in Fig. 4.

Class
Number
in class R �II0 (photons)

Estimated
resolution (nm)

1 285 0.287 5.37 � 106 91.3
2 220 0.300 5.88 � 106 93.7
3 21 0.328 7.60 � 106 104.4
4 111 0.390 1.22 � 107 202.9
5 63 0.422 1.48 � 107 202.9
6 61 0.431 1.28 � 107 202.9
7 25 0.447 1.09 � 107 202.9
8 13 0.405 1.33 � 107 192.2
9 194 0.423 1.03 � 107 192.2
10 7 0.522 8.61 � 107 1826.3



shapes and parameters, we selected class 1 as the most prob-

able support shape in the first stage [Figs. 4(d) and 4(e),

Table 1).

4.2.2. Most probable electron density map with fine
structures. The averaged support of class 1, binarized at a

threshold level of 0.5, was used as the support in the subse-

quent OSS calculations. The PCA revealed that 673 of the

1000 OSS-retrieved maps formed two clusters designated as I

and II in the plane spanned by the first and second PC vectors,

which described 42% of the total variance [Figs. 5(a) and

5(b)]. Through the k-means clustering, classes A–E in the

negative region of the first PC displayed electron density maps

closely similar to each other with R-

factors of 0.19–0.20 [Fig. 5(c) and

Table 2]. The fine structures in averaged

maps suggest that the maps were well

classified and separated to avoid

smearing by the contamination of other

classes of maps.

As the most probable map repre-

senting classes A–E, we selected class B

with the largest population of distribu-

tion and the smallest R-factor [Fig. 5(d)

and Table 2]. The averaged electron

density maps of some gold colloidal

particles appear as triangular shapes as

observed by EM (Nakasako et al., 2013),

whereas those in the first stage were

approximated as circular shapes. The

fine structures would contribute to the

improvement of the effective resolution

better than 60 nm in PRTF (Fig. 5e).

4.3. Structure analysis of a chloroplast

4.3.1. Overall shape. We prepared

1000 HIO-SW maps for the diffraction

pattern with a SW parameter � of 0.035.

After PCA was performed, the maps in

the 50 � 50-dimensional space were

projected onto the plane spanned by the

first and second PCs, which described

45% of the total variance among the

1000 maps. Most of the maps were

distributed in three clusters, I, II and III

[Figs. 6(a) and 6(b)]. We classified the

maps further through k-means clus-

tering.

At a glance, classes 1 and 2 forming

cluster III seemed to be somewhat

better than the other classes regarding

their population density and the effec-

tive resolution [Fig. 6(b) and Table 3].

However, the averaged density map

of each class, which comprised one

prominent density peak accompanying

weak peaks separated by 400 nm, was
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Figure 5
Results of the second stage of estimating the most probable electron density maps inside the
support in Fig. 4(d). (a) A projection of 1000 maps in the 3600-dimensional space onto the plane
spanned by the first two PCs determined in PCA. The positions of maps are indicated by symbols
colored according to the classes from the k-means clustering. (b) The distribution in panel (a)
expressed as the frequency. (c) The averaged electron density map and averaged support shape of
each class. The scale bars indicate 500 nm. The values of parameters for each class are compiled in
Table 2. (d) A magnified view of the averaged electron density map of the selected class B. (e) A
PRTF curve calculated from 196 electron density maps belonging to class B. The dotted lines are
used to estimate the effective resolution of the averaged map.

Table 2
Calculated criteria values for the classes in Fig. 5.

Class
Number
in class R �II0 (photons)

Estimated
resolution (nm)

A 30 0.195 9.46 � 106 57.4
B 196 0.189 9.60 � 106 57.4
C 124 0.200 9.56 � 106 57.4
D 86 0.203 9.45 � 106 57.4
E 237 0.191 9.56 � 106 57.4
F 84 0.192 9.19 � 106 57.4
G 60 0.231 9.34 � 106 64.1
H 61 0.183 9.02 � 106 57.4
I 54 0.253 8.67 � 106 84.9
J 68 0.216 7.79 � 106 60.9



inconsistent with the globular shape expected from the

concentric interference pattern (Fig. 3b).

In X-ray crystallography, if atoms of the model structures

are randomly distributed, the R-factor becomes 0.59 (Wilson,

1950). R-factors of each class were distributed in the range

0.50–0.55, close to 0.59. Class 3 displayed the lowest R-factor

of 0.50. However, it is uncertain whether the slight difference

in R-factors between class 3 and a random electron density

map can be used as a significant criterion for selecting prob-

able shapes.

Cluster I composed of classes 4–8 contained 583 maps out of

1000 HIO-SW maps, and widely spread in the negative region

of the first PC (Fig. 6b). The maps had

commonly globular C-shapes consistent

with the low-resolution images of

chloroplasts observed in fluorescence

microscopy (Takayama et al., 2015)

(Fig. 6c). Here, we selected class 6

(Fig. 6d), which was the most populated

and was located at the center of cluster

I. The low effective resolution (Fig. 6e)

suggested that the electron density

distribution in the C-shape was a rough

approximation of the internal structure

of the chloroplast.

4.3.2. Most probable electron
density map with fine structures.
Under the constraint of the selected

support of class 6 binarized at the

threshold of 0.5, we retrieved 1000

electron density maps by using the OSS

algorithm. Through applying the PCA

to the maps, we found that the first and

second PCs described 42% of the total

variance of the maps. The maps

projected onto the plane spanned by the

two PCs were roughly separated into

one major cluster (cluster I) and three

minor clusters (clusters II–IV) [Fig. 7(a)

and 7(b)]. After the k-means clustering,

clusters I and IV located in the negative

region of the first PC were characterized

by maps with prominent peaks in the

lower right part (Fig. 7c), while cluster

III including maps with peaks in the

upper left were located in the positive

region. Because their averaged maps

were inconsistent with the overall C-

shape of class 6 (Fig. 6d), we rejected

the three clusters.

The most populated cluster II

composed of classes A–C displayed

their averaged maps approximated as a

C-shape (Fig. 7c). In contrast to the

averaged electron density map of class 6

in the first stage, fine structures

appeared in classes A–C. In particular,
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Figure 6
Result of the first stage of estimating the most probable overall support shape of a chloroplast from
the diffraction pattern in Fig. 3(b). (a) A projection of 1000 electron density maps in the 2500-
dimensional space onto the plane spanned by the first two PCs determined in PCA. The positions of
maps are indicated by symbols colored according to the classes from the k-means clustering. (b) The
distribution in panel (a) expressed as the frequency. (c) The averaged electron density map and
averaged support shape of each class. The scale bars indicate 500 nm. The values of parameters for
each class are compiled in Table 3. (d) A magnified view of the averaged electron density map of the
selected class 6. (e) A PRTF curve calculated from 137 electron density maps belonging to class 6.
The dotted lines are used to estimate the effective resolution of the averaged map.

Table 3
Calculated criteria values for the classes in Fig. 6.

Class
Number
in class R �II0 (photons)

Estimated
resolution (nm)

1 107 0.522 1.35 � 106 228.3
2 114 0.525 1.57 � 106 202.9
3 62 0.501 4.16 � 106 281.0
4 131 0.531 6.36 � 106 281.0
5 87 0.506 5.15 � 106 281.0
6 137 0.520 6.39 � 106 281.0
7 132 0.547 9.62 � 106 304.4
8 96 0.539 7.32 � 106 304.4
9 48 0.513 4.05 � 106 243.5
10 86 0.542 1.89 � 106 243.5



class A composed of 227 maps was most populated, and

displayed an R-factor of 0.36 (Table 4). Thus, we selected class

A as the most probable projection structure of the chloroplast.

Owing to the fine structures, the effective resolution (Fig. 7e)

improved to 8 mm�1 (corresponding to 126 nm). Considering

that undulations of the interference pattern in 5–15 mm�1

originated from the globular shape, the effective resolution

may optimistically be better than 12 mm�1 (corresponding to

83 nm).

Class G displayed the lowest R-factor value of 0.32.

However, the averaged electron density map of class G is

different from the averaged map of the most probable class A

and also from the low-resolution

map of class 6. Only considering the

conventionally used R-factor might be

misleading.

5. Discussion

Here we have proposed a scheme to

identify the most probable electron

density maps in CXDI structure

analyses. In the first stage of the scheme,

the best support shape is first estimated,

and then the second stage contributes to

visualization of the fine structure inside

the support. In each stage, the multi-

variate analysis helps us select the most

probable class of retrieved maps

without influence from incorrect maps

as demonstrated in the structure

analyses of gold colloidal particles and a

bacterial chloroplast. In this section we

discuss the benefits, limitations and

characteristics of the proposed scheme.

5.1. Benefits and limitations of the
proposed method

In the structure analyses for the

two experimental diffraction patterns

(Fig. 3), we exclude incorrect and/or less

probable support shapes in the first

stage (Figs. 4 and 6), and visualize the

fine structures inside the supports to

explain the diffraction patterns in the

second stage (Figs. 5 and 7). The first

stage yields a low-resolution structure,

and then the second stage extends the

phase to as high resolution as possible.

In both of the two stages, the multi-

variate analysis is powerful in describing

the characteristic distribution of maps in

the multi-dimensional space.

In this study, we used the HIO-SW

algorithm in the first stage and the OSS

algorithm in the second stage. Other PR
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Figure 7
Result of the second stage of estimating the most probable electron density maps inside the support
of Fig. 6(d). (a) A projection of 1000 electron density maps in the 2500-dimensional space onto the
plane spanned by the first two PCs determined in PCA. The positions of maps are indicated by
symbols colored according to the classes from the k-means clustering. (b) The distribution in panel
(a) expressed as the frequency. (c) The averaged electron density map and averaged support shape
of each class. The scale bars indicate 500 nm. The values of parameters for each class are compiled in
Table 4. (d) A magnified view of the averaged electron density map of the selected class A. (e) A
PRTF curve calculated from 227 electron density maps belonging to class A. The dotted lines are
used to estimate the effective resolution of the averaged map.

Table 4
Calculated criteria values for the classes in Fig. 7.

Class
Number
in class R �II0 (photons)

Estimated
resolution (nm)

A 227 0.363 5.24 � 106 126.0
B 99 0.388 5.44 � 106 126.0
C 69 0.427 4.78 � 106 152.2
D 75 0.476 3.90 � 106 173.9
E 62 0.436 3.72 � 106 182.6
F 40 0.401 5.72 � 106 146.1
G 63 0.322 5.91 � 106 79.4
H 80 0.503 4.28 � 106 243.5
I 137 0.456 4.82 � 106 158.8
J 148 0.399 4.79 � 106 166.0



algorithms or techniques can be easily implemented in each

stage. For instance, more robust estimation of the support area

may be possible by incorporating the dark-field PR techniques

(Martin et al., 2012; Kobayashi et al., 2014) suitable for

diffraction patterns missing data in the small-angle regions

largely. However, it should be noted that the proposed scheme

only contributes to selection of probable classes of maps and

not to improvements of PR algorithms. Indeed, it is still

difficult for the proposed scheme to retrieve reliable electron

density maps from diffraction patterns with small over-

sampling ratio or low SNR.

The computational cost of the proposed scheme is some-

what heavy. To ensure statistical significance of structure

analyses, the scheme requires more than 1000 PR trials for a

diffraction pattern starting from different initial maps. Even

with the parallelized software on the 576 CPU cores of the

supercomputer we used, 1000 HIO-SW calculations and 1000

OSS calculations took about 15 and 25 min, respectively. The

PCA and k-means clustering takes less than 1 min on a single

CPU core. A larger number of PR calculations ensures the

finer sampling of a larger area in the multi-dimensional space.

Therefore, thoughtless reduction of the sampling points would

cause a decline in the reliability of the analyses. Any idea

to effectively reduce the number of PR calculations may

be incorporated in the future development of the analysis

scheme.

5.2. Characteristics in the distribution of maps on the plane
spanned by a few PCs

The retrieved maps are non-uniformly and discretely

distributed into a few clusters in planes spanned by the small

number of PCs [Figs. 4(a), 5(a), 6(a) and 7(a)]. The discrete

distributions are advantageous in selecting the most probable

class of maps. Here we consider why discrete distributions

occur in the multi-dimensional space.

The distributions of maps shown in Figs. 4–7 are similar to

the population of protein structures in their energy landscapes

(Moritsugu et al., 2012). If retrieved maps are similar to the

true map, maps probably distribute around the true map in a

multi-dimensional space or in a space spanned by major PCs.

Therefore, the landscape viewed using the similarity of a

retrieved map to the true map has a basin of population

around the position of the true map. In addition, a narrow

distribution containing many maps with high consistency may

be interpreted as the existence of a steep and narrow basin.

On the basis of this idea, we schematically illustrate the

basins expected for clusters in Figs. 4(a) and 6(a). The maps

in the clusters shown in Fig. 4(a) are thought to be distributed

among three narrow basins (Fig. 8a). Comparing their popu-

lation density, the basin inducing cluster I is the steepest

among the three basins and is likely located closest to the true

map. In the case of a chloroplast (Fig. 6a), three basins can

be assumed (Fig. 8b). The width of cluster I may reflect the

existence of a wide basin. The number of maps belonging to

cluster I suggest that the true map is included in the basin.

The shape, size and depth in a landscape for retrieved maps

in the multi-dimensional space probably depend on the SNR,

oversampling ratio and the size of the small-angle area missing

from the diffraction pattern. Non-uniform distribution of

maps in the multi-dimensional space provides an opportunity

to consider the landscape and the position of the true map.

This idea may help us interpret the results from the multi-

variate analysis and provide ways to refine electron density

maps.

5.3. Outlook

We are particularly interested in the visualization of

internal structures inside cells and cellular organelles with

complex and irregular shapes and low electron densities. In

order to establish CXDI as a useful tool for structural analyses

of biological specimens, the most probable electron density

maps should be automatically and objectively proposed for

given diffraction patterns without any prior information or

reference images. Although the proposed scheme demon-

strated the ability to present the most probable electron

density map of a biological specimen, problems to be settled

are the use of threshold � for estimating the most probable

support shape, the automated selection of the most probable

class, and the number of classes assumed in the k-means

clustering.

In the first stage, threshold � yielding the most probable

support shape depends on the type of specimens. From our

experiences, a � of 0.02–0.06 is suitable for metal particles with

sharp edges and large electron densities. For biological

specimens with low electron densities and irregular shapes, a �
of 0.01–0.05 tends to yield support shapes similar to those

observed in other imaging techniques, with the size expected

from the speckle. We empirically gave the optimal � in the

present study. However, it is better to treat � as one of the

variable parameters that is adjustable in every PR calculation,

by inspecting the correlation between retrieved maps and �.
Thus, we are developing a PR calculation scheme incorpor-

ating this idea.

The second problem may be handled by introducing a

comprehensive score. The score would comprise, for instance,

parameterizations of each of the electron density maps, the

sharpness of support shapes and the population in the
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Figure 8
Schematic illustrations on the landscape regarding the similarity of maps
to the true maps. The expected landscapes in (a) Fig. 4(a) and (b) Fig. 6(a).



landscape discussed, in addition to the parameters listed in

Tables 1–4. The weights of parameters are empirically tuned as

is done in the ab initio determination of the molecular shape

from small-angle scattering profiles of proteins (Svergun et al.,

2001), and the structure refinement under stereochemical

restraints in protein crystallography (Hendrickson, 1985).

Several criteria for the determination of the number of

classes in k-means clustering (Pham et al., 2005) would help us

solve the third problem. Furthermore, nonlinear dimension-

ality reduction, for instance, by using the diffusion map

(Coifman et al., 2005) may help us estimate the number of

classes for retrieved maps in multi-dimensional space.
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