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The quantification of micro-vasculatures is important for the analysis of

angiogenesis on which the detection of tumor growth or hepatic fibrosis

depends. Synchrotron-based X-ray computed micro-tomography (SR-mCT)

allows rapid acquisition of micro-vasculature images at micrometer-scale spatial

resolution. Through skeletonization, the statistical features of the micro-

vasculature can be extracted from the skeleton of the micro-vasculatures.

Thinning is a widely used algorithm to produce the vascular skeleton in medical

research. Existing three-dimensional thinning methods normally emphasize the

preservation of topological structure rather than geometrical features in

generating the skeleton of a volumetric object. This results in three problems

and limits the accuracy of the quantitative results related to the geometrical

structure of the vasculature. The problems include the excessively shortened

length of elongated objects, eliminated branches of blood vessel tree structure,

and numerous noisy spurious branches. The inaccuracy of the skeleton directly

introduces errors in the quantitative analysis, especially on the parameters

concerning the vascular length and the counts of vessel segments and branching

points. In this paper, a robust method using a consolidated end-point constraint

for thinning, which generates geometry-preserving skeletons in addition to

maintaining the topology of the vasculature, is presented. The improved

skeleton can be used to produce more accurate quantitative results.

Experimental results from high-resolution SR-mCT images show that the end-

point constraint produced by the proposed method can significantly improve the

accuracy of the skeleton obtained using the existing ITK three-dimensional

thinning filter. The produced skeleton has laid the groundwork for accurate

quantification of the angiogenesis. This is critical for the early detection of

tumors and assessing anti-angiogenesis treatments.

1. Introduction

The analysis of micro-vasculature is important for the under-

standing, diagnosis and treatment of diseases involving

vasculopathy, such as cardiovascular disease, cerebral infarc-

tion and tumors. The development of micro-computed tomo-

graphy (micro-CT), particularly synchrotron-radiation-based

micro-tomography (SR-mCT) (Chen et al., 2014), provides

means to examine the minute detail of vasculature within an

organ (Wan et al., 2000; Heinzer et al., 2008’ Folarin et al., 2010;

Vasquez et al., 2011; Lang et al., 2012). X-ray propagation-

based phase-contrast imaging allows researchers to inspect

the microstructures of vasculatures without contrast agents.

Therefore, many micro-vasculatures wherein the particles of

the contrast agent are too large to penetrate can be observed

by such non-invasive imaging. Images with elaborate vessel
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structures introduce challenges to the structural analysis and

the extraction of quantitative information. Generally, skele-

tonization is an effective way to analyze the vasculature

because the structural parameters are readily conveyed in

terms of this ‘compact’ representation. Thinning is a

frequently used skeletonization method for the analysis of

vasculature because the generated skeleton possesses various

properties (Cornea et al., 2007). Some open source software

packages and libraries provide implementations of thinning

algorithms, including ImageJ (Arganda-Carreras, 2008),

OpenCV (Bradski, 2008) and the Insight Segmentation and

Registration Toolkit (ITK) (Homann, 2007). However, most of

the thinning algorithms focus on representing the topological

structure rather than the geometrical features of a volumetric

object. Consequently, the generated skeletons have some

limitations which would significantly affect the accuracy of the

quantitative results of the vasculature analysis (Vallotton et al.,

2007; Marks et al., 2013) concerning the geometrical features,

such as the number of vascular segments, number of branching

points, length and number of terminal vessel branches. These

are normally considered as critical parameters to evaluate the

angiogenesis in the detection of tumors, hepatic fibrosis

(Paternostro et al., 2010; Bocca et al., 2015) or other related

diseases.

A side effect of the boundary peeling process of a typical

thinning method is the shortening of the length of an elon-

gated object as shown in Fig. 1(a). For a high-resolution image,

these shortened lengths can accumulate to become a signifi-

cant error which is critical for the detection of minor changes

of the vasculature. Moreover, some thinning algorithms can

result in the complete elimination of some vessel branches in a

vascular tree. Fig. 1(b) demonstrates that the frequently used

ITK three-dimensional (3D) thinning method with weak end-

point constraint fails to preserve the geometry by eliminating

branches, although it does not change the overall topology of

the original object. Preservation of topology can be stated

simply as follows: two objects have the same topology if they

have the same number of connected components, tunnels and

cavities (Kong & Rosenfeld, 1989; Cornea et al., 2007). The

preservation of geometry is another critical requirement

for the quantification of vasculature besides topology. For

example, an object such as the character ‘b’ cannot be trans-

formed into a skeleton similar to the character ‘o’ (Palágyi

& Kuba, 1999). Another problem produced by the existing

thinning algorithms is that the resulting skeleton may contain

many spurious branches as shown in Fig. 1(a) because the

skeleton is intrinsically sensitive to small changes on the

object’s boundary. These spurious branches are the erroneous

representation of the original object.

This article investigates the addition of the requirement for

preserving geometrical information as accurate as possible for

the thinning algorithm in order to obtain precise quantitative

information of the vasculature. In x2 we review the existing

thinning methods, focusing on the issue of the geometrical

properties of the obtained skeleton. Then, in x3, in order to

overcome the limitations of the existing thinning algorithms to

generate a desired skeleton, we propose a new solution to

generate a robust end-point constraint in the thinning process.

The method is implemented by detecting the end-points of

terminal branches in a vessel tree before thinning starts. We

have applied the new method in a thinning algorithm to

extract a skeleton from several synthetic and real images to

evaluate the results in x4. The evaluation results show that the

proposed method can produce more accurate quantitative

results from the geometry-preserving skeletons with preserved

length and shape information and much less spurious bran-

ches. x5 discusses why some vascular tree branches are

eliminated during thinning if no end-point constraint or a

weak end-point constraint is applied. This is followed by

conclusions in x6.

2. Geometrical properties of thinning algorithms

As a dimensionality-reduced representation, the skeleton

provides an efficient way to analyze 3D volumetric objects.

The first and the most important feature of a skeleton is the

preservation of topology for the object. Many thinning algo-

rithms have been developed in the past two decades to

generate skeletons which preserve topology rather than

geometry. A comprehensive review of digital topology can be

found by Kong & Rosenfeld (1989), and more information on

topology preserving based thinning has been detailed (Lee et
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Figure 1
(a) Skeleton showing the reduced length of an elongated structure and a spurious branch. (b) Skeleton produced from the ITK 3D thinning filter fails to
preserve the geometrical structure and has missing branches.



al., 1994; Saito & Toriwaki, 1995; Ma & Sonka, 1996; Saha et

al., 1997; Palágyi & Kuba, 1999; Palágyi et al., 2001; Xie et al.,

2003; Wang & Basu, 2007; Palágyi et al., 2012).

2.1. Geometry features

Topology preservation is necessary but not sufficient for a

skeleton to represent the structure of a vascular tree, which is

the prominent structure of vasculatures. The preservation of

geometrical features is crucial for the quantitative analysis of

the vasculatures. As the prominent information about the

geometric shape of the object is concentrated at the boundary

of an object (Attneave, 1959), it will be helpful to add some

boundary constraints to preserve the geometrical features in

the thinning process. In fact, there are reports in the literature

that end-point constraints are used in the thinning of linear

structures to maintain their geometrical properties (Lee et al.,

1994; Palágyi & Kuba, 1999; Xie et al., 2003; Wang & Basu,

2007; Palágyi et al., 2012). In image analysis, pixel connectivity

is the way in which pixels (i.e. voxels in a 3D image) relate to

their neighbors. Twenty-six connected voxels are neighbors to

every voxel that touches one of their faces, edges or corners.

As the curve skeleton for quantitative analysis is one pixel

wide, the commonly used end-point constraint is defined

below:

Definition 1. An object point P is a curve end-point if the set

of its 26 neighbors N26(P) contains exactly one object point.

The geometrical features of a vascular structure (Vallotton

et al., 2007), such as shape and length (Wang et al., 2010), are

directly related to the counting of the vascular segments and

the length measurement of the vascular vessels. Some work

has been reported using the end-point constraints to preserve

the geometry of an object (Lee et al., 1994); however, the end-

point constraint in the literature is not suitable for the

generation of a desired skeleton that maintains the adequate

geometrical features of vasculature. Cornea et al. (2007) have

pointed out that an additional condition needs to be used

in cases where removing end-points results in eliminating

branches; however, they did not provide a solution.

Saha et al. (1997) described a shape-preserving algorithm, to

generate a medial surface for object recognition and descrip-

tion. Their algorithm implemented shape preservation by

identifying specific ‘shape points’ which indicate the corners of

the object, and keeping them non-removable during thinning.

The algorithm can be used to maintain the crucial structure in

addition to the main topology of the object.

The skeletons generated by traditional thinning algorithms

are often shorter than the actual length of an object (Cornea et

al., 2007; Choi & Seong, 2008). This reduction of the length

is much more remarkable in high-resolution images, which

would introduce considerable errors to the length measure-

ment. In order to mitigate the length error, Choi & Seong

(2008) proposed a length-preserving thinning method for

extracting river skeletons from two-dimensional (2D) land

cover image data. This algorithm maintains the length by

keeping the boundary of the rivers’ ends invariant during

thinning and using a following-up skeleton growth procedure

to compensate the over-reduced length. Their method is

designed for 2D images, and the out-growth procedure

following the skeleton extraction never fully resolves the issue

associated with spurious branches and the eliminated

branches in vascular skeletonization.

Pruning (Shaked & Bruckstein, 1998) is a common solution

for removing the spurious branches. It is implemented by

removing the short terminal branches whose lengths are

smaller than a threshold. However, there is no strict criterion

to evaluate a spurious branch in a skeleton. Besides pruning,

Palágyi (2014) proposed a 3D curve-thinning algorithm based

on isthmuses, which results in a skeleton with less spurious

branches of the 3D vasculature. All these post-processing

workflows and algorithms focus on removing spurious bran-

ches but do not consider the issues of branch elimination and

length shortening.

In some medical applications, the detection of subtle

changes of blood vessels is critical. For example, when using

micro-tomography to analyze the angiogenesis during tumor

formation and growth, or the evaluation of the tumor angio-

genesis inhibitors, the detection and quantification of the

minor variations of the micro-vasculature is important for the

early detection of the tumor formation and growth. The blood

vessels never actually end but the inspection devices lead to

terminal blood vessels of the vasculature. To some degree, the

density of the terminal vessel branch is often a useful para-

meter for evaluating the change of vasculature caused by

angiogenesis (Bocca et al., 2015). There is no report so far that

a thinning algorithm can address all three problems

mentioned in the abstract, namely, the excessively shortened

length of elongated objects, eliminated branches of tree

structures and numerous spurious branches.

2.2. End-point constraint

End-points are critical in the extraction of a skeleton. They

correspond to the terminal points of the vascular branches.

They are located on the boundary of the volumetric object and

can be potentially used as constraints to preserve geometrical

features such as the lengths of the terminal vessels. The end-

point of an elongated object is the voxel which has exactly one

object neighbor in its 26 neighbors N26(P). However, properly

and promptly identifying the end-points of the volumetric

vasculature before skeletonization is not an easy task.

Zhou & Toga (1999) proposed a voxel-coding method based

on distance transformation to detect the end-points of the

vasculature from volumetric objects. Methods given by

Shahrokni et al. (2001) and Maddah et al. (2003) also

demonstrated such a voxel-coding approach used to extract

the end-points. They all used these pre-detected end-points to

extract a skeleton by means of a path planning process.

However, their methods were only tested using a simple vessel

tree with limited number of branches. When the structure of

the vascular trees becomes complex and the number of end-

points increases enormously, their algorithms will soon

encounter problems in identifying the end-points effectively

and efficiently.
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In this paper, we propose a new method to detect the end-

points of vascular and microvascular branches in high-reso-

lution synchrotron images. The end-points are identified using

a voxel-coding and a lookup point list. Then the detected end-

points that are located at the boundary of the object are

applied as the constraints in the extraction of the skeleton.

The extracted skeleton can preserve the geometry properties

of the vasculature and therefore leads to much more accurate

quantification of the vasculature.

3. Proposed method

Thinning is used to extract the skeleton of the vasculature.

Before the thinning procedure, all of the branch end-points

are detected using our proposed method. Fig. 2(a) illustrates a

flow chart of the proposed method. Each step in the flow chart

is explained below.

3.1. Input image

The 3D input image is in binary format, which can be

depicted as ðZ 3;m; n;BÞ, where Z 3 is the 3D image space;

(m, n) means the connected relationship of voxels, which has

m-adjacency for the object voxels and n-adjacency for the

background voxels in the digital picture; and B is the set of

object voxels. We use the frequently adopted relationship

ðm; nÞ = (26, 6) in this paper. The binary image is the

segmentation result of the blood vessel network from a high-

resolution CT image, and some pre-processing algorithms

have been applied before identifying end-points, such as filling

up small holes inside a blood vessel and joining the discon-

nected vessels. Therefore the input 3D vascular image is one

connected component without any tunnel or cavity.

3.2. Detecting root area

The reference point is fundamental in the distance trans-

form. It is also the start point for tracing the structure of a

vascular tree. An arbitrary point near the root of the vascu-

lature could be a reasonable reference point to start with.

Instead of using a single arbitrary point (Zhou & Toga, 1999),

we use the entire root area within a slice of the image as a

reference to guarantee the shortest path from each end-point

to the unique reference. We scan each slice from the first

frame to the last one along the six directions of the axes of the

3D image space Z 3ðX;Y;Z;�X;�Y;�ZÞ. In the first frame,

if any object voxel is detected, the largest and central 2D

connected regions are selected as the candidate root area.

Then we calculate the largest inscribed sphere inside the

vasculature to obtain the approximate location of the root.

One of the six candidate root areas, which is the closest to the

inscribed sphere, is considered as the reference root for voxel-

coding. A manually specified point can also be accepted as the

reference if this is preferred.

3.3. Distance transformation

We use a distance map to identify the end-points of the

vascular branches. The distance map is an image showing the

distance values of all the object points to a set of voxels. In

order to generate the distance map for identifying end-points,

we calculate the distance of each object voxel representing

the nearest connected path from the voxel to the reference

root area.

The voxel-coding scheme we

employed is similar to the one proposed

by Zhou & Toga (1999), but with the

following improvements: (i) we use the

automatically detected root area rather

than the manually designated point as

the reference; and (ii) we employ a

point list procedure to automatically

refine the end-points as there are false

ones extracted only by voxel-coding in

a high-resolution image. We will explain

the refinement processing in x3.5.

The voxel-coding is a sequential

procedure of accessing points and

calculating distance values. When a

point is accessed, a distance value is

assigned to all of its 26 neighbors based

on the distance value of the current

accessing point by the Chamfer distance

transform (CDT) h3, 4, 5i metric (Zhou

& Toga, 1999). We initialize all the

object voxels’ distances with a large

value, and the reference area is initi-

alized with 1. For instance, when we visit

a voxel P (with a distance value of V),
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Figure 2
(a) Flow chart of the proposed algorithm for extracting the end-points. (b) Extracted end-points in a
9 � 9 � 9 cube. (c) End-points after refinement.



we assign distance values to its 26 neighbors. Its face-

connected neighbors, edge-connected neighbors and vertex-

connected neighbors are assigned with the distance values

(V + 3), (V + 4) and (V + 5), respectively, if the assigned value

is smaller than the current distance value of the assigned point.

In order to ensure that each point we access contains a

distance value before assigning values to its neighbors, we use

the mechanism of region growing to traverse all object points

(Hauke & Groher, 2007). The root area is considered as the

seeds for region growing. This procedure continues until all

object points are assigned a distance value indicating how far

away it is from the reference area.

3.4. End-points extraction

On the basis of the Chamfer distance map generated in

the previous step, the end-points are identified as the local

maxima. Nevertheless, the lump or distortion on the surface of

the blood vessels is frequently seen in vascular images, parti-

cularly in the high-resolution 3D images; therefore, some

points near the lump or protuberance of the coarse vessel

surface could be detected as end-points. This could potentially

cause the spurious branches in the skeleton. The spurious

branches are not desirable because they could lead to false

structure in the skeleton and introduce errors in the quanti-

fication of the vasculature.

There are several factors that contribute to the coarse

boundary of the blood vessel, and subsequently result in

spurious branches in the skeleton of the blood vessels. The

first is that the blood vessels are not in the ideal tubular shape

because of certain vasculopathy. The second concerns some

artificial intervention at the imaging stage. For instance, the

SR-mCT requires that samples are to be dehydrated. The

dehydration often introduces distortion on the vascular wall.

Another factor causing the coarse boundary is the use of

threshold-based segmentation when producing the binary

image. Using a single threshold for the entire image does

not guarantee preservation of the continuous and smooth

boundary for the segmented blood vessel.

In identifying the end-points, a small region size is used to

find the local maximum. False end-points may be introduced

because of the lump or protuberance on the lateral surface of

vessels, such as the point ‘A’ illustrated in Fig. 2(b). On the

other hand, a large region size may result in higher compu-

tational cost. Therefore, the size of the region used for the

end-points detection shall be decided carefully in order to

avoid false end-points while not significantly increasing the

computation time.

In our study, a 9� 9� 9 cube is used to find local maximum

values and eliminate false end-points. As the computing cost

of traversing a cubic region is Oðn3Þ in the 3D space, we devise

a strategy which splits the process of finding local maximum

values into two steps. Firstly, we traverse the entire image and

find the local maxima using a 3� 3� 3 cube; then check the

end-points detected in the previous step by using a 9� 9� 9

cube. In comparison with directly traversing the 9� 9� 9

cube for each object point, this strategy significantly reduces

the traversal number for accessing image points.

3.5. End-point refinement

There is still another issue that needs to be resolved in

determining the final end-points. In the high-resolution images

we used, the terminal of a branch is normally a flat surface

rather than a sharp point. Therefore we find more than one

end-point for some branches, such as the points of type ‘B’

illustrated in Fig. 2(b). Increasing the size of the neighborhood

region to find local maximum values can potentially reduce

the number of end-points detected from the terminal surface

of a vessel branch; however, it is not efficient because the

computation increases tremendously when traversing a larger

cubic region. We propose to use a lookup point list to refine

the end-points because we need only one end-point for each

terminal vessel branch.

Duplicated end-points are normally close to each other,

likely located on the same terminal surface of a vessel branch.

The connecting line of these points is limited within a length

threshold and contains no background voxels. These two

conditions can be used to remove duplicated end-points for

a vessel branch. This refinement process can be depicted as

follows:

Assume Pðx1; y1; z1Þ and Qðx2; y2; z2Þ are the end-points

extracted using the method described in x3.4, the algorithms

used for the refinement can be formulated as

At first, we use the city block distance (Ren et al., 1998) as

the distance metric for Pðx1; y1; z1Þ and Qðx2; y2; z2Þ in the

refinement. Based on the definition of the relationship for two

distinct points, we add all the end-points in a lookup list and

rank them in an ascending order.

As the duplicated end-points are normally located on the

same terminal surface of a vessel branch, the diameter R of a

maximal inscribed sphere inside the vasculature can be used as

a threshold of distance to check two duplicated end-points of

the same branch, i.e. jPQj < R. As mentioned earlier, if two

duplicated end-points are from the same branch, their

connected line contains no background-point. After finding

duplicated end-points from a branch, we consider the middle

point of these duplicated end-points as the only end-point of

the branch. Some branches may contain more than two end-

points; they are processed using the same principle. Finding

the middle point for each duplicated end-point pair in the list

can be processed in parallel. Therefore the processing of the

lookup point list can be performed efficiently.

The refinement ensures that all the end-points of the

terminal branches of the vascular tree are consolidated and

ready to be used as the constraints for the following thinning

process.
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3.6. Thinning

The extracted end-points are then

used as the end-point constraint for the

thinning algorithm (Lee et al., 1994).

The new end-point constraint can

ensure that the resulting skeleton not

only maintains the topology but also

preserves accurate geometry properties

such as shape and length. As each end-

point corresponds to only one terminal

branch of the vasculature, the resulting

skeleton is clean and has no spurious

branches.

4. Experimental results

The proposed method has been tested

using both synthetic and actual images.

The method is implemented in C++

and parallelized using OpenMP (The

OpenMP API specification for parallel

programming; http://openmp.org/). In

order to verify the proposed method,

we employed the proposed end-point

constraint to the 3D binary image thin-

ning filter in the ITK library (Homann,

2007), which is widely used in skeleto-

nization (Lee et al., 1994). The proposed

method could be used by other thinning

algorithms as well. The quantitative

features of both synthetic and real

images are extracted to evaluate and

compare the skeleton generated with

and without the proposed end-point constraint. The vascular

image used in this experiment is constructed from high-reso-

lution micro-CT images of a typical vascular tree of a mouse

liver.

4.1. Experiment with synthetic images

The synthetic image we created is composed of five

connected cuboids (20 � 20 � 198 voxels) as shown in

Fig. 3(a). Fig. 3(e) shows the skeleton extracted from a

synthetic image using the ITK 3D binary image thinning filter

with the proposed end-point constraint; Fig. 3(b) illustrates

the skeleton produced using the original ITK 3D binary image

thinning filter. As demonstrated in Fig. 3, skeleton (e) main-

tained the shape of the original object while skeleton (b) with

end-point constraint Definition 1 failed to preserve the shape

of the object because of missing branches (segments 10, 11, 12,

13 and 14).

The length of the skeleton is also assessed to evaluate the

geometrical preservation for the volumetric object. The

measurements of the individual branches of the two skeletons

are shown in Fig. 4.

The lengths of the segments 6–9 are almost identical in both

skeletons. However, the terminal branches 1–5 in the skeleton

showed in Fig. 3(b), which are generated without applying

our end-point constraints, are obviously shortened; and the

branches 10–14 are completely eliminated. The accumulated

errors caused by the inaccurate skeleton will result in false

measurement for the quantitative analysis of the vasculature,

especially for the analysis of tumors or fibrosis livers, of which
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Figure 3
(a) Binary image. (b) Skeleton directly generated using ITK 3D thinning filter with weak end-point
constraint. (c) Extracted end-points using a 9 � 9 � 9 cube. (d) Refined end-points. (e) Skeleton
generated by our algorithm.

Figure 4
Measurements of the individual branch of the two skeletons.



the number of terminal vessel branches

is a critical parameter in the evaluation

of angiogenesis.

4.2. Experiment with real image data

Hepatic vasculature images of mice

are introduced to assess the accuracy of

the proposed method. Phased-contrast

SR-mCT was employed to capture

images of the specimen at beamline

BL13W1 (SSRF, Shanghai, China). The

energy of the X-ray beam was set at

15 keV. The image voxel size was 3.7 mm

� 3.7 mm � 3.7 mm. The detector was

positioned at 70 cm downstream of the

sample. The CT scanned 720 projections

at angles evenly distributed between 0�

and 180�. Exposure time per projection

was 2 s. The total time of X-ray expo-

sure was approximately 35 min. After

image acquisition, the dataset was

reconstructed using the software

PITRE (Chen et al., 2012). Phase

retrieval was carried out for each projection image, and then

the stack image was reconstructed using the filtered back-

projection algorithm. The stack image was denoised by a 3D

Gaussian filter and a ring artifacts removal algorithm (Zhang

et al., 2012). Then the liver was isolated from the image

background so that the threshold segmentation could be used

to extract more accurate vasculature within the liver region.

As a result, the binary vasculature image was prepared for

skeletonization. For the purpose of efficiency, thinning skele-

tonization was accelerated by a parallel algorithm (Hai et al.,

2015), by which the computational time decreased by an order

of magnitude. Finally, the quantitative parameters of the

vasculature were extracted to evaluate the performance of the

proposed method.

Fig. 5(a) shows the entire vascular network of the rat’s

hepatic portal vein; Figs. 5(b) and 5(d) show the skeletons

extracted using the ITK thinning filter and the same thinning

filter with our proposed end-point constraint, respectively.

They both represent the overall shape of the vessel network.

However, if we look into the micro-structures, we can identify

a lot of differences between the two skeletons. For example,

the skeleton shown in Fig. 5(d) looks much cleaner than the

one shown in Fig. 5(b). There are many spurious branches in

Fig. 5(b) compared with the skeleton shown in Fig. 5(d). This is

evident inside the marked circles.

In order to examine the vessel segments in detail, we

truncate one piece of the skeleton to zoom in and visualize the

difference between the two skeletons produced using different

end-point constraints. As showed in Fig. 6, the skeleton in

Fig. 6(b) is produced using the proposed end-point constraints,

and it preserves the length of the vascular branches. On the

contrary, the skeleton shown in Fig. 6(a) apparently shortens

the vascular terminal branches. Figs. 6(d) and 6(e) show a

comparison of the skeletons generated using the ITK thinning

filter and our method, respectively. They are extracted using

the image shown in Fig. 6(c) as the input. It clearly shows that

our proposed method can be used to generate a much cleaner
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Figure 6
(a) Skeleton showing shortened branches. (b) Skeleton with preserved
length using our method. (c) Sub-tree of the rat’s hepatic vessel network.
(d) Skeleton with many spurious branches generated using the ITK
thinning filter. (e) Skeleton generated based on our proposed end-point
constraint.

Figure 5
(a) Hepatic vein of a rat. (b) Skeleton generated using the ITK 3D thinning filter. (c) End-points
extracted from the terminal vascular branches. (d) Skeleton generated based on our method.



skeleton as shown in Fig. 6(e); however, the original ITK 3D

thinning filter failed to represent the correct structure of the

vessel tree. The skeleton shown in Fig. 6(d) contains many

spurious branches. These figures show that the proposed

method can significantly improve the skeleton in terms of

preserving the length of the vascular branches and producing a

clean skeleton with much less spurious branches.

To verify our method, we have also used manual measure-

ment results as a standard to evaluate the skeletons generated

by thinning algorithms with different end-point constraints.

This type of manual verification is frequently used and

considered as a reliable approach to assess the results

produced from an automated method (Weidner, 1995; Haisan

et al., 2013). As it is impossible to observe all the vessel

branches by manual counting, in the experiment, we truncated

20 small vascular sub-trees from different regions of the

hepatic vasculature for the evaluation of the performance of

the proposed method. Fig. 7 shows skeletons of the two sub-

trees generated using our method and the original ITK thin-

ning filter. Five observers experienced in medical image

analysis were asked to manually count the number of terminal

branches for each sub-tree. To avoid human error which may

be introduced by bias, we have carried out cross-checking and

considered that a sub-tree has a valid terminal branch number

only if three or more people arrive at the same count. We had

18 valid sub-trees out of 20 as shown in Fig. 8.

We use a t-test to evaluate the difference between an

automatically generated skeleton and the manual counting

one in Fig. 8. At the level of 5% significance, the P value of

Group 2 and Group 1 in Fig. 8 is smaller than 0.05, which

indicates the obvious difference of the two group of samples.

However, the P values of Group 3 and Group 1 are larger than

0.05, which shows no difference of the terminal branch

number. The experimental results demonstrate that the

skeleton produced using the proposed method is more accu-

rate than that generated using the original ITK thinning

method with the weak end-point constraint.

The noise in a vascular skeleton is presented as the spurious

branches which result in an error count of the vessel branches.

The mean error count between Group 2 and Group 1 is 2.61

while the value between Group 3 and Group 1 is 0.33. This

means that the skeleton produced by the proposed method

represents the vasculature well and is close to the human

recognized skeleton. The results listed in Fig. 8 also show that

more noise occurred in the skeleton generated by ITK 3D

thinning with weak end-point constraint than that extracted

using the proposed method.

4.3. Quantitative analysis of hepatic fibrosis vasculatures

Angiogenesis is one of the characteristics of hepatic fibrosis.

The parameter, density of terminal vessel branches, is often

used to evaluate the degree of hepatic fibrosis. In principle,

this parameter has an increase trend when the fibrosis
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Figure 7
(a) Sub-tree 6. (b) Skeleton produced using our method. (c) Skeleton produced using the original ITK filter. (d) Sub-tree 18. (e) Skeleton produced using
our method. ( f ) Skeleton produced using original ITK filter.

Figure 8
Comparison of the manual counts of the branches of the sub-trees and
their skeletons.



becomes more serious. Fig. 9 demonstrates analysis of the

normal liver, mild stage and advanced stage of hepatic fibrosis.

The parameters are extracted from the two skeletons gener-

ated using different end-point constraints, i.e. the proposed

end-point constraint and the traditional one (Definition 1).

In the chart at the bottom right of Fig. 9, the blue columns

show a correct trend of hepatic fibrosis when using the

proposed method while the red ones do not demonstrate a

reasonable trend. More liver samples are being collected now

in order to present the statistical analysis results using our

method in the future work.

5. Discussion

5.1. Missing branches in the skeleton generated by the
ITK 3D thinning method

Thinning is widely used for quantitative assessment in

medical research. It is unacceptable for the vasculature to lose

branches after skeletonization. We have analyzed the cause of

the missing branches in Figs. 1(b) and 3(b), and this turns out

to be the problem with the weak end-point constraint

(Definition 1) used in the ITK 3D thinning method. The

missing branches are removed at the stage of thinning when a

2 voxel-wide object is peeled into a 1 voxel-wide skeleton. At

this stage, none of these points is considered as an end-point

by Definition 1. All points of the branch are added to the list to

go through the sequential (by the order of the raster scan in

Fig. 10) re-checking for deletion in thinning (Lee et al., 1994).

Therefore, all of these points are sequentially deleted until

only one voxel is left. In contrast, the proposed rigorous end-

point constraint prevents this from happening by ensuring that

there is always a connected path from the fixed end-point ‘1’ to

the last point ‘12’.

In fact, the skeleton Fig. 3(b) extracted by the ITK 3D

thinning with the weak end-point constraint is a figure that

contains one node point with five branches. The branches 1

and 6 are considered as one single branch since there is no

voxel containing more than two voxels in its neighbors along

them. This shape of the skeleton is a wrong representation of

the original object so that the quantitative result from the

skeleton is unreliable. The proposed method can be used to

produce accurate skeletons by preserving the geometrical

features of the vasculature without missing branches and

apparently reducing spurious branches. This will lead to more

accurate quantitative analysis.

5.2. Comparison with other image analysis workflows

More refined thinning algorithms have been published in

the last two decades. Various useful post-processing workflows

have been proposed to refine the skeleton. To compensate for
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Figure 9
Quantitative result of hepatic fibrosis samples.



the over-shortened length of the skeleton, the consideration of

a maximal inscribed sphere at the end-point or the outgrowth

from the end-point along the medial axis (Choi & Seong, 2008)

should give an accurate result of the branch length. The

compensation length needs a precondition of removing the

false spurious branches of the skeleton and avoiding missing

branches. Other workflows, such as pruning, are introduced,

which is commonly used to carry out this based on a defined

threshold of branch length. Any branches whose lengths

are smaller than the threshold will be definitely removed,

including the bifurcated branches close to the vessel terminal.

This irregular structure is commonly seen in the analysis of

angiogenesis. Therefore, the traditional pruning may acci-

dently remove bifurcated branches beside the eliminated

branches discussed in the previous section, which may intro-

duce further errors and produce an incorrect skeleton of the

original object. The experiments show that the proposed end-

point constraint can be used in thinning to produce a robust

skeleton effectively, not only preserving all branches and their

lengths but also eliminating the spurious branches. Finally, the

precise quantitative analysis of vasculature is achieved using

the geometry-preserving skeleton produced by the proposed

method.

5.3. Stubs in the skeleton produced by our method

Although the proposed end-point constraint can be used

in the thinning to generate a much cleaner skeleton than the

commonly used one (Definition 1), there is still a slight

difference in terminal branch numbers between Group 1 and

Group 3 as shown in Fig. 8. This is caused by the presence of

some tiny stubs which do not correspond to any vessel bran-

ches; refer to the marked regions in Fig. 11. We have identified

that these stubs are a false representa-

tion of the vasculature and they occur at

the location where a coarse blood vessel

bends sharply. Although these stubs do

not frequently appear in our hepatic

vasculature, they should be removed in

order to obtain a more precise skeleton

for the subsequent quantitative analysis.

6. Conclusions

As the widely used ITK 3D thinning

fails to generate a skeleton that

preserves geometry, we have developed a novel approach for

producing a robust end-point constraint which can be used in

the skeletonization of vasculature. In order to identify the

end-points, we use a distance map generated from a reference

root area with the Chamfer distance metric h3, 4, 5i at first.

Then the local maximal values in the distance map are

examined to determine the end-points. The end-points are

further consolidated by removing duplicated and false ones.

Finally the consolidated end-points are employed as the end-

point constraint in the thinning algorithm. The experimental

results show that the ITK 3D thinning can be significantly

improved by using the end-points identified using our

proposed method. The improved thinning filter can be used to

extract more accurate skeletons from high-resolution vascu-

lature images.

By using the proposed method, the extracted skeleton of

the vasculature can not only precisely reflect the topology of

the vasculature but also preserve its geometry properties. This

is especially critical for quantifying micro-vasculature in

detecting subtle changes of the micro-vasculature with very

fine structures for the early detection of tumor formation,

growth and hepatic fibrosis, and for the assessment of angio-

genesis treatment. The proposed method can also be poten-

tially used in the skeletonization of any elongated 3D objects

besides the 3D vasculature.
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Palágyi, K. & Kuba, A. (1999). Graph. Models Image Process. 61,
199–221.
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