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Employing laser wigglers and accelerators provides the potential to dramatically

cut the size and cost of X-ray light sources. Owing to recent technological

developments in the production of high-brilliance electron beams and high-

power laser pulses, it is now conceivable to make steps toward the practical

realisation of laser-pumped X-ray free-electron lasers (FELs). In this regard,

here the head-on collision of a relativistic dense electron beam with a linearly

polarized laser pulse as a wiggler is studied, in which the laser wiggler can be

realised using a conventional quantum laser. In addition, an external guide

magnetic field is employed to confine the electron beam against self-fields,

therefore improving the FEL operation. Conditions allowing such an operating

regime are presented and its relevant validity checked using a set of general

scaling formulae. Rigorous analytical solutions of the dynamic equations are

provided. These solutions are verified by performing calculations using the

derived solutions and well known Runge–Kutta procedure to simulate the

electron trajectories. The effects of self-fields on the FEL gain in this

configuration are estimated. Numerical calculations indicate that in the presence

of self-fields the sensitivity of the gain increases in the vicinity of resonance

regions. Besides, diamagnetic and paramagnetic effects of the wiggler-induced

self-magnetic field cause gain decrement and enhancement for different electron

orbits, while these diamagnetic and paramagnetic effects increase with

increasing beam density. The results are compared with findings of planar

magnetostatic wiggler FELs.

1. Introduction

The free-electron laser (FEL) has been demonstrated to be a

tunable source of high-power radiation over the wide range of

the electromagnetic spectrum by using a relativistic electron

beam passing over an undulating magnetic field called a

wiggler. Considerable efforts have been made to operate

FELs at shorter wavelengths and higher powers (Ackermann

et al., 2007; McNeil & Thompson, 2010; Ribic & Margaritondo,

2012; Ishikawa et al., 2012; Tiedtke et al., 2009; Allaria et al.,

2015; Harmand et al., 2013; Yabashi et al., 2015; Wu et al., 2012;

Lehmkühler et al., 2014). In this regard, many proposed X-ray

FELs (with a wavelength range from a few nanometers down

to a few angstroms) have been designed to generate radiation

starting from the shot noise of an e-beam, the so-called SASE

(self-amplified spontaneous emission) mechanism (see

Margaritondo & Ribic, 2011, and references therein). The

main drawbacks of the SASE-FEL are (i) a long conventional

wiggler is required, (ii) there is a relatively high level of shot-

to-shot fluctuations, and (iii) relatively poor longitudinal

coherence. Thus, a number of alternative concepts are under

consideration such as seeding with a coherent signal and
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prebunching the e-beam prior to injection into the wiggler

(Geloni et al., 2011; Allaria et al., 2012; Amann et al., 2012;

Ratner et al., 2015; Svitozar et al., 2015; Svitozar, 2016;

Parmigiani & Ratner, 2016). One way of generating short

wavelengths is to employ a laser pulse as a wiggler, instead of

the static wiggler used in the planned classical SASE experi-

ments (Zholents, 2005; Fuchs et al., 2009; Polyanskiy et al.,

2011; Dattoli et al., 2012, 2015).

The basic difference between conventional magnetic and

laser wigglers lies in the frequency of the output radiation. In a

conventional FEL, electrons propagate in the magnetostatic

wigglers characterized by a period �w, and by a strength

parameter Kw = eBw�w=2�mc, where m and e are the electron

mass and charge, respectively, c is the speed of light and Bw is

the peak magnetic field. In conformity with the resonance

relation in such a FEL, �r ffi �wð1þ K 2
wÞ=2�2, the output

wavelength of the radiation �r can be decreased by reduction

of the wiggler wavelength �w or by increasing the e-beam

energy �. Owing to technical limitations of the wiggler wave-

length (�w � 1 cm) and magnetic field strength (e.g. in a helical

wiggler <50 kG), to produce a short wavelength a conven-

tional FEL requires an e-beam with a very high �, of the order

of multi-GeV, and a wiggler length of a few tens of meters

(Freund & Antonsen Jr, 1992). In this regard, laser-pumped

FELs proposed since the Doppler upshift for such a pump

laser were a factor of two higher than magnetostatic wigglers

with comparable periods. In other words, the wavelength of

radiation for a laser wiggler with period �l scales as (Dattoli et

al.,1999)

�r ffi
�l

4�2
1þ

K 2
l

2

� �
; ð1Þ

where the strength parameter, associated with the laser-

wiggler intensity Il , in practical units reads as

Kl ffi
�
2:3� 10�5 �2

l ½cm2
� Il ½MW cm�2

�
�1=2
: ð2Þ

In comparison with the conventional wigglers, laser-pulse

wigglers have a very small period (�mm) and therefore

produce shorter-wavelength free-electron radiation with lower

electron energies; the construction of long wigglers can also be

avoided. Laser-pumped FELs also offer a more convenient

continuous tunability, by changing the laser frequency (Fuchs

et al., 2009; Polyanskiy et al., 2011; Dattoli et al., 2012). An

infrared laser pulse, coming from a high-power Nd or CO2

laser with wavelength of 1–10 mm, could yield FEL radiation

in the tens of nanometers range with electrons of only a few

MeV (Kawamura et al., 2000; Gordon et al., 2001; Bacci et al.,

2006; Petrillo et al., 2008). Besides, such a FEL might provide

the opportunity to observe quantum mechanical effects in

FEL operation, which in the conventional designs do not play

any role (Bonifacio, 2005; Bonifacio et al., 2007).

Important experimental and theoretical attempts have been

made to obtain a set of reference quantities, useful for

understanding the feasibility of the laser-pumped X-ray FEL.

For example, the energy dispersion of the electrons should be

less than 1=�, where � is the FEL Pierce parameter (Bonifacio

et al., 1984). Therefore, this scheme would require a high-

quality monoenergetic e-beam, together with the requirement

of constancy of the laser intensity along the interaction region.

Owing to these major issues, a laser-wiggler FEL was viewed

for long time as an interesting curiosity because the achievable

laser intensity did not guarantee radiation growth and

saturation. This possibility has been reconsidered, as high-

power lasers have undergone a spectacular evolution. A

record intensity of 2� 1026 W m�2 has been obtained

(Yanovsky et al., 2008), and the upcoming petawatt lasers aim

at intensities of the order of 1027 W m�2 (Norby et al., 2005). In

the near future, intensities of the order of 1028–1030 W m�2 are

foreseen at the Extreme Light Infrastructure (ELI) (Mourou

& Tajima, 2011). The present-day technology is therefore

mature enough to conceive the experimental programs aiming

at the realisation of a laser-pumped X-ray FEL.

In a FEL, apart from such parameters as the magnetic field

strength or wavelength, polarization is one of the most

important characteristics of the wiggler. Like magnetostatic

wigglers, two types of polarization can be considered for

electromagnetic wigglers: linear and circular. In most papers

that have considered employing electromagnetic waves as a

wiggler in FELs, a circular polarized laser is used. There are

many difficulties extracting such a laser, while a linear polar-

ized laser can be achieved using a conventional quantum laser.

Although a great deal of attention has been focused on the

laser-pumped FEL configuration in recent years, most treat-

ments heretofore have neglected the influence of the equili-

brium self-fields of the electron beam, especially in the FELs

with a linearly polarized laser wiggler (Bacci et al., 2006;

Mehdian et al., 2008; Sprangle et al., 2009; Olumi et al., 2011;

Hasanbeigi et al., 2010; Jafari et al., 2014; Hedayati et al., 2015;

Amri & Mohsenpour, 2016). It is known that space-charge

effects are important in Raman FELs which operate at high

electron density and low (relativistic) energy. With the present

trend towards application of increasingly high current in FELs,

it is of interest to consider the effects of the self-fields. The

electron beam and therefore the self-field can exhibit a

complex structure at the entrance to the wiggler. The self-

fields can have a considerable effect on the equilibrium orbits,

and can produce chaos in FELs particularly in the vicinity of

gyroresonance (Bourdier & Michel-Lours, 1994). The self-

fields can either enhance or reduce the external pump field,

depending on the latter’s phase velocity and strength of the

longitudinal guide magnetic field (Kho & Lin, 1988). Hafizi &

Roberson (1996) found that self-fields tend to reduce the

spread in the axial velocity of the beam electrons, i.e. self-fields

effectively cool the beam.

In this present work, we are motivated to investigate the

self-field effects on the electron orbits and gain in a FEL

driven by a uniform linearly polarized laser pulse (pump

wave) accompanied by an axial guide magnetic field, where

the pump wave is a fast laser wave propagating counter to the

electron beam. In x2 we study the conditions under which

FELs can be operated in the X-ray region by employing an

intense laser wave as wiggler. In x3 a self-magnetic field

generated by the wiggler-induced transverse velocity is found
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by the self-consistent method and the equations of steady-

state orbits of the electron are obtained. Moreover, a fourth-

order Runge–Kutta method is employed to study the electron

trajectories under the influence of the axial guide magnetic

field and self-field. Derivation of the gain equation, consid-

ering the interaction of an electron with the electromagnetic

radiation field, is presented in x4. In x5 a detailed numerical

calculation is presented. x6 contains a conclusion and

summary of the work. The stability of electron orbits in this

configuration is also studied in Appendix A.

2. Physical model

In a laser-pumped X-ray FEL an intense-laser field replaces

the magnetic wiggler field of a conventional FEL. To generate

coherent X-rays with this mechanism a number of physics and

technology issues must be addressed. Foremost among these

are the stringent requirements placed on the electron beam

quality and brightness as well as on the pump laser. In this

section we introduce well known concepts and parameters,

worked out in analysis of the electron back-scattering of the

intense-laser wiggler, to realise general considerations on

feasibility criteria of the laser-wiggler-based FELs.

The scaling laws reported in the literature (Fuchs et al.,

2009; Polyanskiy et al., 2011; Dattoli et al., 2012, 2015) can be

used to derive practical formulae yielding the conditions to be

satisfied by the wave-laser intensity and e-beam qualities to

guarantee a reliable operation. The FEL radiation growth rate

and saturation are ruled by the so-called Pierce parameter,

which can be cast in the following form (Bonifacio et al., 1984),

� ffi
8:36� 10�3

�

�
J ½A m�2� �2

l ½m
�2� Kl f bðKlÞ
� �2

	1=3

; ð3Þ

where fbðKlÞ is defined in terms of Bessel functions as fbðKlÞ =

J0½K
2
l =ð4þ 2K2

l Þ� � J1½K
2
l =ð4þ 2K2

l Þ�, and J is the e-beam

current density. The saturation length, i.e. the wiggler length

necessary to reach saturation, reads as

zs ffi �l=�: ð4Þ

The operation around 50 Å, with a high density power laser

of the order of 1014 MW cm�2, requires � values around 10�3

(Grüner et al., 2007). In correspondence of this value, we

have assumed an e-beam current density of 1013 A m�2. A

maximum current of 103 A implies, therefore, an e-beam cross

section S of 10�10 m2. This last value, along with the saturation

length, can be exploited to evaluate the laser-wiggler energy

provided by Dattoli et al. (1999),

� ¼
IlSzs

c
: ð5Þ

A graph of the laser-wiggler energy � requirement versus laser-

wiggler intensity Il is plotted in Fig. 1.

This configuration puts a stringent requirement on the

emittance because the radius of the e-beam that is matched to

the wiggler depends on the e-beam emittance. Moreover, the

condition on the emittance (Dattoli et al., 2012),

" ½m rad� 	 8� 10�12�r Å; ð6Þ

ensures overlapping between electrons and photons. In

Fig. 2, we plot the upper limit [according to equations (1), (2)

and (6)] of the normalized emittance ("n = �") versus the

laser-wiggler intensity Il . The laser-wiggler intensity of

1014 MW cm�2 shows a normalized e-beam emittance of

10�2 mm mrad, two orders of magnitude below the best

obtained values. We can expect that progress in the cathode

technologies, yielding emittance improvement of one order of

magnitude, may allow the possibility of using such a laser

wiggler in the region above 50 Å.

The � parameter can be expressed in terms of the small-

signal gain coefficient g as

� ¼
1

4N

g

�2

� 	1=3

; ð7Þ

where N is the number of wiggler periods. Furthermore, for

wigglers with constant parameters, the FEL saturated power is

about � times the electron beam power (i.e. PFEL ffi �PE). The

small-signal gain coefficient and the e-beam power are linked

by

gIs ¼
1

2N
PE; ð8Þ
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Figure 1
Graph of the laser-wiggler energy � requirement versus laser-wiggler
intensity Il. The chosen parameters are J = 1013 A m�2, S = 10�10 m2, �l =
1 mm and � = 25.

Figure 2
Graph of the optimum normalized emittance "n versus laser-wiggler
intensity Il. The chosen parameters are �l = 1 mm and � = 25.



where Is is the FEL saturation intensity (Dattoli et al., 1993)

and is defined by

Is ½MW cm�2
� ¼ 6:9� 102 �

N

� 	4 1

�l ½cm�Kl f bðKlÞ


 �
: ð9Þ

Therefore, the FEL power can be expressed as

PFEL ½MW cm�2
� ¼ ð2=�Þð4�Þ3ð�NÞ

4
Is ½MW cm�2

�: ð10Þ

According to equation (4), by assuming that the length of the

wiggler coincides with the saturation length (i.e. zs = N�l) we

find

�N ffi 1: ð11Þ

This condition provides a universal link between FEL output

power and saturation intensity in the following form,

PFEL ½MW cm�2
� ¼ 1:26� 103 Is ½MW cm�2

�: ð12Þ

With the aid of equations (2), (3) and (9), as shown in Fig. 3,

the expected SASE-FEL output power driven by a laser

wiggler with period �l (e.g. of the order of 1 mm) will be

achieved.

As the electron beam develops a periodic microbunching,

the longitudinal space-charge field between electrons tends to

counteract the bunching process (Milton et al., 2001). In order

to analyse the focusing effects, we consider a high intensity

current e-beam focused on a very small section for a length of

1 mm. Even though this is a small distance, the Coulomb

repulsion forces may induce defocusing effects, which may

dilute the effective current density. Hence, the e-beam in a

long wiggler channel, expanding its size in free space, should

be properly focused to keep the beam size nearly constant for

the effective FEL interaction. There are two types of focusing:

‘natural’ focusing (used in many low- and medium-energy

FELs) and ‘strong’ focusing (commonly used in X-ray FELs)

(Huang & Kim, 2007). The natural focusing is due to the

intrinsic property of the periodic nature of the wiggler

magnetic field. It is usually too weak to be effective for the

high-energy electrons that drive an X-ray FEL. Thus, a

quadrupole, as a guide field, is inserted into the FEL to

provide the necessary strong focusing.

Typical FEL amplifiers employ an e-beam that is matched to

the wiggler so that the envelope remains constant throughout

the wiggler. Lawson’s expression for the evolution of the r.m.s.

envelope in the paraxial limit (Reiser, 1994),

�00 ¼ �k2
q� þ

"2
n

�2�3
þ

�

�3�
; ð13Þ

can be exploited to have an idea of the defocusing due to the

charge contributions. We have denoted by � the r.m.s. e-beam

transverse section and with �00 the second derivative with

respect to the longitudinal coordinate. Furthermore, "n is the

r.m.s. emittance of the e-beam and the beam perveance � =

I=2IA controls the effect of the space-charge contribution with

the Alfven current IA = ec=re ffi 17 kA. The quadrupole

focusing gradient kq is

kq ¼
eB0

2�mec
¼

a0ffiffiffi
2
p
�

k0; ð14Þ

where k0 = 2�=�0 is the quadrupole wavenumber and a0 =

eB0=
ffiffiffi
2
p

k0mec is the dimensionless quadrupole strength

parameter corresponding to the peak on-axis field B0.

The results of the r.m.s. beam size analysis are given in Fig. 4,

from which it is evident that the charge defocusing effect is by

no means negligible even over the 1 mm interaction length. In

this region the e-beam transverse dimensions do not grow

significantly, while its divergence grows from 10�5 to 10�3 rad.
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Figure 3
Graph of the SASE-FEL output power PFEL versus laser-wiggler intensity
Il . The chosen parameters are J = 1013 A m�2, �l = 1 mm and � = 25.

Figure 4
Graph of the e-beam envelope (a) and the e-beam divergence (b) versus
the longitudinal coordinate for � = 25, I = 1 kA, "n = 10�2 mm mrad and
kq = 10 m�1. The dotted line refers to the case in which the space-charge
effects have not been included.



Thereby, a guiding field is necessary in the FEL to restrict the

electrons against the radial space-charge forces over a

reasonable length region. A high density power laser can be,

therefore, a good candidate for a laser wiggler to support the

SASE-FEL operation.

3. Single-particle trajectories

The dynamics of FEL operation with magnetostatic or laser

wigglers is essentially the same, if we limit ourselves to modest

electron energies and not too short laser wavelengths, in order

to avoid quantum corrections.

The specific configuration we consider is that of a relativistic

electron beam propagating through an axial guide magnetic

field, B0 (= B0êez), and an antiparallel propagating linearly

polarized laser wiggler characterized in terms of amplitude,

wavenumber and frequency, Bl, kl and !l, as

El ¼ �
!l

ckl

Bl sin klzþ !ltð Þêex; 15ð Þ

Bl ¼ Bl sin klzþ !ltð Þêey: 16ð Þ

In order to model the self-fields, we make the assumption of

a uniform electron density profile nb rð Þ = nb = constant for

r 	 rb and nb rð Þ = 0 for r > rb, where nb is the number density

of the electrons and rb is the radius of the beam. The beam

equilibrium self-electric field induced by steady-state charge

density of the non-neutral electron beam can be obtained by

solving Poisson’s equation,

r:Es ¼ �4�enb rð Þ; ð17Þ

where �e is the electron charge. Solving (17) for r 	 rb and is

zero otherwise, we obtain

Es ¼ �2�enb xêex þ yêey

� �
: ð18Þ

The lowest-order representation for the self-magnetic field is

obtained under the assumption that the beam propagates

paraxially with v = vkêez in the interior of the beam. In this case,

the self-magnetic field is determined by Ampere’s law,

r � Bs ¼ ð4�=cÞ J; ð19Þ

where c is the speed of light in a vacuum, J (¼ �enbcbkêez) is

the electron current density, and bk (¼ vk=c) is the normalized

electron axial velocity. The solution of equation (19), known

as the axial velocity-induced self-magnetic field, may be

expressed in the form

Bs ¼ Bsk ¼ 2�enb	k yêex � xêey

� �
: ð20Þ

Single electron motion with rest mass m in these combined

fields can be determined by the solution of the relativistic

Lorentz equation,

dðm�vÞ

dt
¼ �e Eþ

1

c
ðv� BÞ


 �
: ð21Þ

With the aid of field equations (15), (16), (18) and (20), the

steady-state (� = constant) solution of equation (21) for the

normalized wiggler-induced electron velocity in this config-

uration leads to

b 0
w ¼ 	

0
wx cos klzþ !ltð Þêex þ 	

0
wy sin klzþ !ltð Þêey; ð22Þ

where

	 0
wx ¼

�l 	k þ 	p

� �2
	k þ 	p

� �2
þ !2

b 1� 	 2
k

� �h i
�2

0 	k þ 	p

� �2
� 	k þ 	p

� �2
þ !2

b 1� 	 2
k

� �h i2 ; ð23Þ

	 0
wy ¼

�0�l 	k þ 	p

� �3

�2
0 	k þ 	p

� �2
� 	k þ 	p

� �2
þ !2

b 1� 	 2
k

� �h i2
; ð24Þ

	p ð
 !l=cklÞ denotes the normalized phase velocity for the

laser wiggler, !b ½
 ð2�e2nb=m�k2
l c2Þ

1=2
� denotes the normal-

ized beam frequency, and �0;l ð
 eB0;l=m�klc
2Þ are normal-

ized axial guide and laser-wiggler magnetic fields, respectively.

The transverse electron velocity induced by the wiggler

magnetic field generates another self-magnetic field known as

a wiggler-induced self-magnetic field and we denote it as Bsw.

Using Ampere’s law [equation (19)], and following the

procedure of Freund et al. (1993), results in the wiggler-

induced self-magnetic field being proportional to the wiggler

magnetic field as follows,

B1
sw ¼ �

1
xBl cos klzþ !ltð Þêex þ �

1
yBl sin klzþ !ltð Þêey: ð25Þ

The first-order wiggler-induced self-magnetic field [equation

(25)] also causes a new transverse velocity. Resolving the

equation of motion [equation (21)], the normalized electron

transverse velocity components can be written as

	 1
wx ¼ �1

x	
0

wy þ ð1þ �
1
yÞ	

0
wx

h i
cos klzþ !ltð Þ; ð26Þ

	 1
wy ¼ �1

x	
0

wx þ ð1þ �
1
yÞ	

0
wy

h i
sin klzþ !ltð Þ: ð27Þ

Consequently, the above transverse velocity produces a new

wiggler-induced self-magnetic field

B2
sw ¼ �

2
xBl cos klzþ !ltð Þêex þ �

2
yBl sin klzþ !ltð Þêey; ð28Þ

and so on. This process may be continued to find the higher-

order terms. Using Ampere’s law,

r � Bnþ1
sw ¼ �4�enb b n; ð29Þ

we can obtain

�nþ1
x ¼ A1�

n
x þ A2 1þ �n

y

� �
; ð30Þ

�nþ1
y ¼ A2�

n
x þ A1 1þ �n

y

� �
; ð31Þ

where n � 1,

A1 


2!2
b 	k þ 	p

� �2
	k þ 	p

� �2
þ !2

b�
�2
k

h i
�2

0 	k þ 	p

� �2
� 	k þ 	p

� �2
þ !2

b�
�2
k

h i2
; ð32Þ

research papers

1286 E Abbasi et al. � Self-field effects on electron orbits and FEL gain J. Synchrotron Rad. (2016). 23, 1282–1295



A2 

2!2

b�0 	k þ 	p

� �3

�2
0 	k þ 	p

� �2
� 	k þ 	p

� �2
þ !2

b�
�2
k

h i2 ; ð33Þ

and �k = ð1� 	 2
k Þ
�1=2. Equations (30) and (31) may be

rewritten in the form

D�nþ1
x ¼ F 1þD�n

xð Þ; ð34Þ

�nþ1
y ¼ F 1þ �n

y

� �
; ð35Þ

where

D 

A1 1� A1ð Þ þ A2

2

A2

; ð36Þ

F 

A1 1� A1ð Þ þ A2

2

1� A1ð Þ
: ð37Þ

Using equations (34) and (35), we can write

�x 
 lim
n!1

�n
x ¼

1

D
F
P1
i¼ 0

F i

� �

¼
2!2

b�0 	k þ 	p

� �3

�2
0 	k þ 	p

� �2
� 	k þ 	p

� �2
1þ 2!2

b

� �
þ !2

b�
�2
k

h i2
; ð38Þ

�y 
 lim
n!1

�n
y ¼ F

P1
i¼ 0

F i

¼

2!2
b 	k þ 	p

� �2
	k þ 	p

� �2
1þ 2!2

b

� �
þ !2

b�
�2
k

h i
�2

0 	k þ 	p

� �2
� 	k þ 	p

� �2
1þ 2!2

b

� �
þ !2

b�
�2
k

h i2
; ð39Þ

The convergence condition for equations (38) and (39) is

jFj < 1, which is in fact a restriction for the validity of this

method for high e-beam density. Finally, the total wiggler-

induced magnetic field becomes

Bsw ¼ Bsw? cos klzþ !ltð Þêex þ Bswk sin klzþ !ltð Þêey; ð40Þ

where Bsw? 
 �xBl and Bswk 
 �yBl.

The first component in equation (40) is perpendicular to the

wiggler magnetic field Bw [equation (16)], while the second

one is parallel ð�y > 0Þ or antiparallel ð�y < 0Þ to the wiggler

magnetic field. The existence of the perpendicular component

of the wiggler-induced self-magnetic field in a linearly polar-

ized wiggler is the main discrepancy with the case of a circular

polarized wiggler in which no perpendicular component exists.

Because of providing the best analysis of the self-field effects

on the FEL gain, numerical results of the wiggler-induced self-

magnetic field are presented at the end of x5 in Fig. 15.

Now we can study electron dynamics in a FEL with linearly

polarized laser wiggler and axial magnetic field in the presence

of the self-fields. Substituting equations (15), (16), (18), (20)

and (40) into (21), the scalar steady-state (� = constant)

equations of motion may be written in the form

d	x

d

¼ !2

b 1� 	k	z

� �
X þ 1þ �y

� �
	z þ 	p

� �
�l sin Z þ 	p


� �
��0	y; ð41Þ

d	y

d

¼ !2

b 1� 	k	z

� �
Y � �x 	z þ 	p

� �
�l cos Z þ 	p


� �
þ�0	x; ð42Þ

d	z

d

¼ !2

b	kðX	x þ Y	yÞ ��l

h
�x	y cos Z þ 	p


� �
� 1þ �y

� �
	x sin Z þ 	p


� �i
; ð43Þ

where X = xkw, Y = ykw, Z = zkw are normalized coordinates

and 
 = tckw is the normalized time.

Electrons, moving in the wiggler magnetic field, are

deviated from straight trajectories by the Lorentz force

perpendicular to their direction. The electrons enter circular

orbits of radius rc, which is called the Larmor or cyclotron

radius of an electron. An electron will be deviated by the

electric component El of the laser wiggler and will start to

move in the negative x direction following turning the laser

on. However, from this moment, the bending effects of the

magnetic component Bl of the laser wiggler and the static

guide magnetic field B0 will start to influence the electron. The

component Bl will tend to bend the electron trajectory around

the y axis while the component B0 will tend to make the

electron follows a helix around the z axis. The result of these

combined actions is a helical trajectory with superimposed

wiggles.

Using the fourth-order Runge–Kutta method with adaptive

step size for coupled differential dynamic equations (41)–(43),

a graph of the normalized transverse displacements of the

electron versus the normalized interaction time in a FEL

region for various axial guide magnetic field strengths �0 is

shown in Fig. 5. The normalized coordinates X and Y are

significantly smaller than the Z coordinate and this difference

is more pronounced at larger �0. Hence, the dimensions of the

trajectories in the (X, Y) plane are subject to variation

depending on the value of �0. A cross-section view of electron

motion in the case of various axial guide magnetic field

strengths is plotted in Fig. 6. As can be seen, variation in �0

results in variation not only in the trajectory size but also in its

shape. In smaller amounts of �0, the electron trajectory is not

the shape of a perfect helix. As the normalized magnetic field

frequency �0 increases, the shape of the electron trajectory

significantly changes. At high �0, the electron is launched

along a perfect helical path. Besides, this figure shows that the

wiggle number of electrons increases with increasing axial

guide magnetic field strength. In other words, this oscillation

shows an increasing frequency (cyclotron frequency !c) with

�0 rising. Furthermore, in Fig. 7, a cross-section view of the

electron motion in the case of various normalized beam

frequencies !b is plotted. As is evident from this figure, in the

absence of the self-field (!b = 0) the electron is launched along

a perfect helical path; as the normalized beam frequency !b

increases, the shape of the electron trajectory becomes less

helical.

After the numerical solutions to simulate the electron

trajectories, we derive proper analytical solutions using

appropriate assumptions. The importance of the analytic
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solution lies in the fact that it leads to a deeper insight into the

problem in hand, and hence to a better understanding of the

physics involved. The analytical solutions of equations (41)–

(43) for the normalized transverse electron velocity compo-

nents in the presence of all relevant fields, including wiggler,

self-fields and axial guide magnetic fields, can be obtained as

bw ¼ 	wx cos klzþ !ltð Þêex þ 	wy sin klzþ !ltð Þêey; ð44Þ

where

	wx ¼

�l 	k þ 	p

� �2
	k þ 	p

� �2
1þ 2!2

b

� �
þ !2

b�
�2
k

h i
�2

0 	k þ 	p

� �2
� 	k þ 	p

� �2
1þ 2!2

b

� �
þ !2

b�
�2
k

h i2
;

ð45Þ

	wy ¼
�l�0 	k þ 	p

� �3

�2
0 	k þ 	p

� �2
� 	k þ 	p

� �2
1þ 2!2

b

� �
þ !2

b�
�2
k

h i2 :

ð46Þ

In the limit !b = 0, equations (35) and (36) reduce to the well

known wiggler-induced transverse velocities in the absence of

self-fields. These equations also show a resonant enhance-

ment. Setting the denominator equal to zero gives the char-

acterization of two classes of trajectories called group I and

group II orbits, defined by

�0 <
1

	k þ 	p

� � 	k þ 	p

� �2
1þ 2!2

b

� �
þ !2

b�
�2
k

h i
ð47Þ

and

�0 >
1

	k þ 	p

� � 	k þ 	p

� �2
1þ 2!2

b

� �
þ !2

b�
�2
k

h i
; ð48Þ

respectively.

research papers

1288 E Abbasi et al. � Self-field effects on electron orbits and FEL gain J. Synchrotron Rad. (2016). 23, 1282–1295

Figure 6
Cross-section view of the electron motion for � = 25, �l = 0.05, !b = 0.1,
�0 = 0.4, 0.55 and 0.93.

Figure 7
Cross-section view of the electron motion for � = 25, �l = 0.05, �0 = 0.4, !b = 0, 0.1 and 0.2.

Figure 5
Graph of the normalized transverse components of the electron
trajectory versus the normalized interaction time for (a) (
, X) and (b)
(
, Y) when � = 25, �l = 0.05, !b = 0.1, �0 = 0.4, 0.55 and 0.93.



As can be seen from the simulation presented in graphical

form using the Runge–Kutta method, equilibrium orbits at

some specially selected values of the axial guide magnetic field

are axis-centered helices with a constant radius. In other

words, the projections of the trajectories onto the (X, Y) plane

do not change in time in spite of proceeding circulations,

which means that their shapes in each cycle appear to be the

same. Therefore, the energy of the electrons represented by

the relativistic factor � is constant because the distance from

the axis remains the same for each trajectory. We call these

trajectories or their projections the stationary ones. However,

the energy of the electron is a constant of motion only when

averaged over cycles. On the other hand, equilibrium trajec-

tories in the presence of the weak axial guide magnetic field

are not axis centered, and � is approximately constant. For

these near steady-state orbits, however, � is not exactly

constant and in the stability analysis of equilibrium orbits the

distance from the axis varies for both on- and off-axis orbits

and a small change in � can make a stable trajectory unstable

and vice versa. The stability analysis, under the constant �
approximation, is presented in Appendix A. It shows that the

self-fields can make parts of the steady-state orbits unstable.

These instability regions will be widened to cover the entire

group I and group II orbits if the defocusing effects of the self-

fields are increased sufficiently.

The frequency and wavenumber of a laser wiggler are not

independent parameters, but they are specified by the

dielectric properties of the medium. The dispersion equation

is obtained by substitution of the electron current into

Maxwell’s equations, and the result is

	p
2
� 1þ

2!2
b 	k þ 	p

� �2
	k þ 	p

� �2
1þ 2!2

b

� �
þ !2

b�
�2
k

h i
�2

0 	k þ 	p

� �2
� 	k þ 	p

� �2
1þ 2!2

b

� �
þ !2

b�
�2
k

h i2 ¼ 0:

ð49Þ

For fixed values of �, �l and !b, equations (44), (49) and

1� 	 2
w � 	

2
k � �

�2 = 0 are sufficient to determine the

normalized e-beam axial velocity 	k and normalized phase

velocity 	p. A plot of 	k of group I orbits (a) and group II

orbits (b) against the axial guide magnetic field frequency �0

for chosen acceptable values is shown in Fig. 8. In addition, a

plot of 	k for both the planar magnetostatic wiggler and the

linearly polarized laser wiggler is shown in Fig. 9 (we inves-

tigate the planar wiggler for comparison). A plot of 	p against

�0 is shown in Fig. 10.

4. Gain equation of the laser wiggler

The present analysis assumes a relativistic electron beam

accompanied by its electromagnetic radiation propagating in

the FEL interaction region. The electric and magnetic field of

radiation may be written as

Er ¼ Erðcos �êex � sin �êeyÞ; ð50Þ

Br ¼ Erðsin �êex þ cos �êeyÞ; ð51Þ

where � 
 krz� !rt þ ’, kr is the wavenumber, !r is the

angular frequency of the radiation wave, and ’ is a phase

constant. Assuming 	z is close to 1, the normalized component

of the electron velocity in the presence of self-fields and

electromagnetic radiation has been found to be the same as

that found previously in x3 by the self-consistent method

[equation (44)]. The transverse motion is directly coupled to

the longitudinal motion because the energy is constant. So the

average of the normalized axial velocity over a wiggler period,

	z can be expanded, for � � 1, as

	z ffi 1�
1

2
��2 1þ

a2
l 	k þ 	p

� �4
�2
þ �2

� �
2 �2
� �2

� �2

" #
; ð52Þ

where al 
 ��l, � 
 1þ 2!2
b

� �
ð	k þ 	pÞ

2
þ !2

b�
�2
k and

� 
 �0 	k þ 	p

� �
.

The energy exchange of the electron with the radiation field

is given by

_�� ¼ �
e

mc
	 :Er: ð53Þ

Substituting equations (44) and (50) into (53) yields

_�� ¼ �
eEr

2mc

h
	wx þ 	wy

� �
cos �t þ ’ð Þ

þ 	wx � 	wy

� �
cos � 0t þ ’ð Þ

i
; ð54Þ

where � 
 ðkr þ klÞc	k + ð!l � !rÞ and � 0 

ðkr � klÞc	k � ð!l þ !rÞ. Due to the rotating wave approx-

imation for eliminating rapid oscillations, the second term in

(54) can be neglected. Averaging this equation over all phases

to first order yields no net energy exchange between the

electron beam and the radiated wave. Therefore, the second-

order correction can be achieved as

_�� ¼ �
eEr

2mc
	wx þ 	wy

� �
cos

n
�t þ ’

þD
�

cos �t þ ’ð Þ � cos ’þ�t sin ’
�o
; ð55Þ

where D 
 k2ðkr þ klÞ=�
2. Consequently, the lowest-order

non-zero rate of change in energy averaged over the initial

phase of radiation, ’, becomes

h _��i’ ¼
eErDð	wy þ 	wyÞ

4mc
�t cos �t � sin �tð Þ: ð56Þ

Integrating (56) over the electron transit time through the

wiggler interaction length L yields the average change in � per

electron,

h��i’ ¼

ZT¼L=c	k

0

h _��i’ dt ¼ �
eErD�2T3 	wy þ 	wy

� �
4mc

g �Tð Þ:

57ð Þ

Here,

g �Tð Þ ¼
1

�Tð Þ
3

2� 2 cos �T ��T sin �Tð Þ 58ð Þ
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denotes the gain function, which is defined as the relative

energy increase of the light wave during one passage of the

wiggler. The extremes of the gain occur at �T = �2.6 yielding

gð�TÞ ffi �0.135, which corresponds to the wavenumbers

kr ¼
kl

1� 	k
� � 	k þ 	p

� �

 2:6

	k
klL


 �
: 59ð Þ

The change in electromagnetic power in one transit is

�Pr ¼ �mc3	knb�r2
bh��i’: 60ð Þ

Finally, by using (57), (59) and (60) the linear gain can be

written as

Gmax 

�Pr

Pr

¼ � 0:07
�kle

2nbL3 1þ 	k
� �

	wx þ 	wy

� �2

mC 2	 2
k�

� F 1þ 	p 
 2:6
	k

klL

� �
; 61ð Þ

where Pr 
 ðE
2
r=4�Þc�r2

b is the electromagnetic power and

F 

1

�2
k

1�
a2

l 	k þ 	p

� �4
�4
� �4
þ 	k þ 	p

� �2
� 3�2

þ �2
� �n o

2 �2
� �2

� �3
þ a2

l 	k þ 	p

� �4
�4
� �4

� �
2
4

3
5:

62ð Þ

The � signs must be chosen to give a positive gain in equation

(61). In the limit !b ! 0 (eliminating self-fields), the

maximum gain reduces to

Gmax 0 ¼� 0:07
�kle

2nbL3 1þ 	k
� �

mC2	 2
k�

1þ 	p 
 2:6
	k

klL

� �

�
�l 	k þ 	p

� �
�0 � 	k þ 	p

� �
" #2

F0; ð63Þ

where

F0 ¼ 1��2
0a2

l 	k þ 	p

� �2
�

�2
0 þ 3 	k þ 	p

� �2

2 �2
0 � 	k þ 	p

� �2
h i3

þ a2
l 	k þ 	p

� �2
�4

0 � 	k þ 	p

� �4
h i

8><
>:

9>=
>;:
ð64Þ

Similarly, if we set the normalized axial magnetic field, �0,

equal to zero in equation (63), we obtain

G0 ¼ �0:07
�kle

2nbL3 1þ 	0ð Þ

mC 2	 2
0 �

�2
l 1þ 	p 
 2:6

	0

klL

� �
; 65ð Þ

which is the maximum gain for a laser wiggler without guiding

device and self-fields. Here, 	0 = ð1��2
l � �

�2Þ
1=2 is the

normalized axial velocity in such a wiggler. Besides, if we set

	p ! 0, the above gain equations reduce to the gain equations

for a planar magnetostatic wiggler.

5. Numerical studies and discussions

A numerical study of the self-field effects on the electron

orbits and gain in a linearly polarized laser-wiggler FEL with

axial guiding magnetic field has been made. The following

values of the parameters have been chosen: the normalized

laser magnetic field �l was taken to be 0.05; the e-beam energy

ð� � 1Þmc2 was taken to be 12.2 MeV, which corresponds to a

Lorentz factor � of 25; and the normalized e-beam frequency

!b was taken to be 0.1.

A graph of the normalized e-beam axial velocity, 	k, as

a function of the normalized axial guide magnetic field

frequency, �0, for the laser wiggler in the presence of the self-

fields has been shown in Fig. 8. Here, the electron trajectories

are divided into two groups; Group I (Fig. 8a) and group II

(Fig. 8b) orbits are defined by the conditions of equations (47)

and (48), respectively. The results in the absence of self-fields

are shown for comparison, by dotted lines. Numerical calcu-

lation (Appendix A) shows that the upper branches (contin-

uous line) for group I orbits both in the presence and absence

of the self-fields are stable and the dashed lines are unstable.

On the other hand, the orbits of group II are stable for all

values of �0, and in this group 	k increases with increasing

axial guide magnetic field frequency. Numerical calculations

also show that unstable orbits (of group I) in general depend

on an e-beam frequency, !b, and decrease with increasing

e-beam frequency until all orbits become stable. A comparison

between the electron orbits with and without considering the

self-fields indicates that the electron orbits for both groups

approach each other. Moreover, in the presence of the self-
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Figure 8
Graph of normalized axial velocity of (a) group I orbits and (b) group II
orbits versus the normalized guide magnetic field frequency for !b = 0.1,
�l = 0.05 and � = 25. The dashed lines indicate the unstable orbits.



fields, group II orbits are a multi-valued function of the

normalized axial magnetic field frequency �0, whereas, in the

absence of self-fields, group II orbits are single-valued.

Besides, the graph of the normalized e-beam axial velocity

as a function of �0 for both the linearly polarized laser wiggler

and the planar magnetostatic wiggler has been shown in Fig. 9

(we investigate the planar wiggler case for comparison). The

main differences between electron orbits in these two types of

wigglers are: (i) the resonance frequency of the orbits in the

planar magnetostatic wiggler occurs around �0 � 0.9, while

for the laser wiggler it occurs around �0 � 1.9, i.e. the resonant

frequency (of the transverse velocity) of the laser wiggler is

greater than the resonant frequency of the planar wiggler, and

(ii) in the planar wiggler group II orbits exhibit an orbital

instability which is not found in the laser wiggler.

Fig. 10 shows the dispersion relation of the laser wiggler

[equation (49)]. As shown in this figure, there are two relevant

modes for backward-propagating electromagnetic radiation,

positive 	p: an electromagnetic escape mode and an electro-

magnetic electron cyclotron wave supported by the beam.

Group I and II orbits correspond to waves in the electro-

magnetic escape mode and the electromagnetic electron

cyclotron mode, respectively. Since !l > ckl, it is seen that the

wiggler electromagnetic waves are supraluminous for group I

orbits, while for the group II orbits, because !l < ckl, the

wiggler waves are subluminous. Dashed lines indicate the

unstable branch of group I orbits.

A graph of normalized gain, � 
 Gmax=G0 (i.e. the ratio of

the maximum gain in the presence of the self-fields to

maximum gain in the absence of the self-fields and axial guide

magnetic field), as a function of the normalized axial magnetic

field frequency for stable group I and group II orbits, is

depicted in Fig. 11 (solid lines). It is shown that the normalized

gain for group I orbits increases monotonically from 1 for �0 =

0 and reaches its peak (1943.46) at �0 = 1.88 near its trans-

verse velocity resonance frequency (see the electron orbits in

Fig. 8). For group II orbits, the normalized gain starts from

�0 � 1.97, � � 3821.03, which is near the resonant frequency,

then goes down to zero at �0 
 �cr
0 = 3.48, then goes up again

until it reaches the maximum value of around 0.4. The zero

gain in group II is due to the F = 0 in equation (61) in which

the zero mass regime occurs. Note that, for group II orbits, F

is less than zero for �0 < �cr
0 (negative mass regime) and

F becomes greater than zero for �0 > �cr
0 (positive mass

regime). In addition, it is worthwhile investigating the

normalized gain, �, versus the different normalized beam

frequencies, !b. It appears that the peak of the normalized

gain for the group I orbits decreases with increasing normal-

ized beam frequency, while for the group II orbits in �0 = �cr
0

the normalized gain starts going up to a maximum which

increases with increasing normalized beam frequency.

A graph of the normalized gain, � 
 Gmax=G0, as a func-

tion of the normalized axial magnetic field frequency, is shown

in Fig. 12 for both the planar magnetostatic wiggler and the

linearly polarized laser wiggler for comparison. It appears that

the normalized gain for a planar wiggler (dotted lines) is

similar to the normalized gain for a laser wiggler (solid lines),

but the normalized gain in the planar wiggler increases quite

strongly to its peak (1009.36) for group I orbits, which is about

half of the pick of the laser wiggler. The behavior of the

normalized gain of group II orbits for the planar wiggler is

similar to that of the laser, with a pick value of 1723.16 near its
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Figure 11
Graph of the normalized gain, �, versus the normalized guide magnetic
field frequency for � = 25, �l = 0.05, !b = 0.1, 0.2 and 0.3.

Figure 9
Graph of normalized axial velocity of group I orbits and group II orbits
versus the normalized guide magnetic field frequency for the planar
magnetostatic wiggler and linearly polarized laser wiggler. The chosen
parameters are !b = 0.1, �l = 0.05 and � = 25. The dashed lines indicate
the unstable orbits.

Figure 10
Graph of the dispersion relation as a function of the normalized axial
guide magnetic field frequency for group I and II orbits. The chosen
parameters are !b = 0.1, �l = 0.05 and � = 25. The dashed lines indicate
the unstable orbits.



resonant frequency, which is less than half of the laser pick

(i.e. 3821.03). As a result, the resonant frequency and the

normalized gain near the resonant frequency for the laser

wiggler are much higher than for the planar wiggler.

The graph of the gain ratio, �max 
 Gmax=Gmax 0 (i.e. the

ratio of the maximum gain in the presence of the self-fields to

the maximum gain in the absence of the self-fields), for group I

and II orbits as a function of the normalized axial magnetic

field frequency, �0 is illustrated in Fig. 13. As shown in the

figure, for group I orbits the gain ratio is less than 1 and

therefore a gain decrement is obtained due to the self-fields,

and this decrement is more for stronger self-fields (or greater

!b). This gain decrement, with increasing �0, increases very

slowly, while for group II orbits the gain ratio is greater than 1,

except for the critical point, �0 
 �cr
0 = 3.48 (solid lines).

Therefore, the gain enhancement is obtained due to the self-

fields, and it increases with increasing !b. It is seen that this

gain enhancement starts from �0 � 1.97, �max � 2.3, then with

increasing �0 it decreases to its minimum near to the critical

point and then increases. Note that the zero and singular

points in this figure are due to the different zero point of

maximum gain in the presence and absence of the self-fields,

respectively, and are not physically important.

Furthermore, Fig. 14 shows the gain ratio,

�max 
 Gmax=Gmax 0, as a function of the normalized axial

magnetic field frequency, �0, for both the planar magneto-

static wiggler (dotted lines) and the linearly polarized laser

wiggler (solid lines). As seen in this figure, the gain for both

planar wiggler and laser wiggler for group I orbits are less than

1, and the effect of self-fields cause the gain decrement, but

this gain decrement for the planar wiggler is greater than that

for the laser wiggler. On the other hand, for group II orbits,

the gain ratio for both laser wiggler and planar wiggler are

greater than 1 except near their critical points, therefore the

gain enhancement is obtained due to the self-fields. The gain

enhancement for the planar wiggler has an almost similar

behavior to that of the laser wiggler, starting from �0 � 0.9,

near its transverse velocity resonance frequency, and goes

down to its minimum near to the critical point �0 
 �cr
0 = 1.73

and then increases.

Graphs of the normalized parallel (or antiparallel)

component of the wiggler-induced self-magnetic field �BBswk

ð
 Bswk=Bw) as well as the normalized perpendicular compo-

nent of the wiggler-induced self-magnetic field �BBsw?

ð
 Bsw?=BwÞ are shown in Fig. 15. As we see in this figure, �BBswk

is negative (antiparallel to the wiggler magnetic field) for

group I orbits while it is positive (parallel to the wiggler

magnetic field) for group II orbits. The perpendicular

component of the normalized wiggler-induced self-magnetic

field �BBsw? (dashed lines) is also negative for group I orbits and

positive for group II orbits. Therefore, the wiggler-induced

self-magnetic field decreases the effective wiggler magnetic

field and has a diamagnetic effect for group I orbits. For group

II orbits it increases the effective wiggler magnetic field and

has a paramagnetic effect. Although the graphs of the parallel

(or antiparallel) and perpendicular components are similar,

the absolute value of the antiparallel component is greater

than that of the perpendicular component for group I orbits,

whereas for group II orbits the perpendicular component is

greater than the parallel one. Thus we conclude that for group

I orbits the gain decrement relative to the absence of the self-

fields is only due to the diamagnetic effects of the wiggler-
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Figure 13
Graph of the gain ratio, ���max, versus the normalized guide magnetic field
frequency for � = 25, �l = 0.05, !b = 0.1, 0.2 and 0.3.

Figure 14
Graph of the gain ratio, ���max, for both linearly polarized laser wiggler
(solid lines) and planar magnetostatic wiggler (dotted lines) versus the
normalized axial guide magnetic field frequency. The chosen parameters
are !b = 0.1, �l = 0.05 and � = 25.

Figure 12
Graph of the normalized gain, �, for both linearly polarized laser (solid
lines) and magnetostatic (dotted lines) wigglers versus the normalized
axial guide magnetic field frequency. The chosen parameters are !b = 0.1,
�l = 0.05 and � = 25.



induced self-magnetic field, and the gain enhancement in

group II orbits is due to the paramagnetic effects of the

wiggler-induced self-magnetic field. It was also found from

Figs. 11 and 13 that the diamagnetic (paramagnetic) effect for

group I (group II) orbits increases with increasing normalized

beam frequency (beam density). As a consequence, the beam

density plays an important role in controlling both the reso-

nance point and suitable frequency of the output radiations of

the laser-wiggler FELs.

6. Conclusion

In this work, we investigated the working conditions of FELs

operating with a laser-wave wiggler. We provided general

scaling criteria and corroborated them with appropriate

numerical simulations. The electron orbits and FEL gain in the

presence of the combined effects of the laser-wiggler field, the

self-fields and the external focusing magnetic field were

derived. The wiggler-induced self-magnetic field associated

with the charge density and current of the electron beam was

derived by a self-consistent method. The electron trajectory

schemes obtained by the fourth-order Runge–Kutta method

showed that in the intense laser field and strong magnetic field

the electron trajectory is a helix (with superimposed wiggles).

However, external magnetic fields increase the results in

shrinking of the trajectories. Equilibrium steady-state orbits

showed that the self-fields modify the group I and group II

orbits. A comparison between the electron orbits of a linearly

polarized laser-wiggler and a planar magnetostatic wiggler was

made and the results indicated that the resonant frequency of

the laser wiggler is greater than the resonant frequency of the

planar magnetostatic wiggler. Furthermore, in the planar

wiggler, group II orbits exhibit an orbital instability which is

not found in the laser wiggler. The self-fields play an important

role in controlling both the resonance point and suitable

frequency of the output radiations of the laser-wiggler FELs.

Numerical results indicated a gain decrement for group I

orbits and a gain enhancement for group II orbits, since the

wiggler-induced self-magnetic field had a diamagnetic effect

on group I orbits whereas for group II it had a paramagnetic

effect. These diamagnetic and paramagnetic effects increased

with increasing beam density. A comparison of the FEL gain

for the linearly polarized laser wiggler with the FEL gain for

the planar magnetostatic wiggler showed that the resonant

frequency and the peak gain for the laser wiggler are much

higher than that of the planar wiggler.

APPENDIX A
The stability of electron orbits in the laser wiggler

For analyzing the stability of orbits, we find it convenient to

work in the reference frame rotating with the laser wiggler,

and define the basis vectors

êe1 ¼ êex cos klzþ !ltð Þ þ êey sin klzþ !ltð Þ; ð66Þ

êe2 ¼ �êex sin klzþ !ltð Þ þ êey cos klzþ !ltð Þ; ð67Þ

êe3 ¼ êez: ð68Þ

The scalar equations of motion in this frame are

d	1

d

¼ !2

b 1� 	 2
3

� �

1 þ �� 	3 þ 	p

� �
�l sin �

� �0 � 	3 þ 	p

� �� �
	2; ð69Þ

d	2

d

¼ !2

b 1� 	 2
3

� �

2 þ 	3 þ 	p

� �
�l �� cos �� �þ
� �

þ �0 � 	3 þ 	p

� �� �
	1; ð70Þ

d	3

d

¼ !2

b	3 	1
1 þ 	2
2ð Þ

��l 	1�� sin �þ 	2ð�� cos �� �þÞ
� �

; ð71Þ

where 
 
 klx is the normalized electron position,

� 
 2ð
3 þ 	p
Þ and �� 
 ð1þ �y � �xÞ=2.

The steady-state solutions of equations (69)–(71) may be

written as

	10 ¼ �þ þ �� cos �; ð72Þ

	20 ¼ ��� sin �; ð73Þ

	30 ¼ 	k; ð74Þ

for the unperturbed (subscript zero) normalized electron

velocity components and


10 ¼
�� sin �

	k þ 	p

� � ; ð75Þ


20 ¼
�� cos �� �þ
	k þ 	p

� � ; ð76Þ


30 ¼ 	k
; ð77Þ

for the unperturbed normalized position components, where
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Figure 15
Graphs of the normalized parallel (or antiparallel) and perpendicular
components of wiggler-induced self-magnetic fields (i.e. Bswk and Bsw?) as
a function of the normalized axial magnetic field frequency. The solid and
dashed lines indicate Bswk and Bsw?, respectively.



�� 


�l 	k þ 	p

� �2
	k þ 	p

� �2
1þ 2!2

b

� �
þ !2

b�
�2
k

h i
��0 	k þ 	p

� �n o
�2

0 	k þ 	p

� �2
� 	k þ 	p

� �2
1þ 2!2

b

� �
þ !2

b�
�2
k

h i2
:

ð78Þ

The stability of the steady-state orbits can be determined as

follows. The electron fluid variables will each be written as an

unperturbed part plus a small perturbation, 
 = 
0 þ �
, and

	 = 	0 þ �	. The relations between the normalized transverse

position coordinates in the wiggler frame and normalized

velocity components are given by

	1 ¼
d
1

d

� ð	3 þ 	pÞ
2; ð79Þ

	2 ¼
d
2

d

þ ð	3 þ 	pÞ
1: ð80Þ

The scalar equations of motion to first order in perturbation

can be written in the form

� €

1 þ h1�
1 þ h2� _

2 � h3 cos �0 � h4ð Þ� €

3

þ h5 sin �0� €

3 ¼ 0; ð81Þ

� €

2 þ h1�
2 � h2� _

1 þ h3 sin �0� €

3

þ h5 cos �0 � h6ð Þ� _

3 ¼ 0; ð82Þ

� €

3 þ h7 cos �0 � h8ð Þ�
1 � h7 sin �0�
2 þ h9 sin �0� _

1

þ h9 cos �0 � h10

� �
� _

2 þ h11 sin �0� _

3 ¼ 0; ð83Þ

where

h1 
 �0 	k þ 	p

� �
� !2

b�
�2
k � 	k þ 	p

� �2
; ð84Þ

h2 
 �0 � 2 	k þ 	p

� �
; ð85Þ

h3 

��

	k þ 	p

� � ; ð86Þ

h4 

�þ

	k þ 	p

� � ; ð87Þ

h5 
 �0 þ 2 !2
b	k � 	k þ 	p

� �� �� �
h3 ��l��; ð88Þ

h6 
 �0 þ 2 !2
b	k � 	k þ 	p

� �� �� �
h4 ��l�þ; ð89Þ

h7 
 �l 	k þ 	p

� �
��; ð90Þ

h8 
 �l 	k þ 	p

� �
�þ; ð91Þ

h9 
 �l�� � !
2
b	kh3; ð92Þ

h10 
 �l�þ � !
2
b	kh4; ð93Þ

h11 

h7h4 � h8h3

	k þ 	p

� � : ð94Þ

The necessary condition for the stability of the electron orbits

may be obtained by assuming that all perturbed quantities

have the time variations as �
j = Aj expði!
Þ. Applying this

condition to equations (81)–(83), we obtain three coupled

homogeneous linear equations,

h1 � !
2

� �
A

1
þ i!h2A2

þ i!h5 sin �0 þ !
2 h3 cos �0 � h4ð Þ

� �
A3 ¼ 0; ð95Þ

h1 � !
2

� �
A

2
� i!h2A1

þ i! h5 cos �0 � h6ð Þ � !2h3 sin �0

� �
A3 ¼ 0; ð96Þ

h7 cos �0 � h8 þ i!h9 sin �0

� �
A1

þ i! h9 cos �0 � h10

� �
� h7 sin �0

� �
A2

þ i!h11 sin �0 � !
2

� �
A3 ¼ 0: ð97Þ

Now, imposing the condition of a non-trivial solution for these

equations and using the average over wavelength to eliminate

rapid oscillations results a quadratic equation in !2,

!4 � b!2 þ c ¼ 0; ð98Þ

where

b 
 2h1 þ h2
2 � h5h9 � h6h10 þ h3h7 þ h4h8

þ h2ðh3h9 þ h4h10Þ; ð99Þ

and

c 
 h2
1 þ h1 h3h7 þ h4h8ð Þ þ h5 h2h7 � h1h9

� �
þ h6ðh2h8 � h1h10Þ: ð100Þ

Therefore, the system will be stable if both roots of equation

(98) in the characteristic equation are real and positive.
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