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In this report, AI-BL1.0, an open-source Labview-based program for automatic

on-line beamline optimization, is presented. The optimization algorithms used

in the program are Genetic Algorithm and Differential Evolution. Efficiency

was improved by use of a strategy known as Observer Mode for Evolutionary

Algorithm. The program was constructed and validated at the XAFCA

beamline of the Singapore Synchrotron Light Source and 1W1B beamline of the

Beijing Synchrotron Radiation Facility.

1. Introduction

In synchrotron radiation facilities, it is of fundamental

importance to maintain beamlines at their optimal conditions.

Due to the number of degrees of freedom, obtaining and

maintaining beamlines under optimal conditions is not a

straightforward task. Conventionally, optimization of the

beamline components is done via manual intervention. Not

only is this method severely time-consuming, but it does not

always assure us that the global optimum is reached. The

complications with manual adjustments arise simply from the

large degrees of freedom and non-linear drifts in equipment.

In a recent research paper (Xi et al., 2015), a general method

based on the Genetic Algorithm (GA) (Holland, 1975) was

proposed and shown to successfully perform the desired

beamline optimization automatically. The GA-based optimi-

zation strategy was applied on the XAFCA beamline (Du et

al., 2015) of Singapore Synchrotron Light Source (SSLS) and

it was demonstrated that this method can optimize all the

optical components of the XAFCA beamline simultaneously

and efficiently.

From a higher level of abstraction, the GA method is a

subclass of the Evolutionary Algorithm (EA) implementa-

tions (Hertz & Kobler, 2000). This subclass also includes

Differential Evolution (DE) (Storn & Price, 1997; Amaro et

al., 2011), Neuroevolution (Whitley et al., 1993), Learning

classifier system (Holland, 1976), etc. EAs are a type of

numerical technique used for solving problems of high

complexity, particularly those involving global optimization.

Their fundamental basis stems from mimicking the process of

natural selection and survival of the fittest based on Darwin’s

theory of evolution. In an EA, a population of artificial

creatures are generated over the search space of the problem,

which is analogous to Monte Carlo techniques. They compete

continually with each other to discover optimal areas of the
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search space. EA has been successfully used for a wide range

of applications (Bäck et al., 1993; Alander, 1995). Typically, in

EAs, the gradient information and mathematical model of the

problem to be solved are not required. The only feedback

necessary is the evaluation of each trial relative to the output

function. This high degree of generality enables EAs to be well

suited for various complex search spaces, which is the case

for beamline optimization. The literature on applications of

EAs provides an empirical perspective on their robustness

(Rogenmoser et al., 1996). Furthermore, its population-based

characteristics make for an embarrassingly parallel problem.

In this report, details, including the modifications required

for other beamlines, of the AI-BL1.0 program are described.

The program will implement the automatic beamline optimi-

zation methods based on DE and GA, with the OMEA (Xi

et al., 2015), enhancement. AI-BL1.0 was developed using

the Labview platform (National Instruments, USA). Please

contact the authors for the program.

2. Architecture

In this report, we discuss the use of EA to optimize a beam-

line, for which we can adjust its conditions through the use of

stepper motors (SMs). The program’s implementation of EA

is performed via both the GA and DE approach. The typical

pseudo-codes for both GA and DE are presented in Appendix

A. For AI-BL1.0, some of the GA modules come from the

open-source code Waptia (Golebiowski, 2009), and some of

the DE modules are reorganized from Labview’s Global

Optimization Toolbox.

For this particular optimization problem, the optimization

parameters are defined as the positions of the SMs. These

parameters directly affect the conditions of the optical

components. Further details about how the search space is

constructed for the use of GA were introduced in our previous

research paper (Xi et al., 2015). The fitness of EA modules

depends on the optimization objective, such as flux, resolution

power, spot shape and position. The aim of the optimization

is to reach the best alignment of the optical arrangement

through the evolution of the SM position. Therefore, to make

the connection with EA, the SM positions are considered to

be the genes of EA modules, while the combination of these

genes forms an individual. As shown in Fig. 1, the EA

modules, which here include both GA and DE, are responsible

for the evolution of genes. The optimization object is used to

adjust the conditions according to the instructions from the

EA modules and provide feedback to the EA modules. The

EA modules apply the necessary EA operations, such as

mutation and crossover of individuals, generating their

offspring. The evaluation of each offspring individual is then

based upon the feedback received from the optimization

object.

Using a classical EA approach for directly optimizing the

beamline yields low efficiency. To accelerate the optimization,

we applied OMEA to the evaluation. In classical EA, the

evaluation of individuals is performed sequentially. More

specifically, as shown in Fig. 2(a), the two adjacent points

A and B in the search space are evaluated to obtain their

respective fitness fA and fB. Meanwhile, OMEA will also

evaluate individuals on the path from points A and B, gaining

an additional degree of information, as shown in Fig. 2(b). A

comparison of these individuals will then yield the fittest to be

point C with its respective fitness fC. The individual B and its

fitness fB will then be replaced by C and fC, respectively. For

systems where the conditions are adjusted by SMs, OMEA is

more suitable. Removing the layer of abstraction made in

Fig. 2(b), the evaluation of individuals on the path from point

A to B refers to the movement of the SM from A to B. The EA

modules will then record the feedback from the optimization

object, in real time, determining the fitness of individuals that
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Figure 1
Flow chart of the framework for optimization using EA. For beamline
optimization, the information that the EA modules provide to the
beamline is commands, which make the SMs move by a certain
displacement. The information that the beamline communicates back to
the EA modules is the position for each SM and the beamline parameters
such as flux, resolution power, spot shape and position, etc.

Figure 2
Diagram for classical EA (a) and OMEA (b). Points A and B are two
adjacent trail solutions (individuals) within the search space. At this stage
of evaluation, a classical EA just evaluates these two points in succession,
while, in OMEA, the whole path from points A and B, highlighted in
green, will be evaluated. The best point on the path, point C, labelled with
a red star, with maximum fitness, will replace the individual B.



belong to the path A to B. This means that OMEA can obtain

more information without adding delays to the classical EA

scheme. Therefore, OMEA is more efficient than the classical

EA scheme.

3. Features of AI-BL1.0

AI-BL1.0 has been designed and developed with the aim of

being easily configurable, expandable and maintainable. A

Labview-based graphical user interface (GUI), which is

composed of five panels, is available for launching the

program. The normal view of the GUI is shown in Fig. 3.

The first panel, MOTOR PARAMETERS, defines the

required inputs for each SM. The required inputs are the name

of the SM, address of the SM (framed by a red rectangle) and

the search range of the SM (framed by a purple rectangle).

The address for each SM comprises two strings, through

which the program can find the SM to be optimized. When

AI-BL1.0 is running, the original value (‘Initial value’) and

current best value (‘Current solution’) corresponding to the

position of each SM will be displayed in this panel. The data

type of all inputs here is a string. The parameters can be

exported to an ACSII file by clicking the ‘Save’ button, and

can also be imported by clicking the ‘Load’ button.

The second panel defines the DE & GA PARAMETERS.

Detailed information about each parameter is presented in

Appendix B.

The EXECUTION panel contains the interface for

controlling the program. The button ‘Simulation’ is used for

switching between simulation and real optimization. If the

simulation button is active, the program will optimize the

‘benchmark’ function, which is located in the ‘..\benchmarks’

file folder. To use the ‘Simulation’ function, benchmark.vi can

be replaced with a user-defined method. The START and

STOP buttons are for initiating and stopping the optimization

procedure, respectively. ‘Round LED’ is used to indicate when

the algorithm is executing the optimization process. Once the

procedure is completed or halted, the GO BEST feature can

be used to move all the SMs to their corresponding optimal

solution. The GO INITIAL button can recover the SMs to

their original positions. The EXIT button is used for safely

quitting the program.

The SUMMARY panel will present in real time the para-

meters corresponding to the status of the program under

operation. ‘Time used’ indicates the time elapsed since the

START button was pressed. ‘Generation’ displays the current

generation. ‘Fitness’ indicates the best fitness achieved from

initiating the optimization procedure. ‘Mutation rate’ is used

to display the current mutation rate for when a GA-based

optimization is running, with an unspecified mutation target

rate. The numeric indicator ‘Result’ displays the feedback

from the beamline when the optimization is completed.

The DISPLAY panel will display in real time the feedback

of the beamline (upper sub-panel) and the plot of fitness

against generation number (lower sub-panel), when the

program is running.

During the optimization, two log files with a timestamp

(using system time) will be created and saved under the ‘..\ log’

directory. One will record the real-time SM positions and the

corresponding feedback; the other will record the optimiza-

tion results of each generation. All the data plotted in the

DISPLAY panel will be recorded in these two files.
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Figure 3
GUI of AI-BL1.0.



4. Usage instructions of
AI-BL1.0

To apply AI-BL1.0 to other beam-

lines, seven sub-VIs need modifica-

tions. The core functionalities of all

sub-VIs are presented in Table 1.

As shown in Table 1, the sub-VIs,

required for users, can be classified

into controlling modules of SMs,

feedback from beamline and bench-

mark function for simulation mode.

There are a total of six sub-VIs

required for controlling the SM:

Connect SM, Inquire status of SM,

Inquire positions of SM, Set speed,

SM move and Kill SM. All of these

sub-VIs require the input parameter

‘Device table’ that passes the address

of the SM. Each row of the table

contains two elements, such as axis

number and motor number, which is

the case of XAFCA beamline. The

number of rows is equal to the

number of SMs, which is also the

dimension of the problem. For the VI SM Move, the input

parameter ‘Stepper array’ contains the counts of each SM to

be run, and the input parameter ‘Maxspeed’ gives the upper

limit of the running speed for the SM. For the sub-VI Feed-

back, there are two input parameters: the address for the

Ionization Chamber (IC) and the integration time of the IC.

The output for this sub-VI is just one numeric data, the

reading of the IC for instance. Users at other beamline can

also check the templates for these input sub-VIs, which are

placed in the ‘..\Input files’ folder. These templates contain all

of the necessary information about the input and output (I/O)

data types for the sub-VIs.

5. Testing

Tests were carried out at the

XAFCA beamline of SSLS and

1W1B beamline (Xie et al., 2007) of

the Beijing Synchrotron Radiation

Facility (BSRF). At XAFCA, the

conditions of the vertical collimating

mirror (VCM), double-crystal mono-

chromator (DCM) and vertical

focusing mirror (VFM) were opti-

mized with the aim to obtain

maximum photon flux at the sample

position. The conditions of these

optical components are controlled by

a total of 15 SMs. The flux at the

sample position, monitored by the

IC, is used to provide the feedback

from the beamline. The parameters used in this testing are

listed in Table 2. These parameters were chosen by a combi-

nation of reference values from previous research (Boyabatli

& Sabuncuoglu, 2004; Pedersen, 2010) and empirical values

obtained from our hot commissioning. Further details on the

experimental setup are given by Xi et al. (2015).

Before optimization, each SM to be optimized was moved

by a uniform random displacement, between 0 and 0.5 mm.

This led to a complete misalignment of the beamline, resulting

in negligible flux detection at the sample position. The posi-

tions of these SMs are regarded as the initial conditions of

optimization. Further testing was carried out using the same

initial conditions.
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Table 2
Parameters used to optimize the optical components of the XAFCA beamline.

Search ranges for all SMs are �0.5 mm.

DE GA

Parameter name Parameter value Parameter name Parameter value

Settings
Population size 10 Population size 10
Scale factor 0.3 Significant digits 5
Crossover rate 0.7 Crossover rate 0.85
Bound mapping method Re-initialize Reproduction plan Full generation replacement
Mutation method Best Elitism ON
Crossover method Exponential Mutation method One-point, fixed rate

Creep mutation Off
Mutation rate 0.1
Relative fitness differential 1

Stopping criteria
Max iterations 50 Satisfying fitness Inf
Max function calls �1 Maximum iterations 50
Max time (s) �1

Table 1
Sub-VIs required for AI-BL1.0.

All of the SMs controlling the VIs and feedback from the beamline VI are located in the ‘..\input files’ folder.
The benchmark VI is located in the ‘benchmarks’ folder.

Name of sub-VI
Input data
type

Output data
type Function

SM controlling
Connect SM Char Array Boolean Establish the connection between

GA/DE modules and SMs driver
Inquire status of SM Char Array Boolean Inquire whether at least one SM is

running
Inquire positions of SM Char Array Float Array Inquire the value of encoder

corresponding to each SM
Set speed Float Array None Set speed for each SM

Char Array
SM Move Float Array None Drive SMs to run by steps reading from

steps arrayChar Array
Float

Kill SM Char Array Boolean Stop and disconnect SMs

Feedback from beamline
Feedback Char Float Obtain the feedback from beamline, such

as flux, resolution power, spot shape
and position, etc.

Float

Benchmark function
Benchmark Float Array Float Evaluate the benchmark function



Fig. 4 shows the fitness versus generation for GA and

DE. In this testing, 11 SMs [VCM_J1, VCM_J2, VCM_J3,

VFM_J1, VFM_J2, VFM_J3, DCM_LAT, DCM_PITCH,

DCM_2nd_ROLL, DCM_YAW, DCM_PARA; details of

these SMs are given by Xi et al. (2015)] were optimized. After

16 and 21 generations of evolution for GA and DE, respec-

tively, the solution versus generation curves reached a plateau,

where successive iterations no longer produced better results,

which suggested that the optimized condition was reached.

Both the GA module and DE module successfully performed

the optimization procedure. Fig. 5 shows the fitness versus

generation curve for the optimization of 11 SMs and 15 SMs

(besides the above-mentioned 11 SMs, VCM_L1, VCM_L2,

VFM_L1 and VFM_L2 were added) using DE. This demon-

strates that the convergence time does not increase signifi-

cantly when four SMs were added to the optimization

parameters.

For the test carried out at the 1W1B beamline of BSRF, the

focusing mirror condition was optimized to maximize the flux

at the sample position monitored by an IC. When only four

SMs are included in the optimization process, the program

is typically able to find the optimal solution within seven

generations.

6. Discussions and conclusions

AI-BL is an automatic beamline optimization program based

on Labview. The core algorithm is implemented by GA and

DE. The algorithm is enhanced by OMEA, which is inherently

more efficient than the traditional EA. The user interface is an

intuitive and convenient GUI. All the parameters for opti-

mization can be input through the GUI. The progress of the

program, such as solution and fitness, are displayed on the

GUI in real time when the program is running. Testing on the

XAFCA beamline indicated that, by using both GA and DE,

this program can simultaneously optimize the condition of the

VCM, VFM and DCM, which are controlled through 15 SMs,

to obtain maximum flux at the sample position. The abstract

and object-oriented nature of the program enables it to be

versatile and easily modified to suit other beamlines. As

mentioned previously, by replacing seven sub-VIs, the busi-

ness logic of the program can be applied to other beamlines.

The aim of optimization can be virtually anything concerning

beamlines, such as flux, resolution power, spot shape and

position, etc.

The main advantage of the EA is that the mathematical

model of the problem to be solved is not required. It is

sufficient to have an input (stepper motors to adjust) and

output (the target to optimized, for example, the flux at the

sample position, beam shape or position, etc). Confinement of

the search space for each parameter ensures that all stepper

motors are under control and all optical components remain

safe during the optimization. Tests have been carried out (Xi et

al., 2015) to demonstrate that our program can optimize the

beamline robustly and globally. Fig. 4 shows that the number

of generations to complete the optimization of 11 SMs is 16

and 21 for GA and DE, respectively. However, the time spent

for GA is longer than that for DE. The recent tests at XAFCA

showed that it took around 10 min for DE and 15 min for GA

to reach their target goal, indicating that DE is more efficient

than GA in this program.

APPENDIX A
Typical GA and DE in pseudo-codes

Pseudo-Code for GA:

Begin

Generate, randomly, an initial population of solutions.

Evaluate the fitness of the initial population.

Repeat

1. Select a pair of parents according to the ‘survival

of the fittest’ principle.

2. The selected parents mate to create two offspring.

3. Offspring mutate.

4. Evaluate the mutated offspring.

5. All the offspring replace their parents and

compose the new generation.

Until termination criteria are satisfied.

End.
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Figure 4
Fitness versus generation using GA and DE. For better comparison, the
optimized fitness is normalized to unity.

Figure 5
Fitness versus generation for optimizing 11 and 15 SMs using DE. For
better comparison, the optimized fitness is normalized to unity.



Pseudo-Code for DE:

Begin

Generate, randomly, an initial population of solutions.

Determine the fitness of the initial population.

Repeat

1. Repeat

For each parent, select 3 individuals randomly.

Apply DE operators to the parent and the three

selected individuals to generate an offspring.

Until the number of offspring is equal to the

population size.

2. Evaluate each offspring.

3. For each offspring

If offspring is more fit than its parent

Its parent is replaced.

Until termination criteria are satisfied.

End.

In a typical DE, the DE operator is a prime operator, and

the implementation of this operation makes DE different from

other evolutionary algorithms. The main function of the DE

operator is combining the randomly selected three individuals

(vectors) to generate a new vector, and then mixing the new

vector with the current parent. Here, the combination of

vectors is also called ‘mutation’; the mixing of combined

vector and parent vector is also called ‘crossover’.

APPENDIX B
Parameters for the GA/DE module

The second panel defines the parameters for the GA/DE

module. Detailed information about each parameter is

presented as follows.

Program Dimension: controls the dimension for the

problem to be solved.

Inter Num: dedicated for simulation. When a mathematic

function is optimized, a local-learning method, as

mentioned above, can be implemented though inter-

polation between two individuals, in which the number of

interpolations is equal to Inter Num.

Quick: switch between quick and slow mode. When it

is lit, the beamline will keep sending feedback to EA

Modules when the SMs are running, otherwise the

feedback will be sent merely when the SMs are

suspended.

DE

Termination criteria

Max iterations: when the number of generation

equals this value, the program will stop and return

the solution of the last generation as the solution of

the problem. When it is set as �1, this criterion will

not work.

Max function calls: when the number of calls of

fitness function equals this value, the program will

stop and return the solution of the last generation as

the solution of the problem. When it is set as�1, this

criterion will not work.

Max time (s): When the time elapsed reaches this

value, the program will stop and return the solution

of the last generation as the solution of the problem.

When it is set as �1, this criterion will not work.

DE Setting

Population size: the number of individuals.

Scale factor: The factor used to multiply the differ

ential vector of two randomly selected individuals to

generate the trial vector.

Bound mapping method: method to map the vector,

generated by the DE operator, into the search space.

Mutation method: strategy to combine the randomly

selected individuals to the new vector.

Crossover method: strategy to mix the new vector

generated by mutation operator with the pre-

determined vector.

GA

Termination criteria: when the best fitness equals this

value, the program will stop and return the solution

of the last generation as the solution of the problem.

When it is set as Inf, this criterion will not work.

GA Settings

Population size: the number of individuals.

Significant digits: number of significant digits for

each variables being optimized.

Crossover rate: the possibility that two selected

individuals mate.

Reproduction plan: the strategy used for replacing

parent generation with offspring generation.

Elitism: the best individual of parent generation

will replace the worst individual of the offspring

generation if Elitism is selected.

Mutation method: method used to mutate.

Creep mutation: if mutations are performed with

‘creep’ operator, it means that change caused by

mutation is rather smooth than rapid.

Mutation rate: fixed rate of mutation.

Min mutation rate: lower bound of mutation rate,

applicable when the mutation rate is not fixed.

Max mutation rate: upper bound of mutation rate,

applicable when the mutation rate is not fixed.

Relative fitness differential: higher number causes

more often better individuals to become parents.

Acknowledgements

This work is supported by the National Natural Science

Foundation of China (Y61161005Z).

References

Alander, J. T. (1995). Indexed bibliographies of genetic algorithms,
Technical Report 94–1-*. University of Vaasa, Finland.
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