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The problem of the separation of superimposed images is considered in the

particular case of a steady background and a foreground that is composed of

different patterns separated in space, each with a compact support. Each pattern

of the foreground may move in time independently. A single pair of these

superimposed images is assumed to be available, and the displacement

amplitude is typically smaller than the pixel size. Further, assuming that the

background is smoothly varying in space, an original algorithm is proposed. To

illustrate the performance of the method, a real test case of X-ray tomographic

radiographs with moving patterns due to dust particles or surface scratches of

optical elements along the beam is considered. Finally an automatic and simple

treatment is proposed to erase the effects of such features.

1. Introduction

X-ray computed tomography is an imaging technique that

provides a 3D image of a specimen from a set of 2D radio-

graphs acquired during its rotation between an X-ray beam

and a detector. The reduction in beam intensity at a specific

detector site is related to the integral of the local attenuation

coefficient along the ray (the line parallel to the beam) passing

through that site (i.e. the Beer–Lambert law). Hence, the

radiographs have to be normalized by the incident beam

intensity, called ‘flat-fields’, i.e. radiographs that would be

obtained without a specimen. One practical source of difficulty

(Weitkamp et al., 2011) is that the beam intensity displays

temporal variations and spatial inhomogeneities, especially at

synchrotron facilities (Flot et al., 2010) [as shown in Fig. 1(a)

for a raw radiograph]. Scratches or dust particles along the

beam pathway (optics, monochromator, scintillator, mirror,

camera) may become visible on the radiographs. They also

appear in the flat-fields acquired before and after the experi-

ment [Fig. 1(b)]. Should those defects remain ideally still with

respect to the acquisition then they would have no conse-

quence in the reconstructions. However, it is observed that

some localized patterns move with respect to the background

[Fig. 1(c)]. Although their displacements are small, they are

very salient and hence may cause artifacts. Moreover, even if

in some cases these moving patterns on the radiographs may

not be detected after the reconstruction algorithm, they would

still introduce bias for qualitative analyses based on the

radiographs (Leclerc et al., 2015). Such a real experimental

case where such a differential pattern motion takes place will

be discussed below, and will be used in x4 to validate our

procedure.

The separation of image superimpositions with motion into

separate layers has received much attention in the past years.
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Many papers deal with the segmentation and recognition of

moving patterns (for video surveillance, pattern recognition,

etc.) (Kameda & Minoh, 1996; Lipton et al., 1998; Rogers et al.,

2007; Ng & Delp, 2010). They consist of segmenting a moving

image with respect to a fixed background.

The proposed procedures often make use of the image

difference to separate the different layers. Because moving

objects are not transparent and mask the scene, large displa-

cements are often considered so that, once the front object

shape has been delineated, the foreground and background

layers may be separated with binary masks.

Transparent image mixtures with motion are more chal-

lenging. Such cases occur, for example, for moving shadows,

X-ray images, superimposed semi-transparent objects, partial

reflection onto a transparent surface, etc. (Irani & Peleg, 1993;

Bergen et al., 1990; Auvray et al., 2006). With transparent

images, Be’Ery & Yeredor (2008) and Gai et al. (2008, 2012)

proposed a separation method based on the inter-correlation

of the image mixture (image gradients may be considered to

enhance the signal). Remarkable success has been reported in

terms of separation; however, it is to be noted that such results

require specific conditions for the algorithm to be applicable:

images have to be uncorrelated, gradients have to be sparse

and with a similar weight, the displacement has to be larger

than the correlation length in order to properly separate

correlation peaks. In particular, this technique cannot address

cases where the displacement is subpixel. Other works aim

to separate the background and foreground for a known

displacement field (Toro et al., 2003; Marcia et al., 2008a,b) and

wavelet decomposition for the two latter papers. Again, such

methods are not suited to dealing with very small displace-

ments. Thus, in spite of the variety of the above-cited problems

and algorithms, none appears suited to very small displace-

ments such as those encountered in practice for flat-field

corrections in computed tomography.

Ramirez-Manzanares et al. (2007, 2010, 2011) proposed a

method to estimate the displacement field of superimposed

transparent images subjected to a small motion. This proce-

dure is based on a variational model for integrating local

motion estimations to obtain a multi-valued velocity field.

Similar methods were proposed by Stuke et al. (2004).

However, these procedures assume that some tens of images

are available, in between which the velocity is steady. When

reduced to a single pair of images, the problem becomes ill-

posed and additional assumptions are to be formulated and

exploited.

The goal of the present study is to erase moving particles on

fixed X-ray transparent images by developing a robust method

to separate a small set of superimposed images (i.e. from two

different flat-fields) composed of an extended fixed back-

ground (with low and high spatial frequencies) and a localized

moving foreground (spatial medium frequencies) with the

specificity of handling very small unknown displacement

amplitudes (subpixel displacement). After having defined our

notations in x2, the method to extract the displacement, the

background and the foreground with a spatial frequency

separation is presented in x3. Then, in x4, the procedure is

tested on two X-ray scans. Finally, the correction of other

images of the same set and with the extracted results is

proposed in x5.

2. Statement of the problem and notations

2.1. Images

A digital image is a collection of gray-level values f̂fi for each

pixel i whose centre is at position ri of integer coordinates.

Although discrete, it may be seen as the sampling at integer

positions ri of an underlying function f ðrÞ defined for arbitrary

real coordinates r = ðx; yÞ in a domain �.

Because only f̂f is known and not f , an interpolation scheme

is proposed to compute an approximation of f at any arbitrary

point from the knowledge of f̂f (or f at pixel coordinates).

Different interpolants with different degrees of regularity can
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Figure 1
(a) Raw radiograph of a cast iron sample with rectangular cross section where the previous inhomogeneities are clearly observed and should be erased by
a flat-field normalization provided this background remains temporally steady. (b) Flat-field, signature of the beam inhomogeneity. (c) A flat-field
difference in the rectangle drawn in (b) showing a moving particle. The color scale for this residual is expressed in proportion to the flat-field amplitude
to provide an order of magnitude.



be proposed to extend f̂f to the continuum. The interpolation

scheme relies on a kernel hðrÞ defined in the continuum,

valued 1 at the origin and 0 at all other integer coordinate

points, so that

f ðrÞ ¼
X
i2I

hðr� riÞ f̂fi; ð1Þ

where the sum runs over the set I of all pixels in the image,

i.e. pixel centres, and hence for all pixels ri , f ðriÞ = f̂fi.

Registration of two images captured after a translation of

small amplitude can provide estimates of the displacement

amplitude with an uncertainty well below 10�2 pixel size

[down to 10�3 pixel size under favourable conditions, as widely

documented in the literature (see, for example, Schreier et al.,

2009)].

Although this may appear as paradoxical, this property

rests on the ability to propose a subpixel interpolation scheme

for images that is more accurate than what can be detected by

the noise level of the image. It is noteworthy to add that this

property is of statistical nature, and results from average

properties over large zones of interest. As their size is

reduced, displacement uncertainties increase significantly.

Because f can be deduced from f̂f and vice versa, no

difference is made in the following between the discrete image

and its extension to the continuum. In a similar spirit, a C 1

interpolation scheme (or higher) allows a gradient to be

defined, that will be used freely in the following.

2.2. Definition of the problem

An image f0ðrÞ with Cartesian coordinates r is assumed to

be the superimposition of a background ’ðrÞ and a localized

pattern  ðrÞ having a compact support (e.g. a dust particle or a

surface scratch of a transparent object encountered along the

beam),

f0ðrÞ ¼ ’ðrÞ þ  ðrÞ: ð2Þ

In addition to f0 , a second image is available where the

background remains steady, but the localized pattern is

translated by some unknown displacement both in orientation

and magnitude. The latter will be assumed to be small in the

following,

f1ðrÞ ¼ ’ðrÞ þ  ðrþ u1Þ: ð3Þ

Moreover, over the entire image, u1 is assumed to be uniform

(i.e. independent of r). The two images fn, for n = 0, 1, are

known but ’ and  are not. Similarly, the displacement u1 is

not known; one can conventionally choose u0 = 0.

The fact that the moving object is a localized pattern with

compact support means that  ðrÞ = 0 away from a region that

can be easily circumscribed. Let us note that one may not only

encounter X-ray absorption but also phase contrast effects

that redirect the beam locally. Hence one may observe an

increase of intensity, not only an attenuation, so that a posi-

tivity constraint on  is not considered. It is also necessary to

mention some further property of the background ’. The

latter displays both long-wavelength modulation and high-

frequency noise. However, it is assumed to be statistically

stationary. In other words, if  is subtracted from, say, fn, the

prior localization of  should not be visible in ’. This is to be

contrasted with fn where the presence of a specific pattern is

manifest.

3. Method

3.1. Ill-posed problem

Without additional assumptions on ’ and  , the problem is

ill-posed, in the sense that its solution is not unique, as shown

below.

Let us note that the differences between two frames,

d1ðrÞ � f1ðrÞ � f0ðrÞ

¼  ðrþ u1Þ �  ðrÞ;
ð4Þ

only depends on  and no longer on ’. To simplify the

notations, for difference, d, and displacement vector, u, the

subscript n or 1 is dropped.

The pattern  appears to be determined from its finite

difference if u is known. Assuming that  is null over a strip of

width u, integration is straightforward and leads to a particular

solution to equation (4). However, any periodic function, of

period u, can be added to  . Once  is determined, then ’ is

obtained by a mere difference [see equation (2)]. Therefore, in

addition to a constant offset as mentioned by Szeliski et al.

(2000), any periodic function of period u can be added to a

particular solution and still fulfills exactly equation (3) for any

f0 and f1. Thus, the problem is ill-posed with a large degen-

eracy.

To make the problem well-posed, some additional

constraints have to be prescribed. In our case, the property

that  is a localized pattern with a compact support provides a

simple way to determine the unknown periodic function in

order to minimize the power of  outside a domain where it is

assumed to be non-zero. Thus for any u the degeneracy is

reduced to a single solution that achieves the best score in

matching the known difference d. The remaining question is

whether one can determine independently the displacement u.

3.2. Determination of the displacement orientation

Let us consider the Radon transform of d, � � R½d�, given

by the line sum of d along parallel lines at an angle �, or

�ðs; �Þ ¼

Z
C

d se�þ�=2 þ te�
� �

dt; ð5Þ

where e� is a unit vector forming an angle � with the x axis, and

C denotes a circular disk of radius a containing the domain

where d is non-zero.

Let us call � the polar angle of the displacement vector,

u = ue�, then
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�ðs; �Þ ¼
R
C

dðse�þ�=2 þ te�Þ dt

¼
R
C

 se�þ�=2 þ ðt þ uÞe�
� �

dt

�
R
C

 ðse�þ�=2 þ te�Þ dt

¼ R½ �ðs; �Þ � R½ �ðs; �Þ

¼ 0 ð6Þ

for all values of s. Thus the L2 norm of �ð:; �Þ, lð�Þ,

lð�Þ2 �
Rr
�r

�ðs; �Þ2 ds; ð7Þ

is a positive function that should reach its minimum (ideally 0)

in the direction of the motion � = �. This property is inter-

esting as it allows the determination of the displacement

orientation without any further assumption than the compact

support of  . In order not to bias this criterion along preferred

directions, it is natural to clip the integration domain for the

Radon transform and the L2 norm to a circular domain

centered on the pattern.

3.3. Ill-posedness

Let us note that even if the displacement direction can be

inferred, the magnitude itself remains an issue. The problem is

still ill-posed as can be easily observed in the limit of a small

displacement (a limit that is relevant for our application).

Indeed, in such a case, the difference between images can be

written

dðrÞ ¼  ðrþ uÞ �  ðrÞ

� jujrrr ðrÞ � e�: ð8Þ

Therefore, knowing d and e� gives access to the product of the

displacement magnitude by the component of the gradient

along the displacement direction, but with this sole argument

it does not allow juj to be isolated from rrr � e�. Hence the

problem remains ill-posed, and the criterion on the compact

support of  does not help.

3.4. First step

Let us first propose the partial reconstruction of  , from the

above observations. Because, at this stage, it is not possible

to split displacement magnitude and pattern gradient, we

propose to compute the pattern for a chosen value of the

displacement magnitude, here one pixel. This value is by now

conventional and its determination will be discussed later. In

order not to introduce any confusion in the latter quantity and

 , and because it is related to first-order integration of d, we

call this integral D. It solves the following equation,

dðrÞ ¼ rrrDðrÞ � e�: ð9Þ

Later, when the displacement magnitude is known,  will be

estimated as

 ðrÞ ¼
DðrÞ

juj
: ð10Þ

3.5. Integration

Although the problem is now well-posed, there are several

ways to implement the integration of D numerically. Let us

recall that the displacement u may be subpixel, or, even if its

magnitude is one pixel as chosen above, the arbitrary angle �
requires that a subpixel interpolation scheme be available.

Thus, DðrÞ is chosen under the following form,

DðrÞ ¼
P
i2I

bi h r� rið Þ; ð11Þ

where the index i runs over the set I of all pixels in the image,

ri designates the coordinate of pixel i, bi is the unknown

amplitude and h is the elementary shape function relative to a

pixel centered at the origin. In the following, the interpolation

scheme is inspired from finite-element, with a bilinear inter-

polation. In this case, the shape function suited to the square

lattice of pixels, at any arbitrary real point of coordinates r =

ðrx; ryÞ, is

hðrÞ ¼
�
1� jrxj

�
1� jryj
� �

ð12Þ

if jrxj < 1 and jryj < 1, and otherwise hðrÞ = 0. It is classically

referred to as Q4P1 (4-noded quadrilateral, polynomial of

order 1).

The determination of D is to be performed from the mini-

mization of

�2
1ðfbgÞ ¼

Z
C

P
i

bi hðr� ri þ e�Þ � hðr� riÞ
� �

� dðrÞ

� �2

dr:

ð13Þ

If some additional information is available concerning  , one

may choose, instead of a pixel representation, h, a basis that is

tailored to the expectation. The interest of introducing such a

form is that, because of noise and subpixel interpolation, the

line sum �ðs; �Þ is not strictly 0 over the domain (disk) of

integration. In this case, the above minimization allows the

distribution of the additional weight on both sides of the

pattern, whereas a direct integration would lead to a dissym-

metric D.

3.6. Second step

The criterion to find juj is to assume that if the object is

removed from the background then no ghost mark (neither

positive nor negative) should appear on the ‘computed’

background. However, one difficulty is that this background

itself is unknown. As discussed above, for any u, one can

compute  uðrÞ (where the subscript recalls that this pattern

estimate depends on u that remains to be determined). In turn,

the background is ’uðrÞ = f0ðrÞ �  uðrÞ.

A spatial frequency separation is performed in the

proposed approach. The medium frequencies (5–20 pixels) are

considered as moving patterns whereas the low frequencies

are related to the background and high frequency (1 pixel) to

noise. As a way to estimate the long-wavelength modulation of

the background over a region �, it is proposed to perform a

least-squares fit weighted by a function wðrÞ that is null over

the expected support of  and non-zero in its surrounding. A

research papers

J. Synchrotron Rad. (2018). 25, 272–281 Jailin, Poncelet and Roux � Separation of superimposed images 275



set of slow modulation functions, giðrÞ, with i = 1, . . . , Nf, is

introduced so that

a ¼ argmin

Z
�

wðrÞ ’uðrÞ �
XNf

i¼ 1

aigiðrÞ

" #2

dr

8<:
9=;: ð14Þ

The least-squares solution is obtained from

ai ¼ M�1
ij sj; ð15Þ

where

Mij ¼
R
�

wðrÞ giðrÞ gjðrÞ dr ð16Þ

and

si ¼
R
�

wðrÞ giðrÞ ’uðrÞ dr: ð17Þ

It is to be noted that this expression can be rewritten as

ai ¼
R
�

�iðrÞ ’uðrÞ dr;

�iðrÞ ¼ wðrÞM�1
ij gjðrÞ;

ð18Þ

and hence the remainder is

e’’uðrÞ ¼ ’uðrÞ �
R
�

�iðr
0Þ ’uðr

0Þ dr0
� 	

giðrÞ

¼
R
�

�ðr� r0Þ � �iðr
0Þ giðrÞ

� �
’uðr

0Þ dr0; ð19Þ

where the above writing illustrates that e’’u is related to ’u

through a linear operator (projector),e’’uðrÞ ¼
R
�

Pðr; r0Þ ’uðr
0Þ dr0; ð20Þ

where

Pðr; r0Þ � �ðr� r0Þ � �iðr
0Þ giðrÞ: ð21Þ

The above linear regression is expected to capture the slow

modulation of the background and hence, for the appropriate

value of the displacement magnitude juj, e’’uðrÞ should only

consist of white noise. It is therefore proposed to estimate juj

from the minimization of �2
2ðjujÞ = ð1=2Þke’’uk

2.

Using

’uðrÞ ¼ f0ðrÞ �  uðrÞ

¼ f0ðrÞ �
DðrÞ

juj
; ð22Þ

we can write the stationarity condition as

@�2
2ðjujÞ

@juj
¼
@�2

2ðjujÞ

@’u

@’u

@juj
¼ 0: ð23Þ

Because the piece-wise linear interpolation of the discrete

values of pixels is used, the integration over the domain � can

be written as a discrete sum. Hence the previous equation can

be expressed in matrix notation,

f0 �
D

juj


 �>
PP>

D

juj2
¼ 0; ð24Þ

with juj a scalar homogeneous displacement, f0 and D vectors

composed of the Npix pixels of the integration domain, the

superscript > denotes transposition and where the projection

matrix P is of size ½Npix � Npix�. Thus, finally, we arrive at the

expression of the displacement modulus,

juj ¼
D>P>PD

f>0 P>PD
: ð25Þ

The pattern shape can finally be obtained using equation (10),

and the background from the difference.

In the case of a large displacement u typically larger than

the correlation length or the spot length for a compact image,

the linear approximation of equation (8) is meaningless and

thus dðrÞ cannot be approximated by the derivative of  . The

displacement can be decomposed into a first-guess displace-

ment u0 (e.g. obtained from a previous computation in an

iterative scheme or a maximum cross-correlation) and a

correction �u, hence u = u0 + �u. The above procedure can be

extended to estimate the displacement correction �u. In this

case, the problem becomes affine in �u (rather than linear as

discussed above) as a result of

dðrÞ ’  ðrþ u0Þ �  ðrÞ þ r rþ u0ð Þ�u: ð26Þ

4. Case study

4.1. Test case presentation

To illustrate the performance of the proposed method,

a real tomographic acquisition performed at the ESRF

synchrotron, beamline ID19, is chosen. A nodular graphite

cast iron is imaged at a voxel size of 5.1 mm. A complete scan

corresponds to 600 radiographs, and flat-fields are recorded

before the scan and after every 100 radiographs, resulting in

Nf = 7 flat-fields. The radiographs are denoted as Iðr; tÞ and the

flat-fields as fiðrÞ, i = 1, . . . , Nf.

The noise is supposed to be white and Gaussian with a

standard deviation of 0.24% as assessed from regions in the

images where no mobile patterns are present and thus image

difference is assumed to be essentially due to noise.

The flat-field correction procedure with stationary intensity

correction has been presented in detail by Jailin et al. (2017).

The principle can be summarized as follows: taking into

account the multiplicative nature of the corrections, the

logarithm of the radiographs Gðr; tÞ = log½Iðr; tÞ�, i.e. hereafter

called the ‘projections’, should first be computed and the

logarithm of the beam intensity should be subtracted off. The

standard Beer–Lambert law relates the sum of the absorption

coefficient along the ray hitting the detector at position r and

time t to sðr; tÞ = Gðr; tÞ � Fðr; tÞ where Fðr; tÞ = log½ f ðr; tÞ� and

f ðr; tÞ is the flat-field at time t. If the beam were steady, Fðr; tÞ

should be equal to FiðrÞ = log½ fiðrÞ�, for all i. However, in real

life, Fðr; tÞ varies in time as the X-ray beam is not steady. Since

it is not possible to measure simultaneously I and F, one has to

estimate Fðr; tÞ from FiðrÞ.
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Because the edges of the radiographs [q 2 �l [�r, defined

by the two rectangles shown in Fig. 2(a)] are never masked by

the scanned specimen they provide information about the

intensity variation at all instants t. The two sub-images from

the projections clipped to these edge regions at time t can be

approximated as a linear combination of the corresponding

sub-images extracted from the (logarithm of the) Nf flat-fields

FiðqÞ using least-squares [some extra fields can be included in

this database of all flat-fields (hereafter called the library), as

will be the case in x5 with the addition of a flat-field gradient],

Gðq; tÞ ¼ Fðq; tÞ ¼
PNf

i¼ 1

	iðtÞFiðqÞ: ð27Þ

Because the flat-fields are known over the entire detector, the

above decomposition allows the extension of the logarithm of

the raw beam intensity Fðr; tÞ to any r.

This procedure provides an accurate correction in most of

the detector area. Nevertheless, a few features remain visible

because the radiographs are polluted by moving dust particles

or surface scratches of optical elements along the beam.

The flat-fields acquired before and after the experiment and

those used for the flat-field library F are shown in Figs. 2(a)

and 2(b). These images are composed of a low-frequency

background (i.e. mostly a vertical gradient), a high-frequency

noise and a few medium-frequency bright spots. The differ-

ence, Fig. 2(c), shows:

(i) A stationary background composed of low frequencies

and a few spots with negative values. The intensities of these

spots are different from that of the background and are thus

very clearly visible in the difference. However, because of the

(logarithm of the) flat-field sampling, Nf = 7 linear combina-

tions can capture those spots and the current procedure of

allowing any combination of fields allows us to account for

them.

(ii) Other patterns composed of positive and negative

values (labeled from 1 to 5). These patterns are moving

spots and remain visible in the corrected radiographs. They

can be automatically selected by a mere thresholding proce-

dure.

The following study will successively extract the shape of

each of these spots, focusing on areas around each moving

pattern (Fig. 2c) with two images weighted to have a zero-

mean value on these regions. The difference of two flat-fields

zoomed in the first region is shown Fig. 3. A diverging color

bar is used for residual maps to highlight positive and negative

patterns. It can be seen that the background disappears and a

positive and negative pattern due to the moving spot in a

vertical direction remains. The previous procedure can be

applied to extract the spot shape of these areas.
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Figure 3
(a) Bright spot of the first flat-field F1. (b) Bright spot of the second flat-field F2. (c) Differences of the two images with a zero-mean value. The circle
shows the boundary of the disk used for the Radon transform.

Figure 2
(a) Flat-field F1 with the edge areas defined by the two rectangles. (b) Flat-field F2. (c) Differences between the two weighted flat-fields where the five
largest moving spots are shown in their bounding box.



4.2. Separation of the two images

The proposed procedure has been first applied on spot 1

[see Fig. 2(c)] and the results for the other spots follow. The

extracted area 1 is shown in Fig. 3 for the initial (a) and the

final (b) flat-fields.

The first step is to obtain the direction of the displacement

by using the Radon transform. The difference image, d, is

clipped to a disk C [i.e. for the surface lying outside the circle

shown in Fig. 3(c) d is set equal to 0], the Radon transform

� ¼ R½d� is computed and the mean quadratic intensity for

every angle, lð�Þ2, is computed as in equation (7). The results

are displayed in Fig. 4. The minimum obtained in Fig. 4(b)

gives the direction of the displacement: � ’ 80	 from the

horizontal x-axis.

Because the background is essentially composed of low

frequencies, it can be extracted with the projector P using low-

order polynomials (up to second order) giðrÞ. This projection

has to be weighted by wðrÞ to not be affected by the bright spot

shape. The indicator function of the complement to the disk

used for the Radon transform was chosen for the studied spot.

For elongated marks such as the one labeled ‘4’, a rectangle

was selected.

The computation of DðrÞ composed of 26� 32 pixels is

regularized by reverting to a square-shaped (Q4) mesh

composed of 10� 15 nodes. Equation (25) allows the esti-

mation of the displacement amplitude as juj = 0.54 pix =

2.72 mm. The foreground  u [equation (10)] and finally the

background ’u are evaluated. The DðrÞ results linked to the

shape of the pattern may be sensitive to the high-frequency

noise. In our case, the spot is composed of medium frequencies

so DðrÞ can be regularized by a finite-element mesh composed

of a small number of degrees of freedom (the choice of a mesh

based on elements larger than the pixel size leads to a lower

sensitivity to noise).

The procedure can be summarized in the following four

steps:

(i) Radon transform for the measurement of the motion

direction [equation (7)] to evaluate the direction of motion.

(ii) Computation of D and P.

(iii) Measurement of juj [equation (25)].

(iv) Foreground and background  u and ’u extraction

[equation (10)].

The different images, F,  u and ’u, are shown in Fig. 5.

Results for the four other proposed spots of Fig. 2, F1,

F1 � F2,  u and ’u, are shown, respectively, in Figs. 6(a), 6(b),

6(c) and 6(d). It can be seen that, for the fourth pattern, a

‘ghost mark’ still remains on the background but the general

shape of the pattern is well captured.

research papers

278 Jailin, Poncelet and Roux � Separation of superimposed images J. Synchrotron Rad. (2018). 25, 272–281

Figure 4
(a) Radon transform (i.e. projection at every angle). (b) Mean quadratic amplitude of the Radon transform, lð�Þ2. The minimum, reached for � ’ 80	,
indicates the displacement direction.

Figure 5
Analysis of the pattern shown in Fig. 3 with (a) original image F1, (b) reconstructed spot  uðriÞ = DðriÞ=juj, and (c) corresponding background ’u for
juj = 0.54 pixel with a 10� 15 Q4 mesh regularization.



5. Application to automatic flat-field correction

The previous section showed that it is possible to segment

each pattern, estimate its shape and intensity as well as its

displacement from one image to another one. Yet, this treat-

ment requires a number of manual operations, from the

detection of each feature to its analysis. Although feasible,

it is a lengthy treatment that appears as affordable only for

exceptionally important data. Thus a key question is whether

one can benefit from such an analysis to remove artefacts from

tomographic projections at a much lower cost. It turns out that

the answer is positive, at least when the displacement range

remains small.

The key observation relies on the fact that the absolute

shape of the pattern is not strictly needed, nor is the displa-

cement amplitude. Only an estimate of the pattern gradient is

necessary, and, for the component of the gradient along the

translation direction, this is part of flat-field differences.

However, because the motion is different for the patterns and

the background, it is necessary to limit those differences to the

immediate surrounding of the pattern. In fact, the creation of

such a binary mask 
ðrÞ, valued 1 around each spot and 0

elsewhere, is easily performed from standard image analysis

techniques as the patterns are isolated salient objects in

each flat-field image. Then masked flat-field differences

½fiðrÞ � f0ðrÞ�
ðrÞ directly contain (i.e. without further treat-

ment) an estimate of the pattern gradient along the direction

of motion. Such a field is shown in Fig. 7. Hence, in the same

way as in x4.1, by minimizing the quadratic difference of
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Figure 6
Results for the four other spots. The four rows correspond, respectively, to spots 2 to 5. Column (a): initial image F. Column (b): difference image with
positive and negative pattern due to motion. Column (c): reconstructed spot  u. Column (d): reconstructed background ’u.



any projection with a linear combination of flat-fields and,

in addition, of the masked differences it should be possible to

account for both the background correction and spurious

mobile features. This procedure is in line with the proposed

scheme to estimate the raw beam intensity, and turns out to be

a very simple extension. In other words, the flat-field gradient

has to be added to the flat-field library FiðrÞ.

Note, however, that this procedure relies on the fact that

only the motions sampled by the different flat-fields are

generated. When the number of flat-fields is limited to a small

number, one may not achieve enough freedom. However, the

partition of the mask into different masks (one for each

pattern) is an easy way to allow for different motions at

different places. Yet, this forces the direction of motion to be

aligned with the one that is sampled. To provide even more

freedom, the mask can be applied to each of the two

components of a flat-field gradient.

In order to validate the above procedure, it is now applied

to the actual test case. The edges of the projections are

composed of only two spots: (2) and (5) (see Fig. 2). The

residual in these regions will obviously be low, thus it cannot

be considered as a criterion. The criterion to judge whether

the procedure is accurate is the comparison of another spot

not included in the minimization process: the fourth, which has

the highest intensity value. The gradient field composed of the

different extracted pattern gradients is shown Fig. 7. The result

of the flat-field correction around the fourth spot is shown in

Fig. 8 for the standard correction [proposed by Jailin et al.

(2017)] (Fig. 8a) (i.e. with a library composed of two flat-fields)

and the presently proposed correction with the gradient field

(Fig. 8b).

Because the standard procedure is weighted by the global

intensity variations, it does not totally take into account the

moving patterns. With the actual procedure, the displacement

amplitude is obtained with the two moving spots on the edges

and then used to correct the central area (and hence the other

spots including the above-shown fourth one). The low and

uniform residual with the proposed method shows that the

separated pattern shape is well estimated. The obtained

displacement amplitude juj is 0.42 pixels and, because the

previous analysis has been carried out, one can estimate the

motion of spot 1 to about 1.15 mm.

Although the initial motivation was based on the reduction

of artefacts in reconstructed images, the present procedure,

albeit successful, turns out not to display an appreciable

benefit. The main reason for this comes from the fact that a

spurious static feature in the radiographs (if away from the

projection of the rotation axis) is smeared over half or a

complete ring in the reconstructed volume and becomes

difficult to distinguish. One may note that this tolerance to

local bias is one of the reasons for the tremendous success

of tomographic reconstruction. Even when algebraic recon-

struction techniques are used, the improvement due to erasing

of the mobile patterns is difficult to evidence. Although the

difference in the reconstructed fields with or without mobile

pattern removal clearly shows the impact of the preprocessing,

finding objective measurements to decide on the best recon-

struction is subtle. Attempts made with entropy evaluation

showed at most a 1% difference, a level than can hardly be

considered as meaningful.

However, it has recently been proposed to track the time

evolution of a deformable 3D object from a prior full tomo-

graphic reconstruction and the inspection of only a few of its

projections at later times (Leclerc et al., 2015; Taillandier-

Thomas et al., 2016a,b). Such algorithms are much less resilient

to inaccurate or unfaithful projections, as just a few of them

are used to extract all the required information about sample

motion. For such demanding applications, the proposed

treatment is expected to be much more beneficial.
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Figure 7
Additional flat-field gradient component along the motion direction
masked over the five spots. The rectangles represent the left and right
edges never masked by the scanned sample.

Figure 8
Residual field of the flat-field correction of the intermediate flat-field Fm, (a) with the stationary method and (b) with the additional gradient field.
Note that the same color bar is used in both images.



6. Conclusion

The separation of a slowly varying background and a localized

pattern is addressed in the difficult case of subpixel motion.

Although the general problem is ill-posed, using assumptions

on the compact support of one image and a smoothly varying

background, a methodology is proposed to achieve the

partition and to estimate the motion in orientation and

magnitude.

The proposed algorithm was tested on a set of flat-fields

acquired on a synchrotron beamline. Five different features

were analyzed independently, and revealed subpixel transla-

tions. Based on this result, a very simple and generic treatment

is proposed to correct for such artefacts prior to reconstruc-

tion. The proposed methodology reduces to the construction

of a masked image difference as an enrichment of a library

built to account for inhomogeneous beam intensity.
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