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The quantum regime of a plasma-whistler-wave-pumped free-electron laser

(FEL) in the presence of an axial-guide magnetic field is presented. By

quantizing both the plasma whistler field and axial magnetic field, an N-particle

three-dimensional Hamiltonian of quantum-FEL (QFEL) has been derived.

Employing Heisenberg evolution equations and introducing a new collective

operator which controls the vertical motion of electrons, a quantum dispersion

relation of the plasma whistler wiggler has been obtained analytically. Numerical

results indicate that, by increasing the intrinsic quantum momentum spread and/

or increasing the axial magnetic field strength, the bunching and the radiation

fields grow exponentially. In addition, a spiking behavior of the spectrum was

observed with increasing cyclotron frequency which provides an enormous

improvement in the coherence of QFEL radiation even in a limit close-to-

classical regime, where an overlapping of these spikes is observed. Also, an

upper limit of the intrinsic quantum momentum spread which depends on the

value of the cyclotron frequency was found.

1. Introduction

Free-electron lasers (FELs) can produce a radiation pulse with

high peak brilliance and with photon energies ranging from

the VUV to the X-ray range, i.e. from 10 eV (120 nm) to

10 keV (0.12 nm). In general, FEL radiation can be of two

different kinds: basic self-emission, which comes from the

direct interaction of the electron beam with a wiggler field,

and stimulated emission, which occurs when a seed radiation

field copropagates with the electron beam. Self-emission

occurs starting from random noise in the electron phases. The

electrons enter the wiggler in an unprepared state and radiate

initial emission. Then the electrons begin to bunch on inter-

acting with the self-radiation and wiggler field, which involves

emitting radiation, i.e. when the propagation effects become

relevant. The FEL self-emission in which the propagation

effects are considered is a particular operation mode called

self-amplified spontaneous emission (SASE) (Robb & Boni-

facio, 2012; Ratner et al., 2015). In the X-ray wavelength range

(from a few millimeters to 1 Å or less), a high-gain FEL

operated in SASE mode can generate multi-GW and femto-

second coherent X-ray pulses.

Considerable efforts have been made to operate FELs at

shorter wavelengths and higher powers. In this regard, FEL

centers such as FLASH at DESY (Altarelli, 2006; Geloni et

al., 2010), LCLS at SLAC (Arthur, 2002), FERMI at Elettra

(Allaria et al., 2010) and SCSS in Japan (Tanaka & Shintake,

2005) have focused on producing high-frequency (X-rays) and

high-power FELs.
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A conventional FEL amplifies coherent radiation by means

of a relativistic electron beam passing through a periodic static

magnetic field (magnetostatic undulator). The FEL process

can be understood as the scattering of virtual undulator

photons by the electron beam into photons of the radiation

field, i.e. an exchange of photons between the undulator and

the radiation, with the electrons providing the necessary

momentum. This is a resonant process that emits radiation at

the resonant wavelength, which indicates that the production

of short-wavelength radiation requires either high-energy

electron beams or short undulator wavelengths (Schroeder et

al., 2001).

There are other alternative strategies for supplying shorter

wavelengths (XUV and X-ray) based on two-stage electro-

magnetically pumped FEL structures, because the Doppler

up-shift for such a pump wave is a factor of two higher than a

conventional FEL (helical wiggler) with a comparable period

(Andriyash et al., 2015; McNeil & Thompson, 2010; Abbasi et

al., 2016). In this concept, an electron beam propagates

through a helical/planar wiggler located within a resonant

cavity; the radiation generated by this device will itself act as

an electromagnetic wave wiggler to generate still shorter-

wavelength radiation. However, from an experimental point

of view, many of these schemes have been difficult to attain,

since in many cases the pump wave would act to defocus the

electron beam, and also it was difficult to hold the focus of the

pump wave over a significant distance to achieve amplifica-

tion. Another principal difficulty with this concept was that, if

the interaction in either stage reaches sufficiently high effi-

ciencies, the electron beam quality could be degraded and

could quench both stages of the interaction (Freund &

Antonsen, 1996). One of the interesting ways to overcome

these problems is to employ plasmas with FELs (Kiselev et al.,

2004; Ganeev, 2012). Introducing plasma into the interaction

region may confine the electron beam and hold the focus of

the pump wave (Sharma & Tripathi, 1996). In addition, the

radiation can be confined to some degree by dielectric guiding

by the plasma since the dielectric constant in the beam is

larger than that of the outside plasma due to the relativistic

mass increase of its electron (Ganeev, 2012). The plasma can

significantly slow down the radiation mode thereby relaxing

the beam energy and beam quality requirements considerably

(Jafarinia et al., 2013). The presence of plasma enables the

possibility of employing the plasma modes as wigglers which

have a very short period for the excitation of shorter wave-

lengths (Jafari, 2015). The effective wiggler wavelength

in a plasma wiggler is �w = 2�c=!p or �w [cm] ’

3� 106=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np ½cm�3�

p
. For plasma densities np in the range 1013–

1018 cm�3, the plasma wiggler wavelength �w ranges from 1 cm

to 30 mm (Joshi et al., 1987). Besides, such a FEL, which can

produce shorter-wavelength radiation, might provide the

opportunity to observe quantum mechanical effects in FEL

operation, which in the conventional designs do not play any

role (Bonifacio et al., 2005a,b).

The configuration of a quantum-FEL (QFEL) is that of

collective Compton backscattering, in which a low-energy

electron beam collides with a propagating high-power elec-

tromagnetic wave. The QFEL concept is particularly suited

to the generation of very short radiation wavelengths as the

photon recoil hk becomes larger than the spread in electron

momentum (Bonifacio et al., 2008). In this regard, operation of

a FEL in a quantum regime, in which the spiking behavior

observed in the SASE mode disappears and the spectrum

reduces to a single narrow line which originates high temporal

coherence (quantum purification of SASE) (Bonifacio et al.,

2006, 2017; Avetissian & Mkrtchian, 2007), provides an enor-

mous improvement in the coherence of a SASE-FEL X-ray

source.

In a FEL, the maximal X-ray photon energy 2�ch- =�r is

limited by the minimal wiggler period and the energy of the

electron. In a conventional magnetic wiggler, due to limita-

tions in wiggler wavelength (�w � 1 cm), it is difficult to reach

the angstrom radiation wavelengths, which requires large and

expensive accelerators. In our work, we tackle this problem by

considering a scheme based on a plasma-wave-pumped FEL

in the presence of an axial-guide magnetic field. Employing a

plasma wiggler provides a very short micrometer undulation

period with sufficiently large strength parameter. The purpose

of the present paper is to investigate the quantum effects

of a plasma-wave wiggler in the presence of an axial-guide

magnetic field, in which a relativistic electron beam interacts

with a plasma whistler wave. The axial-guide magnetic field

is usually present to guide the relativistic electron beam. This

work is developed in a linear regime and is conducive to

understanding the quantum effects of the cyclotron frequency

(caused by the axial-guide magnetic field) on line narrowing.

In addition, we demonstrate the higher temporal coherence

and more discrete spectrum of the quantum SASE in the

presence of an axial-guide magnetic field.

2. Physical model

For an experimental realization of a quantum-FEL it is

necessary to use an electromagnetic wiggler (such as a laser

wiggler or plasma-whistler-wave wiggler) in a collective

Compton backscattered configuration, instead of a magneto-

static helical/planer wiggler as employed in classical SASE

experiments (Bonifacio et al., 2006, 2007). In a plasma wiggler

configuration, a low-energy electron beam backscatters the

photons of the whistler wave with a frequency by a factor 4�2.

However, such a choice sets some conditions on the electron

beam and wiggler parameters. To avoid two-stream instability

due to the beam–plasma interaction, we use an electron beam

of length (Joshi et al., 1987)

L �
c�

!p

np

nbeam

� �1=3

;

where np and nbeam are the plasma and electron beam densi-

ties, respectively. In addition, there is another instability in

a plasma-based FEL scheme which is related to the Weibel

instability. This instability can be suppressed by beams that are

narrower than the plasma skin depth (c=!p). As a result, we
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employ a short and narrow beam in the plasma-based FEL

configuration.

The Hamiltonian of the relativistic electron in the presence

of radiation (i.e. matter–radiation interaction) in the labora-

tory frame is

H ¼ m2
ec4 þ P� eAð Þ

2c2
� �1=2

; ð1Þ

where P = pxêex þ pyêey þ pzêez is the three-dimensional cano-

nical momentum, A is the field vector potential, me and e are,

respectively, the rest mass and charge of the electron, and c is

the speed of light in a vacuum.

In our study the vector potential may be decomposed such

that A = Ar + As + A0, where Ar is the vector potential of the

seed radiation field, As is the vector potential of the whistler

wiggler field and A0 is the vector potential describing the

axial-guide magnetic field which is uniform along the z axis.

Besides, we assume that both the radiation and whistler

wiggler wave are propagating in the direction of the z-axis in

the laboratory frame. Therefore these vector potentials in the

laboratory frame are

Ar;s ¼ A�r;s êe exp �i kr;sz� !r;st
� �� �

þ Ar;s êe� exp i kr;sz� !r;st
� �� �

; ð2Þ

A0 ¼
ffiffiffi
2
p
=4

	 

B0

�
� ðixþ yÞ êeþ ðix� yÞ êe�

�
; ð3Þ

where ð!r; krÞ and ð!s; ksÞ denote the frequency and wave-

number of the radiation and whistler fields, respectively, Ar;s

are the amplitude of the vector potentials with As = A�s =

�
ffiffiffi
2
p

Bs=2ks (in which Bs is the strength of the magnetic field

related to the whistler electromagnetic wave), and B0 is the

strength of the axial magnetic field so that B = B0ẑz.

êe = ðêex þ iêeyÞ=
ffiffiffi
2
p

and êe� = ðêex � iêeyÞ=
ffiffiffi
2
p

are the unit vector of

circular polarization of our fields and it’s conjugate, respec-

tively, with vector properties êe:êe = êe�:êe� = 0 and êe:êe� = 1. This

formalism of the vector potentials gives us the convenience to

quantize the fields.

The quantum description of a FEL can be in a moving

frame, in which we have a non-relativistic problem; however, if

one would like a fully relativistic quantum approach there are

requirements such as using the Dirac equation (Sen Gupta,

1991; Mandl & Shaw, 2010). However, we will work in a

moving frame that moves with the electron beam. The velocity

of this frame can be the velocity of the electrons, so that an

elastic scattering takes place in which the electron converts

a whistler photon into a radiation photon. In a particular

moving frame, so-called BR (Bambini & Renieri, 1978), both

photons oscillate with the same frequency called the resonance

frequency (Stenholm & Bambini, 1981).

By using Lorentz transformations from the laboratory

frame to the frame moving with normalized velocity �f = vf=c,

for Ar and As we obtain

krz� !rt ¼ k0z0 � !0t 0; ð4Þ

ksz� !st ¼ �k0z0 � !0t 0 ð5Þ

and

!0 ¼ !r�f 1� �fð Þ ¼ !s�f 1þ �fð Þ; ð6Þ

where !0 is the resonance frequency, �f = ð1� � 2
f Þ
�1=2 and the

prime is used to indicate the moving frame. We assumed the

extreme case (San-kui, 1992) where the whistler photon has

the same wavenumber as the radiation photon, but opposite to

the direction of the moving frame, k0s = �k0r = �k0. In addition,

for convenience we will drop the primes hereon with the

understanding that all quantities refer to the moving frame.

We work in a quantum regime of a FEL starting from noise, so

that

e2A2
r

m2
ec4
	

e2A2
s

m2
ec4
¼ K 2

(Schroeder et al., 2001; Stenholm & Bambini, 1981), where K

is the strength of the whistler wiggler field and is also defined

by ð1þ K 2Þ
1=2 = �?, in which �? is the Lorentz factor asso-

ciated with the transverse motion due to the whistler field.

Now one can quantize the radiation and whistler fields by

using the following transformations (Mandl & Shaw, 2010;

San-kui, 1992),

Ar;s !
h-

2"!V

� �1=2

expði!tÞ ar;s; ð7Þ

A�r;s !
h-

2"!V

� �1=2

expð�i!tÞ ayr;s; ð8Þ

where " is the permittivity of the plasma medium (Freund &

Antonsen, 1996; Hedayati et al., 2017), V is the plasma volume

and ar;s ða
y
r;sÞ are the photon annihilation (creation) operators

with the commutator ½a; ay� = 1. In addition, we quantize the

axial-guide magnetic field and electron motion through the

commutator ½xi; pj� = ih- �ij, where indices imply x, y and z

coordinates.

Then, the three-dimensional Hamiltonian for N electrons

interacting with a single mode radiation and whistler wiggler

field in the presence of an axial-guide magnetic field can be

found as

ĤH ¼ mc2 þ
1

2
h- !c þ h- !

þ
XN

j¼ 1

�
p2

zj

2m
þmTj

þ h- �
n

ays ar exp i �rsð Þj

� �
þ ayr as exp �i �rsð Þj

� �o

� ðmh- �Þ1=2
ays T�ð Þjexp �i �sð Þj

� �
þ as Tþ

� �
j
exp i �sð Þj

� �n o

� ðmh- �Þ1=2
ayr T�ð Þjexp �i �rð Þj

� �
þ ar Tþ

� �
j
exp i �rð Þj

� �n o�

þ h- ! ayr ar þ ays as

� �
; ð9Þ

where ĤH is the Hamiltonian operator, pzj is the z-component

of the momentum operator of the jth electron, � = e2=2m"!V

is the strength of the coupling between the whistler and

radiation fields, !c = eB0=m is the cyclotron frequency of

the electron caused by the axial-guide magnetic field,
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and ð�rsÞj = ðkr � ksÞzj = 2kzj is the phase operator of the jth

electron which is entangled between the whistler and radiation

fields.

Furthermore, ð�sÞj = �kzj and ð�rÞj = kzj are the phase

operators of the jth electron describing its interaction with the

whistler and radiation field, respectively, m = með1þ K 2Þ
1=2 =

me�? is the renormalized mass (Schroeder et al., 2001; Sten-

holm & Bambini, 1981), and

Tþ
� �

j
¼

pxj þ eB0=2ð Þyj

� �
� i pyj þ eB0=2ð Þxj

� �
ffiffiffi
2
p

m
; ð10Þ

T�ð Þj ¼ Tþ
� �y

j
; ð11Þ

Tj ¼ TþT�
� �

j
ð12Þ

are the the vertical-motion operators (San-kui, 1992) of the jth

electron with commutators

m Tþ;T�
� �

¼ h- !c

mT;T

� �

¼ 
 h- !cT

ð13Þ

and their eigenvalue equations have been described by San-

kui (1992). In equation (10), Pxj and Pyj are, respectively, the

x- and y-components of the momentum operator of the jth

electron.

Physically, the term mT þ ð1=2Þh- !c corresponds to terms

ðA2
0Þ, ðA0:PÞ and ðp2

x þ p2
yÞ, which control the vertical motion

of the electrons with respect to the axial magnetic field.

The transverse operators (10)–(12) are very useful for our

purpose in which we will construct a new electron collective

operator by using them to take into account the quantum

effects of the axial guide in the dispersion relation of the

whistler-pumped FEL.

3. Heisenberg evolution equations and the dispersion
relation

From the Hamiltonian (9) we derive the following Heisenberg

evolution equations which determine the dynamics of the

QFEL,

d exp �i �rsð Þj

� �
dt

¼ �
i

2m
kr � ksð Þ P ðBÞz

� �
j
; ð14Þ

dar

dt
¼ �i�as

XN

j¼ 1

exp �i �rsð Þj

� �
� i!ar þ

ib

h-

XN

j¼ 1

L�ð Þj; ð15Þ

d L�ð Þj

dt
¼ i

h- k2

2m
� !c

� �
L�ð Þj þ

ib

m
!cas exp �i �rsð Þj

� �
þ

ib

m
!car;

ð16Þ

d P ðBÞz

� �
j

dt
¼ �

i

2m
h- 2 kr � ksð Þ

3exp �i �rsð Þj

� �
� 2ih- � kr � ksð Þays ar ð17Þ

where

P ðBÞz

� �
j
¼ pz j exp i �rsð Þj

� �
þ exp i �rsð Þj

� �
pz j;

L�ð Þj ¼ T�ð Þj exp �i �rð Þj

� �
; b ¼ ðmh- �Þ1=2;

ð18Þ

and we have used the commutators

exp �i �rsð Þj

� �
; pz

� �
¼ h- kr � ksð Þ exp �i �rsð Þj

� �
;

exp �i �rð Þj

� �
; pz

� �
¼ h- k exp �i �rð Þj

� �
;

al; ayr
� �

¼ as; ays
� �

¼ 1;

m Tþ;T�
� �

¼ h- !c;

mT;T

� �

¼ 
h- !cT
;

and

ar; ays
� �

¼ as; ayr
� �

¼ ar;s;T

� �

¼ exp �i �rsð Þj

� �
;T


� �
¼ ar;s; pz

� �
¼ pz;T

� �

¼ 0:

We work in a linear regime so that the high-order terms in

extracting the above equations (14)–(17) are neglected.

From Bonifacio et al. (2006), we use the following electron

collective operators,

B ¼
1ffiffiffiffi
N
p

XN

j¼ 1

exp �i �lsð Þj

� �
; ð19Þ

P ¼
1ffiffiffiffi
N
p

XN

j¼ 1

1

2
P ðBÞz

� �
j
; ð20Þ

where, ½P ðBÞz �j is defined in (18), B denotes the bunching and

P is the symmetrized momentum bunching.

In this manner we introduce a new electron collective

operator with respect to the vertical motion of electrons

interacting with radiation in the presence of a uniform

magnetic field,

V� ¼
1ffiffiffiffi
N
p

XN

j¼ 1

ðL�Þj; ð21Þ

where ðL�Þj is defined in equation (18). By combining equa-

tions (19), (20) and (21) with (14)–(17), one can obtain the

following relations for the linear regime,

dB

dt
¼ �

i

m
kr � ksð ÞP; ð22Þ

dar

dt
¼ �i

ffiffiffiffi
N
p

�asB� i!ar þ
ib

h-

ffiffiffiffi
N
p

V�; ð23Þ

dV�
dt
¼ i

h- k2

2m
� !c

� �
V� þ

ib

m
!casBþ

ib

m

ffiffiffiffi
N
p

!car; ð24Þ

dP

dt
¼ �

i

4m
h- 2 kr � ksð Þ

3
B� i

ffiffiffiffi
N
p

h- � kr � ksð Þays ar: ð25Þ

We regard the operators as and ays as follows,

as; ays !
h-

2"!V

� ��1=2

As:
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Looking for solutions of the linear system (22)–(25) of the

form BðtÞ = B0 expði�tÞ, one can obtain the following

normalized characteristic equation as a dispersion relation,

���� 1
4 �!!þ �!!c

� �
ð ���� �!!Þ � �!!c

� �
���2
� �qq2

� �
þ ��� ���� 1

4 �!!
� �

¼ 0;

ð26Þ

where �!! = �!=N� is the normalized Doppler-shifted

frequency (normalized resonance frequency), �qq =

ðh- =2mÞðkr � ksÞ
2=N� is the normalized quantum parameter,

�!!c = !c=N� denotes the normalized cyclotron frequency and

��� = ½Asðkr � ksÞe=mN��2.

In the above dispersion relation we have considered

symmetrizing the momentum bunching and taken into account

the term
P

j expð�i�jÞp
2
j . Besides, we considered the reso-

nance condition in the quantum regime �!! = �qq, so that �!!=4 = �kk,

where �kk = h- k2=2mN�.

In the quantum regime ( �		< 1), the momentum spread

cannot be smaller than the photon recoil h- k and only a single

frequency, corresponding to a single momentum transition,

occurs with line width (Bonifacio et al., 2007)

�!

!

� �
QFEL

’
�

Lb

where Lb denotes the electron bunch length. This equation

means that a QFEL operating in the angstrom region with

electron beam duration 
 = 1 ps can generate radiation with a

line width of 10�7, much smaller than the envelope line width

of the classical spectrum (typically of the order of 10�3).

Therefore, the QFEL can be a very promising X-ray source,

and a formidable tool for ultra-high-resolution process studies.

In the absence of the axial-guide magnetic field, �!!c = 0, and

for a helical wiggler our dispersion relation (26) coincides with

that of Bonifacio et al. (2006).

4. Numerical studies and conclusion

A numerical study of the dispersion relation [equation (26)] is

made in this section. The graph of the imaginary part of the

complex root of equation (26) versus the normalized Doppler

shifted frequency �!! is shown in Fig. 1. As seen in this figure,

when �!!c = 0 (Fig. 1a), for �qq = 0 we have the classical result of

a FEL without any initial energy spread. By going into the

quantum regime, for �qq = 0.5, 4, 7 and 10 there is a special

behavior in which the resonance occurs at �!! = �qq, with full

width equal to 2ð2= �qqÞ1=2 and peak value Im ��� = ð1=2 �qqÞ1=2. Here,

�qq represents the intrinsic quantum momentum spread. As a

consequence, Im ��� decreases with increasing �qq, so that the field

and the bunching grow exponentially as expð�Im �Þ t.
By turning the axial-guide magnetic field on so that �!!c 6¼ 0

(Fig. 1b), in the quantum regime, we observed a decrease in

the width and peak value for each chosen �qq. As a consequence,

Im ��� decreases with increasing �!!c (Fig. 1c), so that we will have

an increase in the field and the bunching exponentially for a

fixed value of �qq. Also we observed a resonance shift in the

presence of the external magnetic field, as shown in the figure.

From Bonifacio et al. (2006), substituting �!! for �n =

2n �qq� �!!sh in equation (26) and plotting the imaginary part of ���
as a function of �!!sh, we obtain new graphs as shown in Fig. 2.

In these figures, �!!sh is the normalized frequency shift

proportional to ð �!! 0 � �!!Þ= �!!, which describes the relative

deviation of the radiation frequency from the normalized

resonant frequency �!!, and n refers to a momentum eigenvalue

related to an arbitrary momentum eigenstate, which is initially

occupied by the electrons.

When �!!c = 0, for �qq = 5, as shown in Fig. 2(a1), it can be seen

that the regions of the spectrum corresponding to gain

(Im ��� > 0) appear as a series of discrete lines corresponding

to different values of n. Each of these lines is centered on
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Figure 1
Imaginary part of the complex root of the characteristic equation (26)
versus �!! for �qq = 0, 0.5, 4, 7, 10 with �!!c = 0 (a) and �!!c = 2 (b), and for �qq =
0.6 with �!!c = 0, 2, 5 and 10 (c).



�!!sh = ð2n� 1Þ �qq, equally separated by a distance 2 �qq, and has a

width of 2ð2 �qqÞ1=2. As seen in Fig. 2(b1), with a decrease in �qq,

in a certain span of �!!sh the number of lines increases and the

discrete lines overlap with each other so that the spectrum

turns into a classical one.

By turning the axial-guide magnetic field on ( �!!c 6¼ 0), we

have observed a narrowing in spectrum lines for a fixed value

of �qq, Figs. 2(b2,b3) and 2(a2,a3), respectively, for �qq = 1 and

�qq = 5 [Figs. 2(a2,b2) and 2(a3,b3) correspond to �!!c = 2 and 10,

respectively]. As seen in Fig. 2, with an increase in �!!c, for a

fixed value of �qq, the width and peak

value (Im ���) of the spectrum lines

decreases and the distance separation

of the lines remains constant as 2 �qq. In

Fig. 3, Im ��� versus �!!sh has been plotted

for the various spectrum lines over-

lapping conditions. As shown in Fig. 3,

the upper limit for �qq to overlap the

spectrum lines decreases with increasing

�!!c, so that for �!!c = 0 (a) overlapping

takes place for �qq < 1.25, while for �!!c =

2 (b) overlapping occurs for �qq < 0.9, and

for �!!c = 10 (c) we have �qq < 0.5.

The fundamental feature of the

quantum FEL with plasma-wave

pumping in the presence of an axial

magnetic field is an extremely narrow

single-line radiation spectrum, whose

line width can be some orders of

magnitude smaller than the bandwidth

of conventional quantum FELs (see

Fig. 2).

As an example, we consider a QFEL

producing radiation at a wavelength of

6 nm in the quantum regime using a

plasma whistler wiggler with a wave-

length of 32 mm and effective wiggler

parameter K = 0.1. The electron beam

energy can be approximately 36 MeV,

and the axial magnetic field strength is

B0 = 0.7 kG (for �!!c = 2) for a plasma

density np = 0.86 � 1018 cm�3.

In summary, in this paper we have studied the role of the

axial-guide magnetic field on plasma-whistler-pumped free-

electron laser operation, which operates in the quantum

regime. Employing a plasma wave as a wiggler is attractive for

two reasons. First, the effective wiggler strength can be

extremely large and, second, the effective wavelength is

shorter than that available with a conventional magnetic

wiggler. Using plasma densities in the 1018 cm�3 range, a

wiggler wavelength of the order of 30 mm can be obtained,

thereby permitting production of very short wavelength
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Figure 3
Imaginary part of the unstable root of the characteristic equation (26) versus �!!sh. The spectrum lines overlap each other when �!!c = 0 (a) for �qq < 1.25,
�!!c = 2 (b) for �qq < 0.9 and �!!c = 10 (c) for �qq < 0.5.

Figure 2
Imaginary part of the unstable root of the characteristic equation (26) (with respect to
transformation �!!! �n = 2n �qq� �!!sh) versus �!!sh, for �qq = 1 and �!!c equal to 0 (b1), 2 (b2) and
10 (b3), for �qq = 5 and �!!c equal to 0 (a1), 2 (a2) and 10 (a3).



radiation (�Å) with modest energy beams. We began from

the derivation of an N-particle three-dimensional Hamiltonian

in a quantum approach in which the vertical motion of elec-

trons was controlled by a transverse operator, and then, by

using the Heisenberg evolution equation, the dynamics of the

system in the linear regime was determined. With respect to

the transverse operator, a new functional collective operator

was introduced and the characteristic equation as a dispersion

relation was then obtained, for a fixed value of the normalized

quantum parameter ( �qq), showing a shift and narrowing of the

FEL resonance and decrease in peak value, which caused a

growth in the field and bunching exponentially. In addition, we

observed the quantum SASE affected by the normalized

cyclotron frequency ( �!!c), so that, for a fixed value of �qq, by

increasing �!!c the spectrum becomes a series of discrete narrow

lines and we obtained an upper limit for �qq, which depends on

the value of �!!c; for values of �qq smaller than this limit the

spectrum lines overlap each other. A plasma-based FEL

operating in the quantum regime can provide a compact and

monochromatic X-ray source, which is a formidable tool for

ultra-high-resolution process studies.
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