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Three-dimensional (3D) micro-tomography (m-CT) has proven to be an

important imaging modality in industry and scientific domains. Understanding

the properties of material structure and behavior has produced many scientific

advances. An important component of the 3D m-CT pipeline is image

partitioning (or image segmentation), a step that is used to separate various

phases or components in an image. Image partitioning schemes require specific

rules for different scientific fields, but a common strategy consists of devising

metrics to quantify performance and accuracy. The present article proposes a set

of protocols to systematically analyze and compare the results of unsupervised

classification methods used for segmentation of synchrotron-based data. The

proposed dataflow for Materials Segmentation and Metrics (MSM) provides 3D

micro-tomography image segmentation algorithms, such as statistical region

merging (SRM), k-means algorithm and parallel Markov random field (PMRF),

while offering different metrics to evaluate segmentation quality, confidence and

conformity with standards. Both experimental and synthetic data are assessed,

illustrating quantitative results through the MSM dashboard, which can return

sample information such as media porosity and permeability. The main

contributions of this work are: (i) to deliver tools to improve material design

and quality control; (ii) to provide datasets for benchmarking and reproduci-

bility; (iii) to yield good practices in the absence of standards or ground-truth for

ceramic composite analysis.

1. Introduction

X-ray synchrotron facilities regularly produce terabytes of

data, with imaging beamlines commonly storing data as two-

dimensional (2D) and three-dimensional (3D) images (Bethel

et al., 2015). The data volume generated daily and the variety

of samples in terms of complexity and features is a challenge

for effective data analysis of the experiments, particularly

given frequent upgrades of the instruments’ brightness, reso-

lution and throughput. Specific characteristics of the image

data such as the presence of heterogeneous structures in

multiple scales and their complex architecture hinder the

accuracy of current image processing algorithms. Nonetheless,

micro-computed tomography (m-CT) continues to be an

essential imaging technique employed for the non-destructive

3D characterization of objects. This approach is widely used in

academia and industry, including medical imaging, material

science, electronics and geology.
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In spite of the success of this imaging technique, some

challenges still remain when analyzing these types of data,

starting with the tomographic reconstruction and going

through all image processing steps. For example, trying alter-

native acquisition schemes and experimental setups and/or

quantitatively evaluating reconstruction methods are still a

challenge. The work described by Ching & Gürsoy (2017)

addresses this specific topic. The authors propose software

that generates complex simulated phantoms and evaluates

new or existing data acquisition schemes and image recon-

struction algorithms for targeted applications. Following a

similar strategy, the present paper addresses the problem

of comparing and evaluating different image segmentation

algorithms.

Given large data rates and sizes, machine learning for data

acquisition (Yang et al., 2017) as well as for the automation of

feature detection and extraction represents key steps in

reducing data while gaining insight from m-CT image struc-

tures. Many different categories of automated feature

extraction exist (Hintermüller et al., 2010; Chen et al., 2012),

but most of them are reliant on image segmentation techni-

ques supported by unsupervised learning (Khanum et al.,

2015). Broadly used to analyze experimental data, un-

supervised segmentation algorithms (Chen et al., 2013) enable

grouping picture elements, somewhat collecting tokens that

‘belong together’. Such algorithms can gather meaningful

groups by searching for hidden structures from unlabeled

data. Some of the advantages are dispensable training data

and potential for data reduction, for example, removal of non-

contributing image portions, such as background and artifacts.

Two important tasks during m-CT data analysis are (1)

selecting the best segmentation algorithm and (2) determining

the best evaluation metrics. Those two choices highly impact

the performance and quality of the results. Even harder to

evaluate, the cases that lack ground-truth can lead to incom-

plete and/or ambiguous results, many times assisting only in

qualitative terms. Therefore, we have employed a few strate-

gies to evaluate image segmentation problems before we

allude to the most appropriate algorithm for a specific appli-

cation, for example, through direct comparison of algorithms

based on a given ground-truth (Ushizima et al., 2011; Arbeláez

et al., 2011; Perciano et al., 2016; Tassani et al., 2014; Sheppard

et al., 2014) and combination of different algorithms (Polak et

al., 2012) allied to confluence analysis as an indicator of result

agreement.

In this work, we propose the Materials Segmentation and

Metrics (MSM) dataflow that runs different algorithms sepa-

rately, but checks for their agreement in terms of their

segmentation results by using performance metrics. Suitability

of metrics depends on the scientific goals of the experiment,

that can be, for example, calculating porosity of a sample or

counting the number of targeted objects. This article describes

a multidisciplinary project involving experimental investiga-

tions of 3D m-CT data of different materials performed at the

Advanced Light Source (ALS) at the Lawrence Berkeley

National Laboratory (LBNL), and development of algorithms

for unsupervised image analysis, performed by investigators at

the Center for Advanced Mathematics for Energy Research

Applications (CAMERA), also at LBNL. We introduce a

process for segmentation and analysis of 3D micro-tomo-

graphy data, which offers strategies to evaluate algorithms and

metrics applied to 3D micro-tomography experiments. Here,

we use the proposed process to investigate geological samples

and ceramic matrix composites (CMCs). These examples

illustrate a strategy for executing different algorithms,

extracting respective criteria, and parameter ranges to arrive

at an appropriate answer.

Previous works on m-CT data analysis described by Ushi-

zima et al. (2011, 2012) address the problem of segmenting

geological samples being studied to understand carbon

sequestration, geologic storage of captured CO2 in under-

ground rock formations. The authors developed tools for

providing precise measurements of porosity and permeability,

and for visualizing pore structures.

More recently, we have focused on yet another material

sample: CMCs, which are composed of continuous silicon

carbide (SiC) fibers and SiC matrices. With a high impact in

industrial manufacturing, CMCs are an enabling element in

the development of gas turbine engines that can operate at

higher temperatures and therefore yield higher efficiency

(Zok, 2016). Although there have been several recent studies

related to computed tomography of CMCs, computational

tools to automate and streamline image analysis are presently

lacking (Bale et al., 2013).

In this article we: (a) introduce an analysis pipeline with

different strategies for segmentation and evaluation; (b)

demonstrate the use of this process in the detection of

different structures in synthetic and experimental m-CT

datasets such as geological samples, glass beads and CMCs;

and (c) make a critical assessment of the accuracy of the

algorithms in determining various quantitative characteristics

of the extracted structures using general and specific metrics.

Fig. 1 presents the analytical dataflow of MSM. The figure

highlights the transformations that the 3D image stacks

undergo before MSM can deliver the materials characteristics

list. The raw m-CT image stack passes through a preprocessing

step based on 3D non-linear filtering. The preprocessed data

serve as input for different segmentation algorithms [statistical

region merging (SRM), k-means, and parallel Markov random

field (PMRF)]. The results from different segmentation algo-
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Figure 1
Image analysis process employed for X-ray micro-tomography data
included in MSM.



rithms undergo an analysis step based on both general and

specific metrics. The evaluation takes into account reference

data obtained from a semi-automated segmentation process.

The remainder of the article is organized as follows. The

segmentation methods for sample partitioning and the metrics

used are described in x2. In x3 we present different types of

experiments using synthetic and experimental data to assess

the accuracy of the results. In doing so, we show how the

proposed process can be applied to evaluate different

segmentation algorithms and to find the necessary metric in

each case. Finally, x4 summarizes the key accomplishments

of our investigation.

2. Materials and methods

This section describes the algorithms used in each step of

the proposed process pipeline: image enhancement, image

segmentation and measurements.

2.1. Image enhancement

Image enhancement techniques ensure that input data are

well suited for a specific task, such as image segmentation or

feature extraction. The challenge is to improve image quality

while retaining essential information about the true structure.

In the present study, we apply two main strategies: mathe-

matical morphology (MM) (Pinoli & Debayle, 2012) and non-

linear edge-preserving filtering (Tomasi & Manduchi, 1998).

Previously we developed ‘F3D’, a graphics-card aware image

processing plug-in for Fiji (Schindelin et al., 2012) that

employs MM and non-linear filters and can handle data sets

whose size exceeds the amount of RAM available in the

computer system (Ushizima et al., 2014). Details on those

techniques are out of the scope of this work.

F3D gray-level MM operators are one-pass constant-time

methods that can perform morphological transformations with

structuring elements oriented in several directions. MM

operators consist of two parts: (i) a reference shape or struc-

turing element, which translates over the image, and (ii) a

mechanism that defines the comparisons performed between

the image and the structuring element (Van Droogenbroeck &

Talbot, 1996). In this work, we use the closing operator, which

is given by the combination of the dilation and the erosion

operators (Gonzalez & Woods, 2006), to improve image

contrast. The procedure involves the following steps:

(1) Define a structuring element based on the geometrical

shape of the feature to be detected in the image.

(2) Apply the closing operator using the structuring element

defined in step 1 [Fig. 2(b)].

(3) Subtract the input image from the result obtained in

step 2 [Fig. 2(c)].

(4) Subtract the result obtained in step 3 from the input

image [Fig. 2(d)].

Additionally, we apply a non-linear image denoising filter

with edge-preserving characteristics (Tomasi & Manduchi,

1998; Bethel, 2012). A weighted average of nearby pixels

replaces each intensity value of the original image. This filter

takes into account differences in intensity values in neigh-

boring pixels to preserve edges while smoothing. Conse-

quently, the influence between neighboring pixels depends on

the similarity of their intensity values. It is defined as

ÎpIp ¼
1

Np

X
q2 Sp

Iq G�r
Ip � Iq

�� ��� �
G�s
ðjp� qjÞ; ð1Þ

where

Np ¼
X
q2 Sp

G�r
Ip � Iq

�� ��� �
G�s
ðjp� qjÞ; ð2Þ

I is the input image, G�r
and G�s

are spatial Gaussian kernels,

p and q are pixel locations and S is the neighborhood.

The parameter G�r
, called range kernel, smooths differ-

ences within intensities, while the parameter G�s
, referred to

as spatial kernel, smooths differences within coordinates.

When the value of G�r
increases, the filter comes closer to a

Gaussian convolution. The value of the spatial kernel is

directly proportional to the size of the features to be

smoothed. Fig. 3 shows an example of a bilateral filter applied

to an image varying both parameters.

Upon application of the enhancement process, the images

present improved contrast and reduced noise, making them

more suitable for use as inputs to the image segmentation

algorithms, described in the next section.

2.2. Unsupervised segmentation

In this section we present the three algorithms that are

currently part of MSM: SRM, k-means and PMRF. SRM and

k-means are among the most commonly used image segmen-

tation strategies, yet due to the sensitivities of these methods

the results can vary depending both on the dataset and
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Figure 2
Example of contrast improvement using F3D with a circle of size 20 pixels as structuring element. (a) Original region of interest. (b) Result of step 2.
(c) Result of step 3. (d) Result of step 4.



parameters used. Additionally we evaluate PMRF, a novel

graph-based algorithm, as another candidate to produce

equivalent results, but addressing performance issues that

traditional SRM and k-means lack.

2.2.1. Statistical region merging (SRM). Nock & Nielsen

(2004) proposed an efficient region growing segmentation

algorithm based on adaptive statistical threshold merging

predicate on intensity levels. As in other region segmentation

algorithms, it aims at associating a pixel to a region using a

similarity criteria.

The iterative process starts with one region per pixel,

followed by merging phases after the calculation of a statistical

test that takes neighboring regions into account. This test

considers an ascending order of intensity differences and

checks if the mean intensities are sufficiently similar to be

merged. The merging predicate, PðRi;RjÞ, regulates whether

the observed regions Ri and Rj belong to the same statistical

region. The merging predicate assumes that the pixels from a

statistical region have the same expectation, and it is repre-

sented as

PðRi;RjÞ ¼

�
true if �RiRi �

�RjRj

�� �� � b Rið Þ þ b Rj

� �
;

false otherwise;
ð3Þ

where the right-hand side of the equation is the center value

between Ri and Rj, and it is used as a merging threshold. The

variable b is a function of g (the largest possible intensity

value):

bðRÞ ¼ g
1

2QjRj

ln jSjRjj

�

� �� 	1=2

: ð4Þ

Sl is the set of regions with l pixels, � is the probability error

and takes values in 0 � � � 1. Q stands for the number of

random variables, which somewhat translates the complexity

of the scene and controls the coarseness of the segmentation.

In other words, Q roughly estimates the number of regions

in the image. The function j . . . j represents the number of

elements in the set of pixels. Even though the default m-CT

image output is 32-bit, we propose the use of g = 255, therefore

the methods take images in 8-bit as input, given that we

empirically verified that this is enough bit depth to represent

more than 95% of the relevant intensity values from the

original image.

2.2.2. k-means. The k-means algorithm (Macqueen, 1967) is

a non-hierarchical unsupervised clustering method that clas-

sifies the input data points into k classes based on the inherent

distance between point pairs. The algorithm assumes that the

data features form a vector space and tries to find natural

clusters, iteratively minimizing the distance between the points

and a set of centroids �i, 8i ¼ 1 . . . k. The minimization

function is given by

V ¼
Xk

j¼ 1

X
xi 2 Sj

xi � �j

� �2
; ð5Þ

where there are k clusters Sj , i = 1; 2; . . . ; k, and �j is the

centroid of all points xi 2 Sj . The general k-means algorithm

for image segmentation consists of the following steps:

(1) Compute the histogram of pixel intensities.

(2) Initialize the centroids with k random intensities.

(3) Repeat the following steps until the cluster labels of the

image converge:

(a) Cluster the pixels based on the distance of their

intensities from the centroid intensities,

cj ¼ argminjjjxi � �jjj
2; ð6Þ

add i to Sj .

(b) Compute the new centroid of each cluster,

�j ¼ ð1=jSjjÞ
P
i2 Sj

xi; ð7Þ

where k is the preferred number of clusters (usually set

empirically and higher than the number of phases), i iterates

over all intensities, j iterates over all centroids and �i are the

centroid intensities.

2.2.3. Parallel Markov random field (PMRF). Perciano et al.

(2016) proposed a graph-based model called PMRF, which

exploits the Markov random fields (MRF) framework to
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Figure 3
Example of bilateral filter applied to an image. (a) Original image. (b) Bilateral filter with G�r

= 50 and G�s
= 3. (c) Bilateral filter with G�r

= 250 and
G�s

= 3. (d) Bilateral filter with G�r
= 25 and G�s

= 3. (e) Bilateral filter with G�r
= 25 and G�s

= 30.



segment images. PMRF makes use of the linear and parallel

(LAP) method (Mizrahi et al., 2014), a graph partitioning

algorithm for MRF parameter estimation. In a MRF model,

the optimization process uses a global energy function to find

the best solution to a similarity problem, such as the best pixel

space partition or the best matching. The energy function

consists of a data term and a smoothness term. For image

segmentation, we use the mean of the intensity values of a

region as the data term. The smoothness term takes into

account similarities between regions. The goal is to find the

best labeling for the regions, so that the similarity between two

regions with the same labels is optimal for all pixels (Maha-

patra & Sun, 2012).

Given an image represented by y = ðy1; . . . ; yNÞ, where each

yi is a region, we seek a configuration of labels x = ðx1; . . . ; xNÞ,

where xi 2 L and L is the set of all possible labels, L =

f0; 1; 2; . . . ;Mg. The MAP criterion (Li, 2013) states that one

wants to find a labeling x� that satisfies

x� ¼ argmax
x



Pðyjx;�ÞPðxÞ

�
; ð8Þ

which can be rewritten in terms of the energies (Li, 2013) as

x� ¼ argmin
x



Uðyjx;�Þ þ UðxÞ

�
: ð9Þ

The prior probability PðxÞ is a Gibbs distribution, and the

joint probability distribution is

Pðyjx;�Þ ¼
Y

i

Pðyijx;�Þ ¼
Y

i

Pðyijxi; �xi
Þ; ð10Þ

where Pðyijxi; �xi
Þ is a Gaussian distribution with parameters

�xi
= ð�xi

; �xi
Þ and � = f�ljl 2 Lg is the parameter set.

The general PMRF segmentation framework works as

follows. Initially, the input image passes through a feature

extraction algorithm or an oversegmentation method to

transform the voxel-domain image data into a less noisy

representation. Next, the resulting regions compose the nodes

of a graph representation of the image. The graph partitioning

process is performed using the LAP algorithm, allowing

simultaneous parallel parameter estimation and optimization

for each subgraph. This parallelization strategy makes PMRF

scalable, i.e. suitable for large experimental datasets. Finally,

the iterative optimization process aggregates the graph nodes

reaching an optimal segmentation through expectation maxi-

mization (EM) and maximum a posteriori (MAP) calculations.

2.3. Quantification metrics

In this section we describe metrics used to assess the

accuracy of the unsupervised segmentation methods as

applied to the m-CT datasets.

2.3.1. General metrics. Our pipeline uses two sets of

general evaluation measurements: binary segmentation

metrics and material metrics.

The binary segmentation metrics consist of precision, recall

and accuracy. Precision represents the proportion of voxels

correctly classified as material, i.e. measures the performance

of the algorithm with respect to false positives. It is given by:

Precision = TP/(TP + FP), where TP stands for true positives

and FP for false positives. Recall measures the performance of

the segmentation algorithm with respect to false negatives

(FN), and it is given by: Recall = TP/(TP + FN). Finally,

accuracy gives the proportion of true segmentations among

the total number of voxels. It is given by: Accuracy =

(TP + TN)/(TP + TN + FP + FN), where TN stands for true

negatives.

We calculate two additional metrics related to the material

of the sample: the volume of the solid component of the

sample, shown in cm3, and the porosity of the material, given

by ’ = Vv /(Vv + Vs), where Vv is the volume of the void space

(empty space) and Vs is the volume of the solid component.

All the metrics described in this section are calculated with

respect to the reference data of each analyzed sample.

2.3.2. Characteristics of fiber beds. To evaluate the CMC

samples containing fiber beds, in addition to the general

metrics described in the previous section, we use more specific

metrics to obtain additional scientific information about the

samples. In a cross section of a 3D m-CT stack for these

samples, each fiber is contained within a polygonal cell whose

boundaries are defined by the perpendicular bisectors of lines

joining the centroid of that fiber with the centroids of its

nearest neighboring fibers. A Voronoi tessellation (Auren-

hammer, 1991) defines these cells. Fig. 4 shows an example of a

Voronoi tesselation for a small region of fibers. The collection

of cells can be interrogated in order to quantify various

characteristics of the fiber bed. We compute three such char-

acteristics for each cross-section through the stacks:

(i) The mean cell area, �A, given by

�A ¼
1

N

XN

i¼ 1

Ai; ð11Þ

where Ai is the area of one cell and is expressed in units of

pixels.

(ii) The non-uniformity of cell areas (Shou et al., 2015),

characterized by

� ¼
ð1=NÞðA �AÞ

�2
A

; ð12Þ

where A = ½A1;A2; . . . ;AN � is the entire set of cell areas.
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Figure 4
Example of a Voronoi tesselation calculated from fiber segmentation.



(iii) The mean porosity, given by

� ¼
XN

i¼ 1

AUi

. XN

i¼ 1

Ai; ð13Þ

where AU = ½AU1
;AU2

; . . . ;AUN
� is the set of unoccupied

areas within the cells.

The � metric was proposed by Shou et al. (2015) for the

analysis of permeability of the fiber reinforcement, and

applied to simulated random fiber arrays. We propose to use

the others to enrich the analysis of the samples. These metrics

are calculated in 2D for each cross section of the 3D stack.

Generally, the 2D cross sections used are the transverse

slices of the 3D stack. However, the domain of analysis can be

changed, i.e. the user can slice the data in different directions

so that the metrics are calculated based on the selected

domain. This flexibility allows taking into account that, due to

the nature of a 3D tomographic reconstruction, characteristics

and artifacts can vary depending on how the data are sliced.

3. Experiments

In this section we present a set of different in silico experi-

ments using the proposed analysis pipeline. The experiments

are carried out in an increasing order of complexity: (1)

synthetic data corrupted with noise, (2) experimental data of

geological sample, and (3) experimental

CMC sample with fiber beds. We show

how to use the proposed process to

evaluate the segmentation algorithms

and suitability of different metrics

presented in x2.3 for each case.

3.1. Synthetic samples

3.1.1. Description. For the first set

of experiments we use synthetic data

corrupted with artifacts. In doing so, we

have total control of the samples and

the ground-truth to demonstrate the

accuracy of the segmentation algo-

rithms. We use benchmark images

available at the Network Generation

Comparison Forum (NGCF) (http://

people.physics.anu.edu.au/~aps110/

network_comparison), a forum that

provides binary images with geometry

that resembles porous media, which we

contaminate with several levels of noise,

similarly to Ushizima et al. (2012).

To produce images similar to the

images obtained from tomographic

experiments, we simulated a tomo-

graphic synchrotron experiment for

each phantom image, and computed

tomographic reconstructions. The

ASTRA toolbox (Aarle et al., 2015)

simulates tomographic projections for each phantom using

1025 angles over a 180� range. Afterwards, we added various

sources of noise to the projections, simulating common artifact

sources in practice, such as Gaussian white noise, miscali-

brated detector pixels and shifting illumination, which typi-

cally result in ring-like artifacts in reconstructed images. The

simulated projections were processed similarly to actual

experimental data by applying a ring-removal algorithm

(Münch et al., 2009) and computing a reconstructed image

using the popular filtered backprojection algorithm (Kak &

Slaney, 2001).

3.1.2. Analysis pipeline. For the synthetic m-CT image

stacks, we apply F3D and non-linear image denoising to

enhance image quality and then the three segmentation

algorithms detect the phases of interest. Here, the algorithms

separate two phases: structure and void space. To calculate all

the measures described in x2.3.1, a voxel-to-voxel comparison

is made against the reference data (ground-truth) for each

sample.

Empirically found values used for the parameters G�r
and

G�s
by the edge-preserving filtering were 50 and 5. PMRF

converges after five iterations on average, the SRM algorithm

used Q = 8 and k-means used k = 6.

3.1.3. Results. The first synthetic data simulate a glass bead

column with m-CT artifacts as shown in Fig. 5(a). Fig. 5(b)

presents the reference data and Fig. 5(c) shows the 3D
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Figure 5
Result of one slice from the two-phases segmentation of the synthetic glass bead column.
(a) Synthetic corrupted data. (b) Reference data. (c) 3D rendering of the corrupted data masked
with the reference. (d) Result using PMRF algorithm. (e) Result using SRM algorithm. ( f ) Result
using k-means algorithm. The colors blue, red, yellow and black represent TP, FP, FN and TN,
respectively.



rendering of the corrupted data masked with the reference

segmentation.

We apply the segmentation algorithms following the

analysis pipeline described before. Figs. 5(d)–5( f) present the

results for the 46th slice using PMRF, SRM and k-means,

respectively. The colors blue, red, yellow and black represent

TP, FP, FN and TN.

Table 1 summarizes the quantitative results using the

general metrics described in x2.3.1 for this dataset. Note that

the quantitative results are compatible with the visual results

shown in Fig. 5, i.e. the three algorithms perform similarly with

small variations, and all of them approach the reference data.

When these different algorithms and respective metrics

somewhat coincide, our hypothesis is that the m-CT segmen-

tation worked properly.

The second experiment aims to evaluate the segmentation

algorithms applied to a material with peculiar characteristics,

including complex geometries and high curvature points.

These synthetic data represent a geological formation similar

to rocks. In this case, the material has a lower porosity, smaller

and more connected structures. Additionally, the same

approach for adding artifacts is applied to the synthetic data.

Figs. 6(d)–6( f) depict the segmentation results compared

with the reference data, presented in Fig. 6(b). Fig. 6(a) shows

the synthetic corrupted data and Fig. 6(c) presents the 3D

rendering of the corrupted data masked with the reference

segmentation. The colors blue, red, yellow and black represent

TP, FP, FN and TN.

Note again the visual similarity of the results. Table 2

summarizes the general metrics values obtained for this

experiment. Despite the fact that the

simulated material in this case has a

more challenging set of characteristics

as described before, the results of the

three algorithms also approach the

reference data, with precision achieving

values higher than 0.99, which is often

enough to enable scientific interpreta-

tion of the sample.

3.2. Glass beads

3.2.1. Description. This real dataset

presents the observation of a geological

carbon sequestration experiment, which

uses glass beads as a proxy for sand

grains for in situ studies of infiltration

and storage. Fig. 7 illustrates the

experimental outcome using glass-bead-

packed columns in biogenic mixture

where calcite precipitation was induced

by using the microbe S. pasteurii. The

glass beads data set originally contains

a 10 GB image stack and represents a

4.49 mm field of view, with a smaller

core region corresponding to x 	 y

dimensions of 1393 	 1398, as described

previously by Ushizima et al. (2011).

3.2.2. Analysis pipeline. Following

the procedure used for the synthetic

datasets, firstly the F3D plugin
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Table 1
Metrics for the synthetic glass bead column.

Note that the three algorithms provide similar results converging to the
reference data.

Reference PMRF SRM k-means

Precision 1.0 0.995 0.993 0.996
Recall 1.0 0.993 0.996 0.9896
Accuracy 1.0 0.992 0.994 0.991
Porosity 0.378 0.380 0.377 0.3833
Volume (cm3) 0.0603 0.0604 0.0607 0.0601

Figure 6
Result of one slice from the two-phases segmentation of the synthetic rock-like sample. (a)
Synthetic corrupted data. (b) Reference data. (c) 3D rendering of the corrupted data masked with
the reference. (d) Result using PMRF algorithm. (e) Result using SRM algorithm. ( f ) Results using
k-means algorithm. The colors blue, red, yellow and black represent TP, FP, FN and TN,
respectively.

Table 2
Metrics for the synthetic rock-like sample showing the small variation
on the metrics for the three segmentation algorithms, indicating total
agreement.

Reference PMRF SRM k-means

Precision 1.0 0.996 0.993 0.996
Recall 1.0 0.969 0.989 0.972
Accuracy 1.0 0.972 0.986 0.975
Porosity 0.206 0.227 0.210 0.2248
Volume (cm3) 0.077 0.0752 0.0769 0.0755



combined with edge-preserving filtering enhances image

quality and then the three segmentation algorithms detect

the phases of interest. Here, besides separating two phases,

material and void space, we apply the algorithms to find an

additional phase representing the precipitation of calcium

carbonate. The general metrics described in x2.3.1 are also

used to evaluate the results on this dataset.

The values used for the parameters G�r
and G�s

by the edge-

preserving filtering were 50 and 5. PMRF converges after five

iterations on average, the SRM algorithm used Q = 8 and

k-means used k = 2 for the two-phase segmentation and k = 6

for the three-phase segmentation.

3.2.3. Results. We apply the pipeline described before to the

experimental data of the glass bead column firstly aiming to

separate material from void space. Fig. 7 presents a summary

of the results for the first slice of the 3D stack. In the original

data presented in Fig. 7(a), three phases can be identified by

the difference of intensity values of the pixels: void space

(darkest gray level), glass beads (intermediate gray level) and

precipitate (brightest gray level). Fig. 7(b) presents the used

reference for this slice for the two-phases segmentation.

Fig. 7(c) shows the 3D rendering of the original data masked

with the reference data. Finally, Figs. 7(d)–7( f) present the

results obtained by PMRF, SRM and k-means, respectively.

For the purposes of this work, the reference data used are the

best results found in the literature for this dataset (Ushizima et

al., 2011), which were validated by a material scientist expert.

We observe a close agreement among the results compared

with the reference data according to the values of TP, FP, FN

and TN represented by the colors blue, red, yellow and black,

respectively.

Table 3 presents the values for the metrics described in

x2.3.1 calculated for this experiment. The results of the three

algorithms are in close agreement with the reference data, and

the accuracy metric achieved values higher than 0.94 indi-

cating that the algorithms successfully segmented the solid

component of the material from the void space.

Now we apply the same algorithms aiming to separate the

three different phases: void space, glass beads and precipitate.

Using the same previous slice, Fig. 8 shows the results for the

three algorithms. In this case, the algorithms are able to

separate the void space (black) and the glass beads (red), and

obtain a phase which is a combination of

precipitate and vessel (cyan).

Table 4 presents the volumes calcu-

lated for each phase. The reference data

for the three-phases segmentation are

unavailable; however, we can notice the

similarity among the results also indi-

cating total agreement of the three

algorithms, making the results valuable

for visual analysis and characterization

of this kind of material. As mentioned

before, the phase representing the

precipitation is combined with the

vessel, which affects the calculation of

the metrics for this phase. However,

from an experimental point of view,

it is possible to have the initial state of

the experiment, i.e. the state of the

glass bead column before infiltration.

Consequently, it is feasible to subtract

the initial state in order to obtain a

phase which purely represents the

precipitate.

The values obtained for the general

metrics are calculated based on the full

3D binary results from the segmentation

algorithms. The boundary shown in

Fig. 7 was used for visualization

purposes only, it is not a requirement for

the metrics calculation. However, it is

important to emphasize that, if a specific
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Figure 7
Result of one slice from the two-phases segmentation of the glass bead column. (a) Original slice.
(b) Reference data. (c) 3D rendering of the reference segmentation. (d) Result using PMRF
algorithm. (e) Result using SRM algorithm. ( f ) Results using k-means algorithm. The colors blue,
red, yellow and black represent TP, FP, FN and TN, respectively.

Table 3
Metrics for the two-phases segmentation of the glass bead column.

The three algorithms are in agreement with the reference data.

Reference PMRF SRM k-means

Precision 1.0 0.957 0.962 0.952
Recall 1.0 0.935 0.939 0.941
Accuracy 1.0 0.940 0.945 0.940
Porosity 0.436 0.449 0.450 0.443
Volume (cm3) 0.04882 0.04774 0.04764 0.04823



boundary is selected from the original image (a region of

interest), then the calculated values for the metrics are going

to vary accordingly.

3.3. Ceramic matrix composite

3.3.1. Description. Our last set of experiments focuses on

the analysis of CMC samples containing fiber beds. The

specimens analyzed in this work are unidirectional mini-

composites. Each specimen contains approximately 5000–6000

aligned SiC fibers, each about 13 mm in diameter, surrounded

by a cured pre-ceramic polymer matrix. The matrix had been

introduced through pressure-assisted axial infiltration of a

liquid polymer precursor into dry fiber beds encased in glass

capillary tubes. The uniformity of fiber packing is of interest

because it influences void formation during polymer impreg-

nation and pyrolysis (PIP) processing. m-CT imaging of the

infiltrated specimens was conducted at beamline 8.3.2 at ALS.

The distance between the sample and the detector was 1.5–

2.0 cm. The data were reconstructed using filtered back

projection with Octopus software (Inside Matters NV, 2016).

Reconstruction required approximately 2 h when running on a

standard desktop computer. The reconstructed results consist

of sets of cross sections, recorded as 2D images. Brought

together, the images can be used to recover the 3D structures.

Fig. 9 presents a cross section from one of the nine stacks

studied. Three different regions are evident in the interior of

the tubes: (i) fibers (lightest gray); (ii) cured precursor

(medium gray) and (iii) voids (darkest gray). In this work, the

precursor and the voids are together

distinguished from the fibers.

3.3.2. Analysis pipeline. The

segmentation and analysis pipeline

were applied to nine 3D m-CT image

stacks, each approximately 2000 	

2000 	 2160 voxels. For each stack,

F3D was first used to enhance image

quality. Then, the image segmentation

algorithms recover binary masks

representing the separation of two

phases: fiber beds and void space

(combination of cured precursor and

voids). From the binary masks, we

calculate the general metrics described

in x2.3.1.

Additionally, we use the binary

masks to construct the Voronoi tesse-

lation, which, combined with the

segmentation results, enables calcula-

tion of the three specific metrics in

equations (11), (12) and (13). The

parameter Q for the SRM algorithm is

set to 8, k-means was applied with k = 4

and PMRF executes an average of five

iterations. Automated threshold esti-

mators are applied to obtain the binary

results from SRM (Otsu) and k-means

(Iso-data). The values used for the

parameters G�r
and G�s

by the edge-

preserving filtering were 50 and 5.
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Table 4
Metrics for the three-phases segmentation of the glass bead column.

Reference data are not available; however, the agreement of the algorithms
is noticeable

PMRF SRM k-means

Volume of beads (cm3) 0.0391 0.04178 0.04301
Volume of precipitation (cm3) 0.005827 0.005851 0.00522
Total volume (cm3) 0.04882 0.04764 0.04823

Figure 8
Result of one slice from the three-phases segmentation of the glass bead column. (a) Original slice.
(b) Result using PMRF algorithm. (c) Result using SRM algorithm. (d) Result using k-means
algorithm. The colors red, cyan and black represent the solid, precipitate and void phases,
respectively.

Figure 9
Original slice from one of the m-CT stacks and its respective reference
data.



The results from the three segmentation algorithms are

compared with corresponding results of the reference

segmentation. The latter segmentation was obtained using

MATLAB scripts with numerous parameters optimized for

these specimens. The parameter values obtained from the

reference segmentation are deemed to be the best estimates of

their true values.

3.3.3. Results. Fig. 10 presents the segmentation result for a

region of interest from a 2D plane of a stack. In this set of

results, differences among the segmentation results can be

observed, indicating that the algorithms

are not in agreement and further

analysis is necessary.

Following the same procedure used

for the previous experiments, firstly

we analyze the results using general

metrics. Fig. 11 presents the graphics for

the porosity and volume obtained for

the nine stacks. The graphics show the

curves in increasing order for both

metrics. There is a weak indication that

the PMRF algorithm approaches the

reference results slightly more.

Table 5 presents the average

segmentation performance of the algo-

rithms applied to the nine stacks, which

is in agreement with the other metrics

results, where the PMRF algorithm

achieves a slightly higher average

accuracy. In general, it is clear that the

three algorithms perform well consid-

ering these metrics. It is possible to have

an overall understanding of the samples.

However, it is difficult to draw any

precise conclusions from these results

regarding the fiber beds.

Taking a closer look at the results in

Fig. 10, the fiber beds obtained by the k-

means algorithm suffer from missing

fiber regions due to inaccurate pixel

segmentation [note the spread yellow regions in Fig. 10(e)]. In

contrast, being graph-based, both the SRM and the PMRF

algorithms allow use of higher-level information, correctly

merging similar homogeneous regions.

However, the SRM algorithm is negatively impacted by the

final threshold, leading to occasional missing or misclassified

fiber regions [note the yellow regions in Fig. 10(d)]. So, in fact,

there are more details about the results that the general

metrics are not able to capture. Consequently, we need more

specific criteria for a more precise evaluation.

The three fiber bed characteristics

defined in x2.3.2 are now used. Fig. 12

shows the variation in the average value

of each characteristic across each

sectioning plane with position in the

stack. The result based on the PRMF

method is consistently in close agree-

ment with the one from the reference

segmentation. In contrast, the result

from k-means differs considerably from

the reference values, over-estimating

both the non-uniformity of cell area,

�, and the porosity, �, while under-

estimating the cell area, �A.

Table 6 summarizes the errors in the

three computed characteristics from the

three segmentation methods for all nine
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Figure 10
Comparisons of the segmentation results for a representative region of the original image.
(a) Original image. (b) Reference data. (c) Result using PMRF. (d) Result using SRM. (e) Result
using k-means. The colors blue, red, yellow and black represent TP, FP, FN and TN.

Figure 11
Values of porosity and volume calculated for the nine stacks analyzed. Curves plotted in increasing
order for both metrics based on the reference data. Note the close result of the three algorithms
with a weak advantage for the PMRF algorithm.



data sets. The PMRF method consistently yields the best

results. For example, the error in � is a mere 0.0096. (For

reference, � = 1 corresponds to uniform fiber packing; values

obtained in the present composite specimens are typically

about � = 1.1.) The errors in �A and � from this method are

0.012 and 0.0073, respectively. (For reference, the average

values of �A and � are about 430 and 0.28.) Higher errors (in

some cases by an order of magnitude) are obtained for the

other methods.

Note that the results obtained using the specific metrics are

different and more clear from the ones obtained using the

general metrics. The reason behind this is that the specific

metrics capture details of the fibers individually for each 2D

plane throughout the 3D stacks, giving a more precise analysis

of this structure. In doing so, the PMRF algorithm is in fact

considerably more precise in this case than the other two

algorithms, meaning that this algorithm appears to be more

suitable to the analysis of this kind of sample. The main reason

behind the better results obtained by the PMRF algorithm is

its ability to estimate and separate more precisely the regions

of interest based on a contextual model, not only on the

intensity values of the pixels.

The set of experiments carried out was only possible and

feasible given the proposed pipeline. The methodology

described here uses different strategies for segmentation and

evaluation of m-CT samples, and also enables the critical

assessment of the accuracy of the algorithms in obtaining

scientific information about the samples. The results demon-

strated the impact of choosing the suitable segmentation

algorithms and evaluation metrics when analyzing 3D m-CT

data, and how the proposed pipeline facilitates this explora-

tion and evaluation process.

4. Concluding remarks

Segmentation algorithms enable quan-

titative characterization of different

materials in m-CT data through

measurements that extract physical

properties from samples. However,

finding the most appropriate segmen-

tation algorithm for the data and finding

the best evaluation metrics are a

constant challenge, while those two

choices heavily impact the performance

of the results in obtaining valuable

information from the data.

We have presented an automated

pipeline called MSM for the analysis of

3D m-CT images that offers different

strategies to evaluate combinations

of segmentation algorithm and metric

for different scientific problems. We

performed a broad and detailed set of

experiments covering samples with

different types of materials: synthetic

data of glass beads and a rock-like

sample, a real glass beads sample, and

real CMC samples containing fiber beds.

The impact of choosing the right

segmentation algorithm and metric
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Table 5
Average for precision, recall and accuracy obtained from the three
segmentation algorithms for the nine CMC 3D stacks.

Note that although the results are very similar there is an indication that
the PMRF algorithm performs better.

Mean
Standard
deviation

Precision PMRF 0.9278 0.020
SRM 0.946 0.001
k-means 0.945 0.005

Recall PMRF 0.939 0.023
SRM 0.891 0.009
k-means 0.896 0.007

Accuracy PMRF 0.942 0.018
SRM 0.931 0.007
k-means 0.933 0.005

Table 6
Errors in �, �A and � calculated over all nine stacks.

Best results are emphasized in bold text

� �A �

PMRF 0.0096 0.012 0.0073
SRM 0.025 0.026 0.17
k-means 0.087 0.109 0.149

Figure 12
�, �A and � calculated for each slice through the 3D volume, for each segmentation algorithm and
the segmentation reference, for the sample presented in Fig. 9. The gray region around the curves
represents the standard deviation.



depending on the scientific goals is demonstrated throughout

the experiments. Although MSM comes with a pre-defined set

of segmentation algorithms and metrics, the pipeline can be

easily extended with additional methods for comparison.

We show that the three unsupervised segmentation algo-

rithms detect different phases of the materials and give

comparable results for all the experiments. However, speci-

mens with complex geometries and fine details may diverge

considerably with regards to the segmentation results. The

analysis of fiber beds requires tailored segmentation algo-

rithms, and a more specific set of metrics so that the necessary

scientific questions can be answered. In this case, the experi-

ments indicate that the PMRF algorithm is more suitable and

more precise when segmenting the fiber beds.

Future directions of this work include studies of scalability

of the segmentation methods in order to improve the effi-

ciency of the analytical process. This includes the use of an

under-development MPI-based version of the PMRF algo-

rithm. In doing so, we intend to perform a detailed analysis

of the fiber beds in CMC samples, modeling the fibers, and

measuring fiber deformations and the matrix deformation

evolution. Additionally, we will develop metrics that suggest

whether or not the input data need enhancement. Currently,

the image enhancement step in the proposed pipeline is

optional and dependent on the user’s choice.
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