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A new method to reconstruct data acquired in a local tomography setup is

proposed. This method uses an initial reconstruction and refines it by correcting

the low-frequency artifacts, known as the cupping effect. A basis of Gaussian

functions is used to correct the initial reconstruction. The coefficients of this

basis are found by optimizing iteratively a fidelity term under the constraint of a

known sub-region. Using a coarse basis reduces the degrees of freedom of the

problem while actually correcting the cupping effect. Simulations show that the

known region constraint yields an unbiased reconstruction, in accordance with

uniqueness theorems stated in local tomography.

1. Introduction

In this section, we briefly recall the region of interest tomo-

graphy problem and review the related work.

1.1. Region of interest tomography

Region of interest (ROI) tomography, also called local

tomography, naturally arises when imaging objects that are too

large for the detector field of view (FOV). It notably occurs in

medical imaging, where only a small part of a body is imaged.

Local tomography can also originate from a radiation dose

concern in medical imaging.

Since the projection data do not cover the entire object, it is

said to be truncated with respect to a scan that would cover the

entire object. The aim is then to reconstruct the ROI from the

‘truncated’ data.

However, due to the nature of the tomography acquisition,

the acquired data are not sufficient to reconstruct the ROI in

general: for each angle, rays go through the entire object, not

only the ROI. Thus, the data do not only contain information

on the ROI but also contributions from the parts of the object

external to the ROI. These contributions from the external

parts actually preclude from reconstructing exactly the ROI

from the acquired data in general.

The problem of reconstructing the interior of an object from

truncated data is referred to as the interior problem. It is well

known that the interior problem does not have a unique

solution in general. If P denotes the projection operator, d the

acquired data and x a solution of the problem PðxÞ = d, then

x is defined up to a set of ambiguity functions u such that

Pðxþ uÞ = d. An example is given by Clackdoyle & Defrise

(2010), where u is non-zero in the ROI but PðuÞ = 0 in the

detector zone corresponding to the ROI: two solutions

differing by u would produce identical interior data. Wang
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& Yu (2013) emphasize that the ambiguity is an infinitely

differentiable function whose variation increases when moving

outside the ROI. The non-uniqueness of the solution of the

interior problem prevents quantitative analysis of the recon-

structed slices.

Methods tackling the ROI tomography problem can mainly

be classified into two categories. The first category methods

aim at completing the data by extrapolating the sinogram.

These are often oriented toward easy and practical use,

although having no theoretical guarantees. The second cate-

gory of methods rely on prior knowledge of the object. Many

theoretical efforts have been made on these methods,

providing for example uniqueness and stability results.

Other works use wavelets to localize the Radon transform

(Rashid-Farrokhi et al., 1997; Sastry & Das, 2005) or focus on

the detection of discontinuities, the best known being prob-

ably Lambda-tomography (Yu & Wang, 2007).

1.2. Sinogram extrapolation methods

In a classical tomography acquisition, the whole object is

imaged. If nothing is surrounding the object, the rays are not

attenuated by the exterior of the object; thus the sinogram

values for each angle go to zero on the

left and right parts (after taking the

negative logarithm of the normalized

intensity). In a local tomography

acquisition, however, the data are

‘truncated’ with respect to what would

have been a whole scan.

The incompleteness of the data

induces artifacts in the reconstructed

image. The first obvious artifact is

visible as a bright rim on the exterior of

the image. This bright rim is the result of

the abrupt transition in the truncated

sinogram: the filtration process suffers

from a Gibbs phenomenon. Another

artifact is referred to as the cupping

effect: an unwanted background appears

in the reconstructed image, which

makes further analysis such as segmen-

tation challenging. These two artifacts

occur simultaneously, but they have

different causes. The bright rim comes

from the truncation, while the cupping

comes from the contribution of the

external part.

Figs. 1 and 2 illustrate these artifacts.

A synthetic slice is projected, and the

resulting sinogram is truncated to

simulate a ROI tomography setup. The

filtering step enhances the transition

between the ROI and the truncated part

which is set to zero. The difference

between the filtered whole sinogram

and the filtered truncated sinogram also

shows the cupping effect, which appears as a low-frequency

bias.

Sinogram extrapolation methods primarily aim at elim-

inating the bright rim resulting from the truncation by

ensuring a smooth transition between the ROI and the

external part. In addition, efforts have been put into esti-

mating the missing data in order to reduce the cupping effect.

These techniques are referred to as sinogram extrapolation

methods: the external part is estimated from the truncated

data with some extrapolating function.

The extrapolating function can be, for example, constant

(the outermost left/right values are replicated), polynomial or

cos2. Shuangren Zhao & Yang (2011) used a mixture of

exponential and quadratic functions to estimate the external

part, possibly iteratively. The projection of a circle, for which a

closed-form formula is known, can also be used (Van Gompel,

2009). A common approach is using the values of the left/right

part of the sinogram to estimate the external part, that is,

replicating the borders values.

In general, sinogram extrapolation methods do not take

into account the sinogram theoretical properties. For example,

given an object being non-zero only inside a circle of a given

radius, the sinogram decreases to zero at the left and right
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Figure 1
Illustration of the truncation artifacts on a line of the sinogram of the Shepp–Logan phantom.
(a) Whole sinogram corresponding to a scan where all the object is imaged (green), and truncated
sinogram (blue). (b) After ramp-filtering.

Figure 2
(a) Reconstruction of the truncated sinogram with filtered back-projection. The contrast has been
modified to visualize the interior of the slice. (b) Line profile of the reconstruction.



boundaries. Generally speaking, a sinogram of complete

measurements satisfies the Helgason–Ludwig consistency

conditions (1) (Van Gompel, 2009):

Hnð�Þ ¼

Z1
�1

snpð�; sÞ ds ð1Þ

is a homogeneous polynomial of degree n in sin � and cos �, for

all n � 0. An alternative formulation is given by equation (2):

Hn;kð�Þ ¼

Z�
0

Z1
�1

sn expð jk�Þ pð�; sÞ ds d� ¼ 0; ð2Þ

for k > n � 0 and k� n even. Van Gompel et al. (2006) used

(2) as a quantitative measure of the sinogram consistency, and

is optimized as an objective function.

For many applications, constant extrapolation provides

acceptable results (Kyrieleis et al., 2011), although the cupping

artifact makes the segmentation challenging.

1.3. Prior-knowledge-based interior tomography

It was long believed that ROI tomography could be solved

exactly, because of the nature of the Radon inversion through

filtered back-projection (FBP): the reconstruction of each

voxel requires knowledge of all the (complete) lines passing

through this voxel.

However, in the last decade, it has been shown that multiple

non-equivalent reconstruction formulas allow partial recon-

struction from partial data in the two-dimensional case

(Clackdoyle & Defrise, 2010). Alternatively to FBP recon-

struction, which requires complete data, virtual fan beam

(VFB) and differentiated back-projection (DBP) were

developed based on the Hilbert projection equality (Clack-

doyle et al., 2009).

Moreover, uniqueness theorems based on analytical conti-

nuation of the Hilbert transform were stated and progressively

refined (Noo et al., 2002, 2004; Clackdoyle et al., 2004; Zou et

al., 2005; Defrise et al., 2006; Ye et al., 2007; Kudo et al., 2008;

Tang et al., 2012). These authors ensure an exact and stable

reconstruction of the ROI given some assumptions. These

assumptions can be of geometric nature, or in the form of prior

knowledge.

Geometry-based prior knowledge is related to the acquisi-

tion geometry. For example, in DBP-based reconstruction,

a point can be reconstructed if it lies on a line segment

extending outside the object on both sides, and all lines

crossing the segment are measured (Clackdoyle & Defrise,

2010). Similar results were obtained under less restrictive

assumptions, for example the FOV extending the ROI on only

one side (Ye et al., 2007).

These geometry-based methods do not work, however,

when the FOV does not extend the object. In this case, it has

been shown (Courdurier et al., 2008) that a prior knowledge of

the function inside the ROI enables exact and stable recon-

struction of the ROI. This knowledge can be in the form of the

function values inside a sub-region of the ROI (Kudo et al.,

2008) or can be about the properties of the function to

reconstruct, for example, sparsity in some domain.

This latest kind of knowledge has led to compressive

sensing based ROI tomography. Yang et al. (2010), Yu & Wang

(2009) and Lee et al. ( 2015) used the total variation method

to reconstruct the ROI. Niinimäki et al. (2007) assumed the

function to be sparse in the wavelet domain, and that a multi-

resolution scheme reduces the number of unknowns by

keeping only fine-scale wavelet coefficients inside the ROI.

Klann et al. (2015) showed that piecewise constant functions

are determined everywhere by their ROI data, the underlying

hypothesis being formulated as sparsity in the Haar domain.

2. Low-frequencies artifacts correction with
Gaussian blobs

Sinogram extrapolation usually copes well with the correction

of discontinuities in the truncated sinogram, but does not

correct the cupping effect in general. This cupping effect

appears as a low-frequency bias in the reconstructed image.

Sinogram extrapolation and other background correction

techniques do not give guarantees that the low-frequency bias

will actually be removed without distorting the reconstruction.

In this section, we describe a new method using prior

knowledge of a sub-region of the reconstructed volume to

eliminate the low-frequency cupping bias. The starting point of

this method is an initial reconstruction, hereby denoted x0,

which can be obtained for example using the padded FBP

method. This initial reconstruction is then refined with an

additive correction term. This correction term uses the known

sub-region as a constraint which should be sufficient,

according to uniqueness theorems stated in the references

given in x1.3, to accurately reconstruct the ROI.

As x0 bears the high-frequencies features, the correction

term is expressed as a linear combination of Gaussian func-

tions to counterbalance the low-frequency artifacts. The

representation in a basis of Gaussian blobs in tomography was

first introduced by Lewitt (1992); we use it here for repre-

senting coarse features. The coefficients are optimized subject

to knowledge of the sub-region, hereby denoted �. To

constrain all the Gaussian coefficients by knowledge of the

image values in �, a reduced set of coefficients is firstly

computed inside �. Then, the Gaussian coefficients are

iteratively optimized to fit the reconstruction error of the

whole image, using the coefficients computed inside � as

a constraint.

Let u0 denote the ‘true’ object values in the known region

�. The proposed method can be summarized as follows:

(i) The reconstruction error in �, denoted ej� =

½ðx0Þj� � u0�, is expressed as a linear combination of two-

dimensional Gaussians. The resulting Gaussian coefficients

are denoted g0.

(ii) The error in the whole image is iteratively fitted with

Gaussians coefficients g, subject to gj� = g0, to build a

consistent reconstruction error in the whole image.

Details of each step are described in the following parts.
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2.1. Capturing the low frequencies of the error in the
known zone

The reconstruction error in � is first approximated as a

linear combination of Gaussian functions. This function is

chosen for computational convenience, more details are given

in x2.2.3.

Equation (3) gives the expression of the approximation.

The error estimation cej�ej� is a linear combination of translated

Gaussians of weights ci;j , with a spacing s,

cej�ej� ¼
X

i;j

ci;j �ðx� i � s; y� j � sÞ;

 �ðx; yÞ ¼
1

�
ffiffiffiffiffiffi
2�
p exp �

x2 þ y2

2�2

� �
:

ð3Þ

For simplicity, all the Gaussians have the same standard

deviation � and all have the same spacing s between them.

Their location on the image grid is also fixed, so that the fit

turns into a linear inverse problem:

g0 ¼ argmin
g

1

2
Gg� ðx0Þj� � u0

� ��� ��2

2

� 	
; ð4Þ

where G is the operator taking as an input the coefficients ci,

stacked in a vector g; and producing an image tiled with

Gaussians (here in region �). The norm � � �k k
2
2 is the squared

Frobenius norm, that is, the sum of the squares of all

components. Choosing the same standard deviation � and the

same spacing s for all Gaussians enables to implement G as

a convolution. More precisely, given an image being zero

everywhere, coefficients ci are placed every s pixels in � and

this image is convolved with two-dimensional  � .

The reconstruction error in � is thus estimated in the least-

squares sense: g0 is the vector of Gaussian coefficients giving

the best estimation cej�ej� of the reconstruction error in the L2

sense. This vector g0 will be used in the second part of the

algorithm.

2.2. Correcting the reconstruction error in the image

2.2.1. Overview of the method. Outside the known region

�, the reconstruction error is not known. Like some other

methods described in x1.3, this algorithm aims at using the

known region information to accurately reconstruct the whole

ROI. However, this approach focuses on correcting an initial

reconstruction: the reconstruction error in � is fitted as a

linear combination of Gaussians, then the whole image is

corrected on a coarse Gaussian basis whose coefficients are

constrained in the known sub-region.

The FBP with sinogram extrapolation is widely used in local

tomography because it is both simple and gives satisfactory

results in general (Kyrieleis et al., 2011). Theoretical investi-

gations found that FBP provides a reconstructed function

bearing the same discontinuities as the reference function

(Bilgot et al., 2011), although the cupping effect can make the

segmentation challenging. In this method, FBP with padding is

used to obtain an initial estimate of the reconstruction; the aim

is to correct the local tomography artifacts on this image using

the prior knowledge. Equation (5) gives the expression of

the estimate x where x0 is the initial reconstruction, G is

the operator described in x2.1 and ĝg is a linear combination

of Gaussian functions aiming at counterbalancing the low-

frequencies artifacts,

x ¼ ~x0x0 þGĝg: ð5Þ

The vector ĝg is found by minimizing an objective function

which is built as follows. A new image x = ~x0x0 þGg, containing

the initial reconstruction, is created. The image ~x0x0 is an

extension of the initial reconstruction x0. This new image is

projected with a projector P adapted to the bigger size. To

compare with the acquired sinogram d, the computed sino-

gram Pð ~x0x0 þGgÞ is truncated by a cropping operator C. The

data fidelity is then given by equation (6),

1

2
CP ~x0x0 þGgð Þ � d
�� ��2

2
: ð6Þ

We emphasize that this approach differs from the full esti-

mation of the ROI based on a sub-region. The variables g are

in a coarse basis while ~x0x0 is fixed, which is notably reducing the

degrees of freedom of the problem. The operation Gg has two

goals: a coarse estimation of the exterior (outside the x0

support) and a correction of the low-frequencies error inside

the x0 support.

As the minimization is on g, the initial estimate of the ROI

x0 is constant, and the data fidelity term (6) can be rewritten as

in equation (7),

1

2
CPGg� de

�� ��2

2
; ð7Þ

where de = d� ~PPx0 is the difference between the acquired

sinogram d and the projection of the initial reconstruction x0,

and ~PP is the projector adapted to the size of x0. The optimi-

zation problem is given by equation (8),

ĝg ¼ argmin
g

1

2

��CPGg� de

��2

2
subject to gj�g

¼ g0

� 	
: ð8Þ

g0 is the vector of Gaussian coefficients found in (4), such that

Gg0 approximates the error in the known zone. The set �g

denotes the subset of the Gaussian basis corresponding to � in

the pixel basis: if a coefficient ci of g lies in �g in the Gaussian

basis, then ðGgÞi lies in � in the pixel basis. Equation (8) boils

down to finding coefficients g minimizing the reconstruction

error in the whole image, under the constraint that Gg should

give the (known) reconstruction error in �. Alternatively, the

coefficients g can be optimized with the constraint expressed

in the pixel domain, yielding equation (9),

ĝg ¼ argmin
g

1

2

��CPGg � de

��2

2
subject to ðGgÞj� ¼ u0

� 	
:

ð9Þ

The local constraint is propagated in all of the variables by the

projection operator involved in the optimization process.

Uniqueness theorems mentioned in x1.3 state that knowledge

of a sub-region of the ROI is sufficient to yield an exact

reconstruction. However, when using a pixel basis without

space constraints, the number of degrees of freedom might be
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too high; leading to a slow convergence. Using a coarse basis

for correcting the low frequencies reduces this number of

degrees of freedom.

2.2.2. Details of the involved operations. In this part, more

details are given about the different steps of the algorithm. We

start by computing a padded FBP reconstruction x0 which

gives an initial estimate of the ROI of size ðN;NÞ. This image

is extended to a bigger image ~x0x0 of size ðN2;N2Þ where N2 > N

and x0 is placed in the center of the image.

At each iteration k, the image Ggk, where gk is the Gaussian

coefficients vector at iteration k, is computed. The operator

G consists of placing the coefficients g on a regular grid

and convolving with the Gaussian kernel ðx; yÞ 7!

ð1=�
ffiffiffiffiffiffi
2�
p
Þ exp½�ðx2 þ y2Þ=2�2�. Thus, the operator G can be

written G = C�Us where C� is the convolution by the afore-

mentioned Gaussian kernel of standard deviation �, and Us is

an operator upsampling an image by a factor of s. As both are

linear operators, G is a linear operator and G T = U T
s C T

� where

U T
s is the s-downsampling operator and C T

� is a convolution by

the matched Gaussian kernel, which is the same kernel due to

symmetry. In our implementation, the Gaussian kernel has a

size of b8� þ 1c, i.e. the Gaussian is truncated at 4�. The

resulting image is given by equation (10),

xði0; j0Þ ¼ ðGgÞði0; j0Þ ¼ ðC�UsgÞði0; j0Þ ¼ ðC�zÞði0; j0Þ

¼
P
i; j

zði; jÞ � i0 � i; j0 � jð Þ; ð10Þ

where  � is the discrete Gaussian kernel, z is the image

containing the Gaussian coefficients g placed on the grid of

size ðN2;N2Þ after upsampling, that is, zeros almost every-

where except coefficients every s pixel. The summation in (10)

is done on the convolution kernel support. If s < 4�, the

Gaussian functions supports can overlap once placed on the

grid. In practice, these Gaussians should overlap to appro-

priately fit constant regions: for s close to �, the Gaussians

almost yield a partition of unity (Bale et al., 2002).

Once the coefficients are placed on a grid and convolved

by the two-dimensional Gaussian function, the image x is

projected. The projection operator adapted to the new

geometry (the bigger image Ggk) is denoted P. This is a

standard Radon transform. This process is illustrated in Fig. 3.

As the new image x is bigger than x0, the sinogram Px and

the acquired data d cannot be directly compared. The

computed sinogram Px is thus cropped to the region corre-

sponding to the ROI. The cropping operator is denoted by C;

it is also a linear operator whose transpose consists of

extending the sinogram by inserting zeros on both sides.

The resulting sinogram aims at fitting the error between the

acquired sinogram d and the (cropped) projection of the

object. As the object is unknown except inside �, the recon-

struction error is only known in �. The Gaussian coefficients g

are constrained by those found by fitting the error inside � in

x2.1. The projection operator involved in the process propa-

gates the constraint to all the other coefficients.

Coefficients ĝg from equation (8) are computed with an

iterative solver. As this objective function is quadratic, effi-

cient minimization algorithms like conjugate gradient can be

used. The final image is obtained with x̂x = x0 þGĝg and is

cropped to the ROI.

2.2.3. Computational aspects. Using Gaussians as functions

to iteratively express the error has several computational

advantages. Gradient-based algorithms for solving (8) involve

the computation of the forward operator PG and its adjoint

G TP T . They are usually the computationally expensive steps

of iterative solvers. In this case, these operators can be

computed in an efficient way.

The Gaussian kernel has an interesting property: it is the

only (non-zero) one to be both rotationally invariant and

separable (Kannappan & Sahoo, 1992). In our case, the

convolution by a Gaussian followed by a projection (forward

Radon transform) is equivalent to projecting first and

convolving each line of the sinogram by the corresponding

one-dimensional Gaussian, as illustrated in Fig. 3.

The first advantage is of a theoretical nature. In many

implementations, the projector and backprojector pair are

usually not adjoint of each other for performances reasons.

Although giving satisfying results in most practical applica-

tions, this raises theoretical issues on convergence of algo-

rithms using iteratively forward and backward operators

(Zeng & Gullberg, 2000). By using a point-projector and a

point-backprojector implementation, the pair can be exactly

adjoint, besides giving more accurate results.

The second advantage is on the computational side. As the

operator PG consists of projecting two-dimensional Gaussians

disposed on the image, it is equivalent to placing one-pixel

coefficients (Dirac functions in the continuous case) in the

image on a grid denoted I , projecting the image (with a point-

projector) and convolving the sinogram by a one-dimensional

Gaussian kernel. The same goes for the adjoint operator

G TP T consisting of retrieving the Gaussians coefficients from

a sinogram. The standard way to compute this operator would
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Figure 3
Description of the operator PG (first line). A grid of points is created; one
coefficient is assigned to each point on the grid. The result is convolved
by a two-dimensional Gaussian function (depicted as green circles), and
projected to obtain a sinogram. An equivalent approach (second line)
consists of first projecting the ‘point coefficients’ with an appropriate
projector, and convolving each line of the sinogram by a one-dimensional
Gaussian function.



be backprojecting the sinogram, convolving by the two-

dimensional Gaussian (which is its own matched filter due to

symmetry), and sampling the image on the grid I to obtain the

coefficients. Here, the convolution can be first performed in

one dimension along the sinogram lines. The sinogram is

sampled at locations corresponding to points I in the image

domain. The resulting sampled sinogram is then back-

projected with a point-backprojector.

2.3. Pseudocode of the proposed method

In this section, the different steps of the proposed method

are summarized in two algorithms. The first performs the

fitting of the error in the known zone as described in x2.1, the

second builds the resulting image as described in x2.2.

A complete implementation of the proposed method is

available (Paleo, 2016). It contains comments on the different

steps and can be tuned for various setups. This implementation

relies on the ASTRA toolbox (Palenstijn et al., 2011; van Aarle

et al., 2015); the point-projector scheme described in x2.2.3 is

not implemented for readability, but this approach would be

more suited to a production reconstruction algorithm where

performances are an issue.

The location of the known zone � can be simply imple-

mented as a tuple of pixels ði0; j0Þ and a radius r for a circular

zone.

In practice, the final image x̂x is cropped to the ROI. In

Algorithm 2, the optimization (line 5) can be done with a

gradient algorithm, as differentiating the quadratic error term

requires only the operators and their adjoints. Another

approach, expressing the known zone constraint in the pixel

domain [equation (9)], only requires Algorithm 2 to be run.

3. Results and discussion

In this section, results and discussions on three test cases are

presented. Synthetic sinograms are generated by projecting an

object and truncating the sinogram to the radius of a given

ROI in the image.

The following notations are used: � is the standard devia-

tion of the Gaussians of the basis, s is the grid spacing, N2 is the

size (width or height in pixels) of the extended image and R is

the radius (in pixels) of the known region. In practice, the size

of the ‘original image’ (which corresponds to the size of an

image that would contain the whole object in practice) is

unknown, hence N2 is always chosen different from the width

of the original test image.

In all cases, the input image is projected with a projector

covering the entire object. The resulting synthetic sinogram is

then truncated to the radius of the ROI. The truncated sino-

gram is the input of the methods. The proposed method is

compared with the padded FBP. As the padded FBP is used as

an initial reconstruction by the proposed method, the bench-

mark is mainly about checking that the cupping effect is

actually removed, and that the correction does not induce

distortion in the final image.

The first test involves the standard Shepp–Logan phantom

(Fig. 4), 256 � 256 pixels. The ROI is embedded inside the

‘absorbing outer material’ (ellipse with the highest gray

values) to simulate a local tomography acquisition. For an
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Figure 4
(a) Shepp–Logan phantom of size 256� 256. The outer circle is the ROI,
the inner circle is the known sub-region. The dashed lines indicate the
profiles which are to be plotted in the reconstructed slice. (b) View of the
ROI (with adapted contrast).



easier interpretation of the line profiles in the final recon-

structed images, the values of the standard phantom are

multiplied by 250 so that all the values are between 0 and 500.

The width of the extended for reconstruction image is N2 =

260.

This phantom is the ‘original’ Shepp–Logan phantom, not

the ‘modified Shepp–Logan phantom’ where the contrast is

improved. In our case, low contrast is important for the tests,

as the cupping effect is stronger and directly visible in the

reconstructed slice. For high-contrast images, the cupping

effect only affects few low-frequency

components, and is thus less detrimental

to the reconstruction quality.

Fig. 5 shows the result of the recon-

struction with padded FBP and with the

proposed method. The Gaussian coeffi-

cients were computed with � = 4 on a

grid of spacing s = 6. The known region

radius is R = 20 pixels, and the extended

image width is N2 = 260 pixels. On

the padded FBP reconstruction, the

cupping effect is relatively important

due to the low contrast of the data.

By visual inspection, this method

does not induce new artifacts in the

reconstruction. Fig. 6 shows a line

profile of this reconstruction. The

cupping effect is visible for the padded

FBP, and it has been removed using the

proposed method. More importantly,

the average reconstructed values are

distributed around the true interior

values. This provides an illustration of

the uniqueness theorem: knowing the

values of a sub-region of the ROI

enables the ROI to be exactly recon-

structed (up to numerical errors). The

reconstruction with the proposed

method bears the same high frequencies

as the FBP with full data, which is a

good indication that this method does

not induce new artifacts. The fact that

the reconstruction has the same mean

values as the true interior could enable

quantitative analysis of the recon-

structed volume, which is not easily

achievable in local tomography.

Fig. 7 shows the difference between

the reconstructions and the interior

values (denoted x#). As expected, the

cupping effect is visible for padded FBP,

while being almost entirely suppressed

in the reconstruction with the proposed

method.

The known zone constraint is impor-

tant to remove the mean bias. As can be

seen in Figs. 8 and 9, the cupping effect remains if no

constraint is applied. In this case, the uniqueness theorem does

not apply when there is no constraint, hence there are no

guarantees that the method converges to an acceptable solu-

tion.

The second test involves the test image ‘Lena’, 512� 512

pixels, bearing both smooth regions and high-frequencies

textures. Ellipses with strong intensity values have been

superimposed in the exterior of the ROI to simulate absorbing

material.
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Figure 6
Line profiles of reconstructions. (a) Middle line. (b) Middle column.

Figure 5
Results of reconstructions with adapted contrast. (a) Proposed. (b) Padded FBP.

Figure 7
Difference between the reconstruction and the true volume x#. (a) Along the middle line, (b) along
the middle column.



Fig. 10 shows the test setup. The known region has been

chosen as slowly varying as possible, as in real acquisitions the

known region is likely to be air or coarse features. The width

of the extended image is N2 = 520.

Fig. 11 shows the difference between the true interior and

the reconstruction with the proposed method, with and

without the known zone constraint. In this case, the differ-

ences between the proposed reconstruction and the true

interior are not significant enough to display the curves of

absolute line profiles, so only the difference profiles are

shown. The parameter � = s = 3 has been used for these

reconstructions. Fig. 12 shows the reconstructed images. As

the contrast is high, the cupping effect is not prominent on the

reconstructions; however, an excessive brightness can be seen

on the bottom side.

It is also interesting to visualize the reconstruction of the

whole extended image. As can be seen in Fig. 13, the Gaussian

basis even yields an approximation of the exterior. This

approximation is actually important for modeling the contri-

bution of the external part in the acquired sinogram. The bias

correction is thus closely related to the modeling of the

external part.

The third test involves the image of a pencil resulting from a

scan at the ESRF ID19 beamline, 512� 512 pixels, shown on

Fig. 14. The width of the extended image is N2 = 520.

Fig. 15 shows profiles of the difference between the

reconstruction and the true interior. On this image, a greater

radius also improves the cupping removal. The profile of a line

through the reconstructed image is depicted in Fig. 16.

As a last remark, Fig. 17 shows the result of this method

without using the known zone

constraint, that is, without applying the

constraint gj�g
= g0 in (8). As expected,

there is a not-null mean bias, even if it

has been reduced with respect to

padded FBP.

Beside visual inspection, reconstruc-

tions can be quantitatively compared

with the true interior of the test image.

Table 1 shows a comparison with two

image metrics: peak signal-to-noise

ratio (PSNR) and the structural simi-

larity index (SSIM). As these metrics

are indicators of an average distance

between two images, we believe it is well

suited for this purpose of evaluating

how the low frequencies are corrected

by the proposed method.

These results suggest that the

proposed method yields better overall

reconstruction quality than padded

FBP. In particular, it does not induce

spurious distortion in the reconstruc-

tion. For the ‘Lena’ test case, a similar

reconstruction quality was obtained

with ð�; sÞ = (4, 6) with respect to ð�; sÞ =

(3, 3), which indicates that a coarser

basis does not always yield worse

reconstruction results.

For all the reconstructions with the

proposed methods, the conjugate

gradient optimization algorithm was

used. The convergence is reached within

research papers

264 Pierre Paleo et al. � Practical local tomography reconstruction algorithm J. Synchrotron Rad. (2017). 24, 257–268

Figure 8
Reconstruction of the Shepp–Logan phantom without known zone
constraint.

Figure 9
Difference between the reconstruction and the true volume x#, when no known zone constraint is
applied. (a) Along the middle line, (b) along the middle column.

Figure 10
(a) Phantom ‘Lena’. Ellipses with high gray values have been added to accentuate the local
tomography setup. The outer circle is the ROI, and the inner circle is the known region. The dashed
lines indicate the profiles which are to be plotted in the reconstructed slice. (b) View of the ROI
with adapted contrast.



400 iterations. The prototype method given by Paleo (2016)

takes the following execution times on a machine with an Intel

Xeon CPU E5-1607 3.00 GHz CPU, and a Nvidia GTX 750 Ti

GPU: 7 s for a 260� 260 extended slice, 32 s for a 520� 520

extended slice, and 152 s for a 1040� 1040 extended slice. A

high-performance implementation of this method, where the

data are kept on GPU and the projector is implemented

as described in x2.2.3, can probably achieve much shorter

execution times.

The proposed method depends on some parameters. The

first is the size of the extended image, which should be big

enough to model the contribution of the external part. The

other parameters are the Gaussian standard deviation � and

the spacing s of the grid. Both are related in a way that the

Gaussian functions should slightly overlap to approximate

constant functions: if the value of s is high, then � should also

be high, and vice versa. These parameters essentially tune how

coarse the Gaussian basis is: high values would yield fast

convergence but coarse result, while small values would yield

slow convergence and fine result.

Using a Gaussian basis does not yield an exact correction of

the error, as Gaussian functions defined in equation (3) do not

form a basis. For example, Gaussian functions do not yield a

partition of unity, although a very close approximation of this

property can be achieved (Bale et al.,

2002). Thus, the final reconstruction

cannot be exact due to the basis coar-

seness, but can provide results quite

close to FBP with full data as seen in

Figs. 6 and 16.

4. Advantages against the existing
exact approaches

As mentioned in the Introduction, there

are two main types of exact methods for

local tomography. The first requires a

special geometry: the FOV has to extend

the object on at least one side (Clack-

doyle & Defrise, 2010). This approach is

not suited for interior tomography that

we are focusing on. In the second type, a

prior knowledge is used, either on a sub-

region or on the slice properties.

In the work of Kudo et al. (2008), an

algorithm for exact local reconstruction

is proposed, along with proof of

uniqueness. This algorithm is based

on differentiated backprojection and

projection onto convex sets to invert the

truncated Hilbert transform. Although

this algorithm seems very promising, its

implementation is not straightforward;
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Figure 11
Profiles of difference between the reconstruction and the true interior for the Lena image. x0, x̂x and
x# are the padded FBP, the proposed reconstruction and the true interior, respectively. In blue:
difference between the padded FBP and the true interior. In green: difference between the
reconstruction with the proposed method with � = s = 3 and the true interior. First row: profiles of
the middle line of the image for (a) R = 35, (b) no constraint (R = 0). Second row: profiles of the
middle column for (c) R = 35, (d) no constraint (R = 0).

Figure 12
Reconstructions with (a) proposed method, known zone of radius R = 35, (b) proposed method, no known zone (R = 0), (c) padded FBP.



for example, convex sets C1; . . . ;C5 may be cumbersome to

define, and projections on these sets are not easy to compute.

To our knowledge, no standard implementation of this method

can be found.

On the other hand, several compressed-sensing methods

were developed for interior tomography (Niinimäki et al.,

2007; Chaves Brandao~dos Santos et al., 2014; Klann et al.,

2015). As these methods boil down to solving an optimization

problem, the known region constraint can be integrated in

these cases.

To highlight the advantage of the coarse basis representa-

tion with respect to a standard pixel basis, the proposed

method is tested against a method solving

argmin
x

��CPx� d
��2

2
þ �

��rx
��

1
s:t: xj� ¼ u0 ð11Þ

for x in the pixel space, meaning that all

the variables are free, except those in

the known region. The term krxk1 is

the total variation (TV) semi-norm

which helps to reduce the ill-posedness

of problem (11). This problem is a

simple instance of the aforementioned

compressed sensing methods, where

the TV expresses the prior knowledge

that the image is piecewise-constant.

Related work on this method is given

in x3 of Rashed & Kudo (2010). The

proposed methods have two funda-

mental differences from this approach:
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Figure 13
Extended image after solving (8), without cropping to the ROI. The
parameters used were � = s = 3 and R = 35.

Figure 14
(a) Pencil test image. In red: ROI. In green: known sub-region. (b) View of the ROI.

Figure 15
Profiles of difference between the reconstruction and the true interior for the pencil image. x0, x̂x and x# are the padded FBP, the proposed reconstruction
and the true interior, respectively. In blue: difference between the padded FBP and the true interior. In green: difference between the reconstruction with
the proposed method with � = s = 3 and the true interior. First row: profiles of the middle line of the image for (a) R = 20, (b) R = 10, (c) R = 40. Second
row: profiles of the middle column for (d) R = 20, (e) R = 10, ( f ) R = 40.



firstly, the variables are the coefficients of a coarse basis;

secondly, the variables are optimized with respect to the

reconstruction error.

Equation (11) was tested on the 256� 256 Shepp–Logan

phantom (Fig. 4) with the same conditions as previously. As

may be seen from Figs. 18 and 19, it yields a near-perfect

reconstruction (PSNR = 58.63, SSIM = 0.9999), as TV is

adapted for this piecewise-constant phantom. However, it

took of the order of 5000 iterations of the preconditioned

Chambolle–Pock optimization algorithm (Pock & Chambolle,

2011) to yield this result, as the convergence is extremely slow.

An approximate result, with a slight cupping remaining, can be

obtained with fewer iterations (Fig. 18b). This test case of

256� 256 took approximately 67 s. The execution time for a

512� 512 image, with 15000 iterations to converge, was

measured to be 430 s. Thus, this method becomes impractic-

able, even with an efficient implementation, as it would take

dozens of minutes for a single slice of modern datasets

(2048� 2048 or 4096� 4096 pixels).

The advantage of the proposed method is to reduce the

number of unknowns by modifying the forward model,

expressing the variables in a coarse

basis. On the implementation side,

operators can be efficiently imple-

mented according to x2.2.3, which is

crucial when dealing with large image

sizes. Results presented in this work

were obtained with a prototype, which

suggests that shorter execution times

can be expected with an efficient

implementation.

5. Conclusion

We have presented a new technique of

local tomography reconstruction based

on the knowledge of a zone of the ROI.

This technique corrects the cupping

effect in an initial reconstruction by

expressing the error in a coarse basis of

Gaussian functions. In accordance with

local tomography uniqueness theorems,

this method yields almost exact recon-

structions, in spite of being only a

correction with a coarse basis. Besides,

practical considerations are given

for an efficient implementation suitable

for reconstruction of real data. A

commented implementation of a

prototype of this method is given by

Paleo (2016).
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Figure 16
Line profiles for the pencil image. The proposed method were applied
with parameters � = s = 3 and R = 40.

Figure 17
Profiles of difference between the reconstruction without known zone constraint and the true
interior for the pencil image. (a) Line profile. (b) Column profile.

Table 1
Metrics of reconstruction quality for the three test images, computed
inside the reconstructed ROI.

Image
Reconstruction
method Parameters PSNR SSIM

Shepp–Logan Padded FBP 20.09 0.5751
Shepp–Logan Proposed � = 4, s = 6, R = 20 38.40 0.6362
Shepp–Logan Proposed � = 5, s = 6, R = 20 33.96 0.6360
Lena Padded FBP 22.65 0.8417
Lena Proposed � = s = 3, R = 35 35.89 0.9582
Lena Proposed � = 4, s = 6, R = 35 33.80 0.9588
Pencil Padded FBP 26.41 0.8542
Pencil Proposed � = s = 3, R = 10 31.15 0.9840
Pencil Proposed � = 4, s = 6, R = 40 31.91 0.9901
Pencil Proposed � = s = 3, R = 40 34.22 0.9906

Figure 18
Reconstruction with the exact pixel-domain method. (a) After 5000 iterations. (b) After 1000
iterations.
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Figure 19
Profiles of difference between the reconstruction and the true interior for the Shepp–Logan image.
(a, c) Middle line and column after 5000 iterations. (b, d) Middle line and column after 1000
iterations.
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