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The effect of angular vibrations of the crystals in cryogenically cooled

monochromators on the beam performance has been studied theoretically

and experimentally. A simple relation between amplitude of the vibrations and

size of the focused beam is developed. It is shown that the double-crystal

monochromator vibrations affect not only the image size but also the image

position along the optical axis. Several methods to measure vibrations with the

X-ray beam are explained and analyzed. The methods have been applied to

systematically study angular crystal vibrations at monochromators installed at

the PETRA III light source. Characteristic values of the amplitudes of angular

vibrations for different monochromators are presented.

1. Introduction

The current trend in the development and upgrade of

synchrotron radiation sources is to provide nano-scale spatial

resolution of the X-ray beam for routine experiments with

different methods used at the facilities. Such a development

requires a decrease of the X-ray source size and extreme

performance of the X-ray optics, which often includes a

double-crystal high-heat-load monochromator (DCM) as a

main element. The ideal monochromator must preserve the

coherence of the X-ray beam passing through. Practically, the

wavefront of the beam is always perturbed due to static and

dynamical sources. The curvature of the crystal surface

introduced either by clamping in the crystal cage or by heat-

load is the static source of perturbation. The effect of the heat-

load on monochromator performance has been intensively

studied during the last years theoretically and experimentally

(Chumakov et al., 2004; Rutishauser et al., 2013; Zhang et al.,

2013; Huang et al., 2014; Chumakov et al., 2014). It has been

shown that the slope error �� of the crystal surface leads to an

increase of the virtual X-ray source by �z = 2L��, where L is

the distance from the monochromator to the source. Thus, the

slope error of 1 mrad leads, for L = 30 m, to the source

broadening by 60 mm, which is larger than the source size.

Cryogenic cooling by liquid nitrogen is used in order to

decrease the effect of heat-load on the first crystal of the

monochromator (Bilderback et al., 2000). However, this

cooling method often is a source of dynamical perturbations of

the X-ray beam shape due to the induced angular vibrations

of the monochromator crystals. Beside the cryogenic cooling,

other sources can lead to angular vibrations, in particular the

feedback system which is often used to keep the Bragg angle

in the correct position. The monochromator vibrations worsen

the X-ray beam quality and lead to the deterioration of the

experimental results (Hinebaugh et al., 2012; Uhlén et al.,

2014). The vibrations of particular monochromators were
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investigated in several studies (Yamazaki et al., 2013;

Chumakov et al., 2014; Zozulya et al., 2014; Kristiansen et al.,

2015).

Here, we present a theoretical and experimental investiga-

tion of the effect of monochromator angular vibrations on the

X-ray beam properties. The theoretical definition of these

vibrations is introduced in the first part and the effect of the

vibrations on the properties of the focused X-ray beam is

analyzed in the phase-space approach. It is shown that

vibrations lead to the broadening of the focal spot and the

relations between amplitude of vibrations and beam size are

established. In addition, we found that the image position

along the optical axis is also affected by vibrations. This effect

is significant for the long-focal-length lens. A description of

the experimental setup for the measurements of mono-

chromator vibrations is presented in the second part. This

method has been applied to study vibrations of the mono-

chromators installed at the PETRA III light source. An

overview of the results obtained with a description of the

characteristic amplitudes of vibrations and their sources is

presented in the last part of the paper.

2. Theoretical description of monochromator
vibrations

Here, we consider the double-crystal monochromator (DCM)

with the same symmetric Bragg reflections for two crystals in

the non-dispersive geometry. The distance between crystals

is usually much smaller than the distance from the mono-

chromator to the X-ray source. Thus, in the theoretical model,

we ignore the distance between crystals and assume that both

reflections occur at the same point. The time-dependent

angular vibrations of the first and second crystals around the

equilibrium position are described by the functions ’m1ðtÞ and

’m2ðtÞ, respectively, as shown in Fig. 1. The total DCM angular

vibrations are defined as ’mðtÞ = ’m1ðtÞ � ’m2ðtÞ, so that the

change of the beam direction after the DCM is 2’mðtÞ. We

assume that the amplitude of the vibrations is smaller than the

width of the rocking curve of the monochromator, so that

the X-ray flux passing through the DCM is not affected by

variation of ’m. This assumption is valid for the vibrations with

characteristic amplitude of about 0.1–1 mrad and Si(111)

reflections chosen for the DCM crystals at an energy in the

range 10–30 keV, which are typical conditions for many

monochromators.

We characterize the DCM angular vibrations via root-

mean-square (RMS) deviation, �m, from the equilibrium

position,

�2
m ¼ ’2

mðtÞ
� �

¼
1

T

ZT

0

dt ’2
mðtÞ; ð1Þ

where brackets denote the average over time, T is the time

value much larger than the characteristic vibrations periods

and the mean value of ’mðtÞ is assumed to be zero, i.e. h’mðtÞi=

0. Equation (1) includes the difference of two angles and can

be written as

�2
m ¼ ’m1ðtÞ � ’m2ðtÞ

� �2
D E
¼ ’2

m1ðtÞ
� �

þ ’2
m2ðtÞ

� �
� 2 ’m1ðtÞ’m2ðtÞ

� �
; ð2Þ

which includes the RMS values of the angular vibrations of the

first and second crystals and the correlation between them.

The contribution of the correlation part depends on the type

of the monochromator. The vibrations of both crystals are

almost anti-correlated for the channel-cut monochromator

where ’m1ðtÞ � ’m2ðtÞ and �m � 0. On the other hand, the

correlation part almost disappears for a long-arm mono-

chromator with individual angular stages for the crystals,

where �2
m � h’

2
m1ðtÞi + h’2

m2ðtÞi. The crystal vibrations in the

other types of monochromators usually include partial corre-

lations between vibrations of individual crystals depending on

the vibration frequency.

The relative influence of the monochromator angular

vibrations on the unfocused beam is small and can often be

neglected. The vertical deviation of the direct beam due to the

vibrations is equal to 2�mP, where P is the distance from the

DCM to the sample. The size of the beam at the sample

position can be approximated as wP 0, where w is the RMS

value of the vertical beam divergence and P 0 is the distance

from the X-ray source to the sample (P 0 > P). Typical values

for the beam divergence are 5–20 mrad, which is much larger

than the typical values for the vibrational amplitudes. Thus,

the additional broadening of the direct beam due to the

vibrations is small and typically less than 5%.

The effect of the crystal vibrations becomes significant in

the case of focusing. It can be understood in the frame of

geometrical optics as shown in Fig. 2. Here, we consider the

optical setup including the DCM at distance zm from the

source and the thin lens with large aperture at distance zo. The

lens focal length f is such that the beam is focused at the image

distance zi after the lens, 1=f = 1=zo + 1=zi. The DCM angular

vibrations lead to the deviation of the beam from the central

axis by an angle of 2’m. The line which describes the beam

propagation after the lens is defined by the deviations from

the central axis at the lens position, xl, and at the image

position, xi. The deviation at the lens position is xl =

2’mðzo � zmÞ. The deviation at the image position can be
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Figure 1
Schematic diagram of the angles of vibrations for the DCM.



calculated taking into account that the rotation of the beam by

2’m is equivalent to a shift of the virtual X-ray source by

xo ¼ �2’mzm. Then, taking into account the lens magnifica-

tion rule, we obtain xi = �ðzi=zoÞxo = ðzi=zoÞ2’mzm.

Without vibrations the beam size at the image position is

si = ðzi=zoÞ so, where so is the vertical source size. The average

over angular vibrations leads to the broadening of the beam

size by xi. Thus, the effect of the DCM angular vibrations can

be estimated from the comparison of the beam size si and

deviation xi. These values are proportional to the source size,

so, and deviation of the virtual X-ray source, xo =�2’mzm. The

typical distance from the X-ray source to the DCM is zm =

30–50 m and the characteristic amplitude of the angular

vibrations is ’m = 0.1–1 mrad. Thus, we obtain that 2’mzm =

6–100 mm is comparable with or larger than the X-ray source

size so = 5–20 mm, which means that the beam size at the image

position is mostly defined by the angular vibrations.

The vibrations lead not only to an increase of the beam size

but also to a shift of the image position. Indeed, as seen in

Fig. 2, there is a position denoted by distance z3 where the

beam deviation from the central axis is zero independent of

the amplitude of the vibrations. This position is the image

position for the virtual source situated at the monochromator

position, 1=f = 1=ðzo � zmÞ þ 1=z3. When the angular vibra-

tions amplitude ’m becomes sufficiently large, the smallest

beam size, the image position, will be found not at zi but at z3.

Thus, with increase of the vibration amplitude the position of

the smallest beam size continuously moves from zi to z3. The

distance z3 can be either positive or negative depending on the

distance from the monochromator to the lens. The largest

effect is observed if zo � zm is small and z3 is negative and

large. Such conditions often occur for long focal lenses used

for pre-focusing of the X-ray beam.

2.1. Phase-space calculation

The analytical expression for beam broadening and shift of

the image position due to the vibrations can be obtained using

phase-space analysis (Pedersen & Riekel, 1991; Huang &

Bilderback, 2001; Ferrero et al., 2008) in the paraxial

approximation. The optical setup presented in Fig. 2 is

considered, which includes the X-ray source, the mono-

chromator and the thin lens. Only the vertical transverse

direction affected by the monochromator vibrations is

considered, with coordinates x; � being the linear and angular

deviation from the central axis. The beam is assumed to be

Gaussian with so and wo being RMS values for the beam size

and divergence at the source position, respectively. The thin

lens has a focal length f (1=f = 1=zo þ 1=zi) and a fixed

aperture of Gaussian shape with an aperture RMS value A.

The angular beam vibrations are introduced by the coordinate

transformation at the monochromator position as ðx0; � 0Þ =

ðx; �Þ þ ½0; 2’mðtÞ�. The beam propagation through the lens

and free space are described by the conventional coordinate

transformation of the phase-space approach. Then, applying

coordinate substitution and integration over angular coordi-

nate, we obtain the beam profile in vertical direction x at the

distance z after the lens and at time t expressed as

I x;’mðtÞ
� �

¼

I0 exp

(
�

�
x� 2zm’mðtÞcðzÞ

�2

2�2
0ðzÞ

�
4’2

mðtÞðzo � zmÞ
2

2ðA2 þ B2Þ

)
; ð3Þ

where B = zowo is the RMS value of the beam size at the lens

position from the point source and I0 is the normalization

coefficient. cðzÞ is the proportionality coefficient between

2zm’mðtÞ and the deviation of the beam from the central axis,

�0ðzÞ is the RMS value of the beam size,

cðzÞ ¼
z

zo

�
ðzo � zmÞðz� ziÞ

zmzið1þ B2=A2Þ
; ð4Þ

�2
0ðzÞ ¼ s2

o

z2
i

z2
o

þ
ðz=zi � 1Þ2

ð1=A2 þ 1=B2Þ
: ð5Þ

Here and further we assume that A2 þ B2 � s2
o which is valid

in most cases.

It is clear from equation (5) that at any time t the smallest

beam size is �0 = soðzi=z0Þ at z = zi. Equations (3) and (4) show

that the shift of the beam center at zi is xi = 2zm’mðtÞzi=zo.

These results are the same as those obtained from the simple

geometrical consideration in the previous section.

The beam profile averaged over angular vibrations, IðxÞ, is

obtained by integration of equation (3) over time T larger

than characteristic periods of the vibrations,

IðxÞ ¼
1

T

ZT

0

dt I x; ’mðtÞ
� �

: ð6Þ

In general, this integration requires knowledge of the function

’mðtÞ. We assume that the angular vibrations are completely

stochastic. In this case, the integration over time can be

replaced (Goodman, 2015) by the integration over ’m with

Gaussian probability having a RMS value �m as defined by

equation (1),

IðxÞ ¼

Z1
�1

dt Iðx; ’mÞ exp �
’2

m

2�2
m

� �
: ð7Þ

In reality, the DCM angular vibrations are not stochastic but

rather harmonic with several eigenfrequencies. However,

numerical integration of equation (6) with experimentally

measured ’mðtÞ shows that the stochastic approximation of (7)

works well. The only exception is the situation when ’mðtÞ
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Figure 2
Diagram of the beam propagation through the optical system which
includes the DCM which turns a beam by angle � 2’m and the thin lens
with large aperture and focal length f such that 1=f = 1=zo þ 1=zi .



describes a large oscillation at a single frequency, where the

stochastic approximation does not work and ’mðtÞ has to be

replaced by a cosine function.

Inserting (3) into (7) and performing analytical integration

we obtain the final expression for the beam profile averaged

over vibrations as

IðxÞ ¼ I 00 exp �
x2

2�ðzÞ2

� 	
; ð8Þ

where I 00 is the normalization parameter. The RMS value of

the beam size �ðzÞ is written as

�ðzÞ2 ¼ �0ðzÞ
2
þ 2�mzmcðzÞ
� �2

(
1þ

2�m zo � zmð Þ
� �2

A2 þ B2

)�1

:

ð9Þ

Simulation of �ðzÞ versus distance z after the lens is shown in

Fig. 3 for different values of the vibration amplitude �m and

for two optical setups with long-focal-length lens situated

close to the monochromator (Fig. 3a) and with short-focal-

length lens situated close to the sample (Fig. 3b). In both cases

the broadening of the beam size at the image position is

observed. The shift of the image position is strong and nega-

tive for the first setup and small and positive for the second

setup.

The simple analytical expression for the smallest beam size

�min and shift of the image position zmin can be derived using

the approximation of small �m. In this case we obtain

�min ¼
zi

zo

s2
o þ 2zm�mð Þ

2
� �1=2

; ð10Þ

zmin � zi

zi

¼ � 2�mzmð Þ
2 1

A2

z2
i

z2
o

þ
1

B2

z2
i

z2
o

þ
zi

zo

�
zi

zm

� �� 	
: ð11Þ

Thus, the broadening of the beam size is expressed via

broadening of the X-ray source size due to the virtual source

shift by 2zm�m and proportional to the RMS value of the

vibrations and to the distance from the X-ray source to the

DCM. The effect of the DCM angular vibrations will be

negligible when so > 2zm�m. Taking zm = 40 m and so = 5 mm,

the values typical of the PETRA III light source, we find that

the beam performance will not be deteriorated by vibrations

if �m < 0.06 mrad.

The sign of the image position shift in equation (11) is

negative when zi=zo is sufficiently large, i.e. for the long-focal-

length lens. The shift increases for a smaller lens aperture or

smaller beam divergence and for a larger ratio of zi=zo.

3. Experimental measurements of angular vibrations

The experimental setup for angular DCM vibration

measurements should be sensitive enough to measure vibra-

tions with RMS values down to at least 0.05 mrad. In addition,

the cut-off frequency should be of the order of 300–1000 Hz in

order to resolve fast vibrations, which exist for certain types of

DCM. We have measured vibrations using the setup shown in

Fig. 4 including compound refractive lenses (CRL) or mirrors,

which focus the X-ray beam, a knife-edge installed at the

beam center and a PIN photodiode or an ionization chamber

as a detector. The signal in the detector is amplified and

measured with an oscilloscope with cut-off frequency of

5 kHz. Two types of measurements are performed. In the first

measurement the flux in the detector is measured as a function

of time using an oscilloscope. In the second measurement the

average over the time signal is detected as a function of the

angle of the second DCM crystal, �. The comparison of the

results of the measurements allows one to transform the

intensity scale to the angular scale and calculate an RMS value
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Figure 3
Simulation of the beam size RMS value versus distance after the lens for
different amplitudes of the DCM angular vibrations �m for (a) the long-
focal-length lens with zo = 50 m, zi = 40 m, A = 1000 mm; (b) the short-
focal-length lens with zo = 80 m, zi = 1 m, A = 200 mm. For both figures the
DCM is at zm = 47 m, X-ray source RMS size and divergence are s = 5 mm,
w = 5 mrad, respectively.

Figure 4
Experimental setup for the measurements of the DCM angular vibrations
including DCM, compound refractive lenses (CRL), knife-edge at the
beam center and PIN photodiode or ionization chamber (IC). The signal
from the PIN photodiode is amplified and measured by an oscilloscope.



of the angular vibrations. The validity of this method is

explained as follows.

According to equation (3) the instant beam profile at

position z after the lens can be presented via the function

I(x, t) = f fx� a½� þ ’mðtÞ�g where f ðyÞ is the peak function

[Gaussian function in equation (3)], x is the vertical coordi-

nate, � is the deviation of the motor angle of the second crystal

out of equilibrium and a is the proportionality coefficient. The

total intensity after the knife-edge is the integral of the beam

profile J(x, t) = Ffx� a½� þ ’mðtÞ�g. An expansion up to the

linear term gives J(x, t) = Fð0Þ � a½� þ ’mðtÞ� f ð0Þ. The time

scan measured by the oscilloscope at � = 0 is presented as JðtÞ =

Fð0Þ � a’mðtÞ f ð0Þ. The angular scan is calculated using a time

average, which leads to Jð�Þ = Fð0Þ � a� f ð0Þ, where we take

into account that h’mðtÞi = 0. Thus, the linear parts in both

scans have the same proportionality coefficients between flux

and angle leading to the possibility to correlate these values.

The proportionality coefficient depends on the distance

between image position and knife-edge position. By changing

this distance the sensitivity of the measurements can be tuned.

The experimental test of the angular vibrations measure-

ments has been performed at beamline P06 of PETRA III

light source. The setup includes a DCM at 35 m from the X-ray

source, a compound refractive lens with 400 mm aperture at

48 m from the source and a knife-edge at 90 m from the source

with a PIN photodiode downstream of the blade. The

measurements were performed with the same compound

refractive lens at 17.5 keV where the image position is at the

knife-edge position with beam size around 60 mm and at

18.5 keV where the image position shifted downstream by

�8 m and the beam size measured by the knife-edge increases

to 120 mm. A combination of the time and angular scans for

these energies is shown in Figs. 5(a) and 5(b). The amplitude

of the flux oscillations becomes smaller when the knife-edge is

out of the image position. However, the ratio between the

amplitude of the flux oscillations and the gradient in the

angular scan stays almost the same. Thus, almost the same

RMS values of the angular vibrations are obtained in the two

measurements at different energies with �m = 0.21 and

0.18 mrad, respectively.

Another way to measure the angular vibrations is to

investigate the time dependence of the flux when one crystal

of the DCM is moved to the rising/falling edge of the rocking

curve (Chumakov et al., 2014; Yamazaki et al., 2013). The

focusing device and knife-edge are not necessary in this case.

However, a sharp edge is required in order to provide suffi-

cient sensitivity of the method. The measurements have been

performed at the same beamline using radiation passing

through the DCM with Si(333) reflection at 52.5 keV. The

unwanted 17.5 keV radiation was filtered by a Cu absorber. A

comparison of the time dependence and angular scans of the

rocking curve is shown in Fig. 5(c). Here, contrast of the time

oscillations is smaller than in the previous measurements. This

is due to the rocking-curve width which is five times larger

than theoretically expected. Nevertheless, the obtained

angular vibrations, �m = 0.23 mrad, reasonably agrees with the

other measurements.

Thus, three independent measurements reproduce the RMS

value of the angular vibrations with a precision of 10%. The

results can be further verified looking at the frequency

distributions of the vibrations. Fig. 6 shows the amplitude

spectral density of the vibrations, jað�Þj, obtained via Fourier

transformation of the time spectra and normalized asR �max

0 d� jað�Þj2 = �2
m. All three distributions show the same

characteristic features in the frequency range up to 800 Hz.

Both methods to measure angular vibrations presented

above have advantages and drawbacks. The measurements

using the DCM rocking curve require a sharp edge which can

be only obtained using reflections higher than Si(111) at high

energies. The sufficient sharpness sometimes cannot be

obtained due to the imperfection of the DCM crystals.

Moreover, the energies above �40 keV required here some-

times are not available at the beamline. On the other hand, the

measurements using a focusing device can give incorrect

results if vibrations of the focusing device or knife-edge are

present. Accurate measurements require a combination of

the different approaches where comparison of the spectral

densities allows for the separation of the non DCM vibrations.
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Figure 5
Vibration measurements performed with (a, b) knife-edge and focused
beam at (a) 17.5 keV and (b) 18.5 keV, (c) at the falling edge of the
rocking curve at 52.5 keV. The blue circles show the average flux versus
angle of the second DCM crystal (bottom axes), the solid black lines show
flux oscillations versus time (top axes). The dashed lines show the RMS
deviation of these oscillations from equilibrium which are converted to
the angular scale as shown by the arrows. The solid black lines with
average value around 1 show the flux oscillation without knife-edge (a, b)
and at the maximum of the rocking curve (c) which practically
demonstrate the noise oscillations.



4. Angular vibrations of the DCMs installed at PETRA III
light source

The methods presented in the previous section have been

applied to measure angular vibrations of the DCM installed at

the beamlines of the PETRA III light source. These are liquid-

nitrogen-cooled DCMs (FMB Oxford, Osney Mead, UK),

which are equipped with two pairs of crystals [typically Si(111)

and Si(311) reflections] with a fixed offset of the reflecting

beam of 20–24 mm. The first- and second-crystal cages are

mounted on the common back-plate, which is rotated in order

to change the Bragg angle using a direct-drive goniometer

developed by FMB Oxford (Kristiansen et al., 2015). The

Bragg angle is measured by an optical rotary ring encoder

mounted onto the rotary axis of the goniometer. The electrical

currents inside a three-phase direct-drive motor are commu-

tated to keep the angle stable and to move to different angles,

respectively. The position is controlled by a cascaded feedback

loop working at update frequencies of several kHz. Both

crystals are cryogenically cooled using a cryocooler, which

pumps liquid nitrogen through Cu blocks clamping the crys-

tals. The cryostat has a low-pressure liquid-nitrogen bath,

which cools the high-pressure circuit. Inside the high-pressure

reservoir the static pressure (up to 5 bar) is controlled by

a heater. The pressure to feed the cryolines going to the

monochromator is provided by a Barber–Nichols pump inside

the high-pressure circuit.

The measurements were performed at the beamlines P01,

P02, P03, P06, P09, P10 and P11 at energies of 9–25 keV and

with the Si(111) reflection. The frequency of the cryocooler

pump was in the range 16–25 Hz and the pressure in the range

1.5–3 bar. The RMS values of the angular vibrations are shown

in Table 1. The vibrations were measured in the frequency

range up to 1 kHz. The relative error of the measurements

has been estimated to be 25% of the set of independent

measurements of the vibrations performed at beamline P01

during half a year. The amplitude of the vibrations can

significantly change depending on the cryocooler pump

frequency and pressure, the relative positions of the crystals

inside the DCM which is defined by the selected energy and

the feedback loop system conditions. Thus, in general, we can

say that the characteristic RMS amplitudes of the DCM

angular vibrations observed for the DCMs installed at

PETRA III light source vary between 0.1 and 0.3 mrad with an

average value of 0.2 mrad. Using the distance from the X-ray

source to the DCM, the broadening of the source size due to

the vibrations is calculated according to equation (10) and

presented in Table 1. The broadening varies between 9 and

23 mm, which is significantly larger than the RMS value for the

X-ray source size of 5 mm. Thus, the effect of the vibrations on

the beam size at the image position has to be taken into

account together with other reasons for the beam deteriora-

tion.

The improvement of the mechanical stability by replacing

the liquid-nitrogen tubes and components of the DCM by

more stable pieces and changing of the DCM operation

scheme by switching off the feedback loop control system

reduce vibrations down to 0.1 mrad or more as have been seen

after upgrade of DCMs at beamlines P02 and P11 (Doehr-

mann, 2016). Also, the vibrations have been significantly

suppressed at beamline P10 by installation of the channel-cut

crystal in parallel to two independent crystals (Zozulya et al.,

2014) with RMS value of the vibrations less than 0.05 mrad.

Our results for the DCM angular vibrations are comparable

with RMS value 0.1 mrad measured for the new FMB Oxford

DCM (Kristiansen et al., 2015) and with 0.11 mrad reported for

the DCM installed at beamline ID18 at ESRF (Chumakov et

al., 2014).

The amplitude spectral density of the vibrations measured

at P01, P02, P06 and P09 is shown in Fig. 7. While the beam-

lines are equipped with the same type of monochromator, the

vibrational spectra are different. This difference is related to

the type of DCM operation at particular beamlines and to the

deterioration of the mechanical components with time. The

remarkable feature of the measured vibrations is that there

is significant contribution up to at least 300 Hz. Thus, a

measurement setup with high cut-off frequency is a crucial

requirement in order to measure all vibrations. Taking, for

example, 150 Hz as a cut-off frequency, one accounts only for

50% of the vibrations for the DCM at beamline P02 and only

5% for the DCM at beamline P06. As shown by the off-beam

vibration measurements (Kristiansen et al., 2015; Doehrmann,

2016), the vibrations below and above�150 Hz have different

origins. The low-frequency vibrations are induced mainly by
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Table 1
The characteristic DCM vibration RMS value, �m, measured in the
frequency range up to 1 kHz, the distance from X-ray source to DCM,
zm, and the source broadening due to the vibrations, 2zm�m, for the DCM
installed at several beamlines of PETRA III light source.

P01 P02 P03 P06 P09 P10 P11

�m (mrad) 0.20 0.10 0.17 0.20 0.23 0.30 0.21
zm (m) 47 44 53 35 47 38 40
2zm�m (mm) 19 9 18 14 22 23 17

Figure 6
Amplitude spectral density of the DCM angular vibrations obtained by
three different measurements shown in Fig. 5 shifted by 0.04 in vertical
scale for visibility. Labels (a, b, c) correspond to the labels in Fig. 5.



the liquid-nitrogen flow. On the other hand, the presence of

high-frequency contributions is related to the high-frequency

oscillations of the feedback loop. The analysis of the ampli-

tude spectral density is helpful in order to find weak points of

the DCM hardware and to further improve these components.

Another result coming from the analysis of the amplitude

spectral density is a small contribution to the vibrations at the

frequency range below 25 Hz. Vibrations in this frequency

range are typical for X-ray optical devices due to ground

vibrations. The small amount of such vibrations in Fig. 7 is

related to the coupling of both crystals to the same back-plate

which shows the usefulness of this approach.

5. Conclusion

Here, we presented a theoretical description of the effect of

monochromator angular vibrations on the properties of the

focused beam. It is shown that both size of the beam and

image position are affected by vibrations. The broadening of

the beam size is described by the broadening of the virtual

X-ray source by 2�mzm, which is proportional to the char-

acteristic RMS value of the angular vibrations and to the

distance of the X-ray source to the monochromator.

Experimental methods were described, which give the

possibility to measure monochromator angular vibrations in a

broad frequency range with high sensitivity. The combination

of different methods is important in order to separate

unwanted contributions coming from other optical devices in

the beam.

The methods have been applied to characterize a set of

monochromators of the same type installed at the PETRA III

light source. It was found that the RMS value of the vibrations

varies between 0.1 and 0.3 mrad leading to the broadening of

the X-ray source of the order of 9–23 mm. These values are

larger than the vertical size of the X-ray source, being �5 mm.

Thus, the vibrations lead to a significant deterioration of the

X-ray beam quality. Efforts are ongoing in order to decrease

the amplitude of the monochromator angular vibrations below

0.1 mrad.
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Figure 7
Amplitude spectral density of the DCM angular vibrations measured at
several beamlines of PETRA III light source.
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