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Results of computer simulations of the transmission of an X-ray beam through a

two-dimensional photonic crystal as well as the propagation of an X-ray beam

in free space behind the photonic crystal are reported. The photonic crystal

consists of a square lattice of silicon cylinders of diameter 0.5 mm. The amount of

matter in the path of the X-ray beam rapidly decreases at the sides of the

cylinder projections. Therefore the transmission is localized near the boundaries,

and appears like a channeling effect. The iterative method of computer

simulations is applied. This method is similar to the multi-slice method that

is widely used in electron microscopy. It allows a solution to be obtained with

acceptable accuracy. A peculiarity in the intensity distribution inside the Talbot

period zT in free space was found when the intensity is approximately equal to

the initial value at a distance 0.46zT, and it is shifted by half a period at distance

0.5zT. The reason for this effect is the existence of a periodic phase of the

wavefunction of radiation inside the intensity peaks. Simulations with zero

phase do not show this effect. Symmetry rules for the Talbot effect are discussed.

1. Introduction

Photonic crystals are known to be some of the most promising

systems for many applications using visible light (Klimonsky et

al., 2011). They have a structure that causes periodic modu-

lation of the dielectric function (refractive index) when the

period is comparable with the wavelength of light. Such a

periodicity opens the possibility of strong Bragg diffraction of

light similar to the Bragg diffraction of X-rays in single crystals

(Authier, 2005). As a result, photonic energy bands arise,

similar to the electronic energy bands in semiconductors,

which leads to filtering of the transmission and reflection

of light.

It is known that opals are an example of natural three-

dimensional photonic crystals. They consist of SiO2�nH2O

silica globules ordered in a lattice. Artificial opals are usually

created in the process of self-assembly of colloid particles like

SiO2 spheres on a vertical surface (Klimonsky et al., 2011). The

main problem with such a technique is that it is impossible to

create photonic crystals without defects in their structure.

Other techniques allow the creation of one-dimensional or

two-dimensional artificial photonic crystals. One-dimensional

photonic crystals are known as multilayers. They are created

by different deposition techniques and are widely used as

mirrors for ultraviolet and soft X-ray radiation (see, for

example, Macquart et al., 1991). Two-dimensional photonic

crystals are prepared by means of microfabrication techniques

on Si surfaces including electron-beam lithography, aniso-

tropic deep plasma etching, LIGA technology and so on.
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The microfabrication technique allows the creation of a

high-quality periodic structure which is free of defects and has

sharp boundaries of the composing elements. An example of

such a structure is given in Fig. 1, which shows a set of cylin-

ders that form a two-dimensional lattice with a square unit cell

having one cylinder inside itself. In terms of crystallography

the unit cell has a basis consisting of two elements located at

the beginning and at the centre of the unit cell. Fig. 1(a) shows

a view from the top, while Fig. 1(b) shows a three-dimensional

image.

Hard X-ray radiation with photon energy E of�10 keVand

higher (wavelength � of �0.1 nm and lower) can be used as a

diagnostic of photonic crystal structure by means of applying

several coherent scattering techniques developed at third-

generation synchrotron radiation sources. One of them is the

method of small-angle X-ray diffraction which allows one to

detect the structure of diffraction spots from a small region of

a crystal over a large distance (see, for example, Gulden et al.,

2010).

A very promising technique is based on the use of a

compound refractive lens (CRL) (Snigirev et al., 1996;

Lengeler et al., 1999; Kohn, 2002, 2003). First of all, high-

resolution X-ray diffraction can be used at the focus of the

CRL at a small distance from the CRL (Kohn et al., 2003;

Drakopoulos et al., 2005). Secondly, a high-resolution X-ray

microscopy technique has been developed which allows

imaging of mesoscopically structured materials. This tech-

nique was applied for imaging natural and synthetic opals,

inverted photonic crystals and colloidal goethite board-like

particles (Bosak et al., 2010; Snigireva & Snigirev, 2013; Meijer

et al., 2012; Byelov et al., 2013).

On the other hand, a perfect two-dimensional photonic

crystal can be used as a new device which is able to modify a

coherent homogeneous X-ray beam to a new form of periodic

beam structure with a small period. Such a beam can produce

an interference image which can be translated in space due to

the Talbot effect (Talbot, 1836).

Up to now there have been problems theoretically under-

standing the process of transmission of a hard X-ray beam

through a photonic crystal. The well known theory of phase

contrast imaging (Snigirev et al., 1995; Kohn et al., 2010) is not

valid because of the strong variation of the phase with a small

period for a relatively thick crystal. The kinematic X-ray

diffraction theory (Authier, 2005) is not valid because of

strong scattering by each element of the structure. The theory

of dynamic multiple diffraction is very difficult to realize.

In recent works (Kohn & Tsvigun, 2014; Kohn et al., 2014)

an iterative approach based on recurrence relations has been

proposed. It is similar to the multi-slice method used in the

theory of transmission electron microscopy [see Goodman &

Moodie (1974), and references therein], but not entirely. Our

method is valid only for periodic systems, i.e. for the case

where the region of three periods can be calculated in each

iteration and the side periods are improved to be equal to the

central period. This method was applied to three-dimensional

photonic crystals. In this work we apply the same approach

to the two-dimensional photonic crystal shown in Fig. 1 for a

special orientation of the crystal relative to the beam direction

which is shown in Fig. 1(a) as the z-axis.

This case is of interest due to the existence of the channeling

effect for part of the X-ray beam. A profile of thickness t of Si

matter averaged over a period along the beam direction is

shown in Fig. 2. The argument is the transverse coordinate x.

It shows two minima on the x-axis at the boundaries of the

cylinders. These minima have a square-root dependence. It is

known that for the focusing lens the minimum has a parabolic

profile.
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Figure 1
Structure of the two-dimensional photonic crystal used here in the
computer simulations. (a) View from the top and (b) the three-
dimensional picture.

Figure 2
A profile of thickness t of Si matter averaged over a period along the
beam direction.



The square-root profile cannot focus the whole beam, but

focusing some part of the rays is possible. In any case, the main

intensity of the beam can transmit through just these minima

while the other parts of the matter profile will absorb the

radiation completely. At the exit of the photonic crystal the

intensity of the radiation will be strongly modulated with a

period of d = 0.5 mm although the true period of the structure

is 1 mm.

In a further propagation of the modulated beam in free

space the Talbot effect with period zT = 2d 2/� occurs but with

an unusual intensity behavior inside the Talbot period. In

particular, our calculations do not show the fractional or

fractal Talbot effect which was discussed by Berry & Klein

(1996). The reason for this is that the phase of the wave-

function inside the peaks is not constant. We have discovered

the effect of shifting the intensity peaks by half a period within

a very small distance interval.

2. The method of computer simulations

In this work we use the same method of computer simulations

as in our previous papers (Kohn & Tsvigun, 2014; Kohn et al.,

2014) for three-dimensional photonic crystals. Below we

briefly describe the method for the case of a two-dimensional

photonic crystal. A variation in the Si matter density occurs

in the (x, z) plane as shown in Fig. 1. We consider a crystal

orientation such that the X-ray beam propagates along the

z-axis.

We search for a solution of the Maxwell equation for the

electric field of the radiation in the form

Eðx; z; tÞ ¼ expðikz � i!tÞAðx; zÞ: ð1Þ

Here k = !=c = 2�=� is the wavenumber, ! is the frequency

of radiation, c is the speed of light, � is the wavelength and

Aðx; zÞ is a slowly varying function which depends on ! where

! is an external parameter. In the paraxial approximation we

can neglect the second derivative of A on z and write the

equation for A in the form

@A

@z
¼ �ik� �ðx; zÞAþ

i

2k

@2A

@x2
: ð2Þ

Here � = �� i� = 1� n = ��=2 where n is the complex

refractive index of Si matter, � = "� 1 is the susceptibility of

the matter and " is the dielectric function. We consider elastic

scattering of the monochromatic radiation and therefore ! is a

constant parameter.

The function �ðx; zÞ is equal to 1 at a point inside the

matter, and 0 at a point in free space. This function describes

the structure of a two-dimensional photonic crystal, and can

be rather complicated. In our case the photonic crystal consists

of cylinders of diameter d = 0.5 mm. For the sake of simplicity

we begin with a plane wave at the entrance surface of the

crystal, z = 0, and assume that Aðx; 0Þ = A0ðxÞ = 1.

Since the photonic crystal has a periodic structure we will

search for the solution of equation (2) by means of an iterative

method. Let us assume that we know the solution AnðxÞ after

a passage of n = 2k rows of cylinders where k is an integer. We

note that one row of cylinders will disturb the wavefunction

weakly. We will take this into account by means of a two-step

process.

In the first step we neglect the second term on the right-

hand side of equation (2) and obtain the new function

BnðxÞ ¼ AnðxÞC1ðxÞ; C1ðxÞ ¼ exp �ik� t1ðxÞ
� �

; ð3Þ

where

t1ðxÞ ¼
Rd
0

dz �1ðx; zÞ: ð4Þ

Here, t1ðxÞ is a periodic function with period 2d. According to

Fig. 1 we have

t1 ¼ 0 for xj j<R;

t1 ¼ d 1� ðx� dÞ
2=R2

� �1=2
for x� dj j<R;

ð5Þ

where R = d=2 is the cylinder radius. This approximation

corresponds to the phase contrast approach, and it is correct

for one row of cylinders.

In the second step we neglect the first term on the right-

hand side of equation (2) and obtain

Anþ1ðxÞ ¼
R

dx1 P x� x1; dð ÞBn x1ð Þ; ð6Þ

where

Pðx; zÞ ¼
1

ði�zÞ
1=2

exp i�
x 2

�z

� �
ð7Þ

is the Fresnel propagator. This step allows us to take into

account the thickness of the photonic crystal which can be

quite large.

The next row of cylinders has another structure. This is why

we need to take it into account by means of the same process

but with a different phase factor,

Bnþ1ðxÞ ¼ Anþ1ðxÞC2ðxÞ; C2ðxÞ ¼ exp �ik�t2ðxÞ
� �

; ð8Þ

where

t2ðxÞ ¼
Rd
0

dz �2ðx; zÞ: ð9Þ

Now, according to Fig. 1 we have

t2 ¼ d 1� x2=R 2ð Þ
1=2

for xj j<R;
t2 ¼ 0 for x� dj j<R:

ð10Þ

Finally we obtain

Anþ2ðxÞ ¼
R

dx1 P x� x1; dð ÞBnþ1ðx1Þ: ð11Þ

The subsequent rows of the photonic crystal have the same

structure. We can replace the index nþ 2 by n and repeat

equations (3)–(11) and so on. We would like to consider an

infinitely wide photonic crystal, but we cannot calculate the

convolution in equations (6) and (11) for infinite limits. On the

other hand, the Fresnel propagator oscillates with a small

period for a small distance d. We can calculate the convolution

by means of the fast Fourier transformation procedure, and we

need to use a rather small step in the set of points.
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We have solved this problem as described below. The

calculations were performed in an interval of 3 mm with the

number of points 16384 = 214. This interval contains three

large periods of 1 mm. This is equivalent to a situation where

a slit of width 3 mm is located in front of the photonic crystal.

It is known that, at a small distance, due to diffraction of

radiation on a slit, the part near the boundaries is strongly

disturbed while the central part remains unchanged. In other

words, the Fresnel propagator at small longitudinal distance

has a small size for the first Fresnel zone and any local change

of the function BðxÞ can influence the function AðxÞ within a

small region.

This is valid for one iteration, but it is not valid for many

iterations because each new iteration increases the size of the

region of influence. To eliminate the influence of the bound-

aries we have applied a special numerical procedure in each

iteration which takes the central period of the function AðxÞ

and improves the left and right periods according to a prop-

erty of the periodicity of the solution for infinite photonic

crystals. Such a procedure allows one to obtain a solution with

sufficient accuracy for a crystal of rather large thickness.

We note that there is an alternative iteration process when

BnðxÞ ¼ AnðxÞC1ðxÞC2ðxÞ ð12Þ

and

Anþ2ðxÞ ¼
R

dx1 P x� x1; 2dð ÞBnðx1Þ: ð13Þ

This second process is faster than the first process but has a

smaller accuracy. Nevertheless, we have obtained the same

results in our calculations by both processes. This fact can be

considered as a way to control the accuracy of the simulations.

In the second iterative process the solution has a transverse

period of d from the beginning. The function tðxÞ = t1ðxÞ + t2ðxÞ

is shown in Fig. 2. In the first iterative process such a peri-

odicity arises after several pairs of rows. We used the first

approach to obtain the wavefunction of radiation at the exit

surface of a photonic crystal of arbitrary thickness.

The next task is the calculation of wavefield propagation in

air behind the photonic crystal. For an infinitely wide crystal

this wavefield stays periodic at all distances. Therefore we can

use the same set of points and the iterative process based on

the recurrence relation

A x; zþ z0ð Þ ¼
R

dx1 P x� x1; z0ð ÞA x1; zð Þ ð14Þ

with some constant distance z0 which now can be as large as

possible without causing destruction of the central period of

the considered region. At each step the central period was

used by us to improve the left and right periods. Sometimes

it is useful to apply a small value of z0 to obtain a detailed

picture of the intensity transformation in free space with

increasing distance.

3. Results for a photonic crystal

Fig. 3 shows the calculated intensity of radiation Iðx; zÞ =

Aðx; zÞ
�� ��2 inside the Si photonic crystal in the form a color map

for a photon energy of 12.4 keV (wavelength of 0.1 nm). The

refraction parameters � = 3:166� 10�6 and � = 3:155� 10�8

can be obtained by means of an online program (Kohn, 2013).

It is assumed that the intensity of the incident radiation I0 = 1.

The central period of the photonic crystal including the two

boundaries between the cylinders is shown. In reality the

period of the intensity is twice as small and it is equal to d =

0.5 mm. We present the intensity profiles InðxÞ after a trans-

mission of 1001 rows of cylinders along the z-axis which were

calculated on each iteration. Therefore the maximum thick-

ness of the photonic crystal is equal to 0.5005 mm.

The relative intensity was found to be maximum at a

thickness of 0.25 mm with a value 7.194. Since the peak is

rather sharp, the maximum value of contrast in Fig. 3 is equal

to 6.5. The simulations reveal that the considered photonic

crystal is able to focus an X-ray beam by increasing the

intensity by up to seven times. The focusing effect arises

periodically with various periods and with different maximum

values.

The first peak arises at a thickness of 0.1 mm without side

peaks. The next peak can be accompanied by small side peaks.

For some thicknesses there are several small peaks without

a central large peak. The mean intensity decreases with

increasing thickness due to absorption in the silicon matter.

Fig. 4 shows curves for both the maximum value of the

intensity (red curve, left-hand axis) and the mean value of the

intensity (blue curve, right-hand axis). Here an interval of

thicknesses up to 1.5 mm is shown that is three times larger

than in Fig. 3.

One can see that the intensity of the X-ray beam becomes

more localized when the peak arises and less localized when

the peak is absent. However, for all thicknesses the X-ray

radiation is localized within the channel between the bound-

aries of the cylinders. Sharp changes of the derivative of the

maximum intensity function are due to a change in peak when
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Figure 3
X-ray beam intensity distribution inside the photonic crystal.



the intensity value of the new peak becomes greater than

the intensity value of the preceding peak. Each time the curve

shows the peak with a maximum intensity value.

To understand the channeling effect it is useful to consider

ray trajectories according to a geometrical optics approxima-

tion. An accurate calculation can be performed by considering

the refraction condition on each boundary of the cylinders, but

it is rather complicated. Instead we consider the integral (13)

after substituting (12). According to the stationary phase

method the main contribution to the point x at the layer nþ 2

is obtained from the point x1 at the layer n where

	 ¼
x� x1

p
¼

d’n x1ð Þ

k dx
þ

d’ x1ð Þ

k dx
: ð15Þ

Here, p = 2d, ’nðxÞ is the phase of AnðxÞ, ’ðxÞ = �k�tðxÞ and

	 is the angle between the ray trajectory and the optical axis.

Then the derivative of 	 can be calculated as the ratio of the

change in 	 after a passage of one period p and p

�	

p
¼

d	

dz
¼

d’

pk dx
¼ ��

dtðxÞ

p dx
: ð16Þ

We are interested in the ray trajectories near the boundaries of

the cylinders. Let this point be the origin on the x-axis. Then

we have

dtðxÞ

p dx
¼
ð2RÞ

1=2

p

jxj1=2

x
1�
jxj

2R

� ��1=2

1�
jxj

R

� �
: ð17Þ

It is evident that dx=dz = 	. Then we eliminate a singularity

in equation (17), introduce dimensionless variables s = x=R

and n = z=p, and obtain the following equation for the ray

trajectory in the case of an incident plane wave,

d2s

dn2
¼ �uðsÞ;

dsð0Þ

dn
¼ 0; sð0Þ ¼ s0; ð18Þ

where

uðsÞ ¼ ð32Þ1=2 �
sjsj1=2

s2 þ a2ð Þ
1�
jsj

2

� ��1=2

1� jsjð Þ: ð19Þ

Here, a is a small parameter which is necessary for computer

calculations without a singularity. In reality the approach of

ray trajectories is not valid near the point x = 0 where the ray

inclination is very large. It may be large but finite.

Equation (18) is similar to the equation for a pendulum of

special structure. The ray trajectories depend on a point at the

entrance surface of the photonic crystal. They are periodical

with various periods for different points and symmetrical.

Fig. 5 shows four trajectories as a solution of equation (18).

The trajectories can intersect and interfere. However, the

result of the interference depends on the phases and ampli-

tudes of the fields coming along the different trajectories. We

note that in the case of a CRL all trajectories have the same

period.

4. The Talbot effect and the peculiarities of wave
propagation in free space

We consider a photonic crystal of thickness 0.25 mm for which

the intensity distribution of the X-ray beam at the exit surface

has the most high peaks, and calculate the propagation of such

a beam in free space behind the crystal. It is sufficient to

calculate the distance interval from zero to zT = 5 mm because

the distribution is repeated periodically with a period zT.

Fig. 6 shows the calculated intensity distribution as a color

map. The maximum value at the centre of a sharp peak is

equal to 7.2 but we show the contrast within the interval from

zero to 4.5 to reveal the symmetry of distribution. The

dependence of the maximum value of intensity on the distance

is shown in Fig. 7. We note that the mean values are the same

for all distances. The symmetry shown in Fig. 6 is not high

compared with images calculated for a periodical slit system

(which can be seen, for example, on Wikipedia), and therefore

it is necessary to analyse the properties of wave propagation in

free space.

A periodic wavefunction with period p for z = 0 can be

represented as a Fourier series,

 ðx; 0Þ ¼
P
m

Cm exp iqmxð Þ: ð20Þ

Here, Cm are the coefficients of the Fourier image of the

wavefunction, and qm = 2�m=p. To calculate the wavefunction
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Figure 4
Dependence of the maximum value of the X-ray beam intensity (red
curve, left-hand axis) and mean value (blue curve, right-hand axis) on the
thickness of the photonic crystal.

Figure 5
Ray trajectories in the geometrical optics approximation. Four lines with
various initial positions are drawn with various colors to better distinguish
them.



at distance z it is sufficient to multiply the coefficients Cm on

the Fourier image of the Fresnel propagator,

P qm; zð Þ ¼ exp �i
�z

4�
q2

m

� �
¼ exp �i��z

m2

p2

� �
: ð21Þ

As a result we have

 ðx; zÞ ¼
P
m

Cm exp i2�mx=p� i��zm2=p2ð Þ: ð22Þ

Since m is an integer, it is easy to find that the additional phase

is equal to 2�k with k being an integer if z = nzT, where zT =

2p2=� is the Talbot distance. Therefore we obtain the first

Talbot rule (Talbot, 1836),

 x; zT þ zð Þ ¼  ðx; zÞ: ð23Þ

Fig. 6 shows this rule in terms of the intensity but it is a

property of the wavefunction.

Let us consider the second Talbot rule. If z = zT/2, then

Pðqm; zT=2Þ = expð�i�m2Þ. It is known that the square of even

integers is even, and that of odd integers is odd. Therefore,

Pðqm; zT=2Þ is equal to 1 for even m and to �1 for odd m. This

can be written as Pðqm; zT=2Þ = expð�i�mÞ. Then we obtain

the second rule (Berry & Bodenschatz, 1999),

 x; zT=2þ zð Þ ¼  ðx� p=2; zÞ: ð24Þ

This property of the symmetry can be seen in Fig. 6.

It is easy to verify that the symmetric wavefunction stays

symmetric for all distances. Additional properties of the

Talbot picture are usually derived for particular cases. For

example,

 x; zT � zð Þ ¼
P
m

Cm exp i2�mx=pþ i��zm2=p2ð Þ: ð25Þ

If the coefficients Cm are real values then

 x; zT � zð Þ ¼  �ð�x; zÞ ð26Þ

and we obtain a new symmetry property for the intensity,

I x; zT � zð Þ ¼ Ið�x; zÞ: ð27Þ

For a symmetric wavefunction this property becomes simpler,

I x; zT � zð Þ ¼ Iðx; zÞ: ð28Þ

One can see that Fig. 6 does not reveal this property. More-

over, a distribution with strong peaks at a distance of 2.3 mm

becomes shifted by half a period at a distance of 2.5 mm. We

note that the intensity distribution at a distance of 2.3 mm is

close to the initial distribution at zero distance with approxi-

mately the same peak height, as can be seen in Fig. 7.

This peculiarity is very different from the properties of the

Talbot effect discussed in the literature for slit systems. For

example, Berry & Klein (1996) have discovered the fractional

Talbot effect and even the fractal Talbot effect. The fractional

Talbot effect arises at distances mzT=2n where m and n are

integers. The main series corresponds to m = 1. This series was

considered by Kohn (2016) for a finite periodic system of point

sources.

It was shown that due to special phase relations the periodic

system of point sources creates periodic intensity distributions

at distances zT=2n with period p=n. The central peak is always

located between the positions of the sources. This property is

not a Talbot effect and may be called a resonance when many

rays interfere with the same phases, i.e. constructively. This

resonance region covers the distance interval from zero to

zT=4. Then other intervals can be obtained from the symmetry

rules of the Talbot effect based on the Fourier analysis which is

discussed above.

We have found that the reason for this peculiarity is the fact

that the wavefunction of radiation inside the peaks is complex

with a variable phase. We repeat the calculation with a new

initial wavefunction that has the same modulus but zero phase.

The result of the calculation is shown in Fig. 8. Now the image

satisfies all symmetry rules discussed above. The strong peaks

at a distance of 2.3 mm disappear. However, the fractional

Talbot effect is not completely revealed. This may be due to

the existence of small side peaks near the central peak.
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Figure 6
X-ray beam intensity distribution behind the photonic crystal within the
Talbot period.

Figure 7
Dependence of the maximum value of the X-ray beam intensity on
distance behind the photonic crystal.



It is of interest that an image similar to that shown in Fig. 6

was calculated by Berry & Bodenschatz (1999) and is shown in

the Fig. 2(c) of their paper. The authors considered a special

case of a sinusoidal phase grating and obtained a similar

peculiarity. In our case the wavefunction was calculated in the

process of transmission through a photonic crystal.

Finally we conclude that our method of calculation of X-ray

beam transmission through a photonic crystal and subsequent

propagation in free space behind the crystal is rather effective

and allows us to analyse the effect of channeling the X-ray

beam in a two-dimensional photonic crystal of complex

structure.
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Figure 8
X-ray beam intensity distribution behind the photonic crystal within the
Talbot period for the case of a wavefunction with initial modulus and zero
phase.
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