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The development of magnetic nanostructures for applications in spintronics

requires methods capable of visualizing their magnetization. Soft X-ray

magnetic imaging combined with circular magnetic dichroism allows nano-

structures up to 100–300 nm in thickness to be probed with resolutions of 20–

40 nm. Here a new iterative tomographic reconstruction method to extract the

three-dimensional magnetization configuration from tomographic projections

is presented. The vector field is reconstructed by using a modified algebraic

reconstruction approach based on solving a set of linear equations in an iterative

manner. The application of this method is illustrated with two examples

(magnetic nano-disc and micro-square heterostructure) along with comparison

of error in reconstructions, and convergence of the algorithm.

1. Introduction

Advances in nanomagnetism towards applications in spin-

tronics involve magnetic heterogeneous systems with

increasing complexity including multiple materials, and

complex geometries. Spectroscopic methods and imaging tools

are required to characterize and visualize the local magnetic

properties in different regions throughout the hetero-

structures. Several tools for magnetic imaging have been

developed in the past years. Using visible-light photons, Kerr

microscopy and vector magnetometry provide, via magneto-

optical effects, mappings of the magnetization with lateral

resolutions around �1 mm limited by the photon wavelengths

(Hubert & Schaëfer, 1998; Berger & Pufall, 1999; Teixeira et

al., 2011). Their probing depth is a few nanometres in metallic

samples. Higher lateral resolution is achieved with electron-

based techniques by using secondary or photo-emitted elec-

trons. Scanning electron microscopy with polarization analysis

and X-ray photoemission electron microscopy provide very

good lateral resolution (�10 nm) but they also have shallow

probing depths (1–2 nm) due to strong inelastic scattering of

low-energy electrons (Scheinfein et al., 1990; Unguris, 2001;

Locatelli & Bauer, 2008; Foerster et al., 2016). This limitation

is circumvented for high-energy electrons that traverse

samples. Lorentz transmission electron microscopy (Lorentz

TEM) (De Graef, 2001; McVitie et al., 2015) has an excellent

lateral resolution (�1 nm) and is sensitive to the magnetiza-

tion of the whole sample in systems up to �100 nm in thick-
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ness. Because the technique probes the magnetization

perpendicular to the direction of the propagation of electrons,

it is highly sensitive to in-plane magnetization. A further

development of Lorentz TEM, called vector field electron

tomography, is especially interesting (Phatak et al., 2008;

Prabhat et al., 2017). It combines both the excellent lateral

resolution and the in-depth magnetic sensitivity of Lorentz

TEM with the three-dimensional (3D) volume reconstruction

capabilities of tomography to obtain the potential vector A

and, from it, the full magnetization configuration in 3D

magnetic systems. Besides these methods, two X-ray-based

techniques are being used to probe magnetization with high

sensitivity and spatial resolution. Soft X-ray transmission

microscopy using circularly polarized X-rays of energies

typically below 1 keV with a 100–300 nm penetration depth

has been used to image buried magnetic layers by exploiting

the large magnetic dichroism occurring at specific electronic

transitions in magnetic atoms (Blanco-Roldán et al., 2015;

Fernández-Pacheco et al., 2017). More recently, hard X-rays

(photon energies of about 6–10 keV), that have larger pene-

tration depths (�mm), have been successfully used to recon-

struct 3D magnetization. In this case, as the magnetic dichroic

absorption is very small compared with soft X-rays, the

method uses transversally coherent X-rays to exploit diffrac-

tion and phase contrast in ptychography mode, which involves

the acquisition of several thousands (�105) of diffraction

images, allowing to resolve the magnetization of the sample

with lateral resolution around 100 nm typically (Donnelly et

al., 2017).

Here we present the development of a new iterative algo-

rithm to obtain quantitative 3D vector magnetization recon-

struction using soft X-ray microscopy (Blanco-Roldán et al.,

2015; Hierro-Rodriguez et al., 2017a,b). This is achieved by

taking X-ray transmission images with opposite dichroism

(positive and negative) for two tomogram series by rotating

the object around two orthogonal tilt axes. The total number

of images required is around 500 or less. The reconstructions

are based on a joint processing of both tomogram series

for obtaining the reconstructed magnetic configuration. In x2

the forward problem of magnetic soft X-ray transmission

microscopy is presented by introducing the equations that

describe the projected images. In x3, we analyze scalar and

vector field reconstruction problems solving them by using a

modified iterative algebraic reconstruction technique. The

algorithm will be made openly available under TomoPy, which

is a library for tomographic image reconstruction (Gürsoy et

al., 2014), and the simulated tomograms will be accessible

through TomoBank (De Carlo et al., 2018). x4 illustrates the

application of the method by reconstructing two simulated

magnetic microstructures and evaluating its accuracy. Finally,

the conclusions of the work are presented in x5.

2. Magnetic soft X-ray transmission microscopy

In an X-ray transmission microscope, the transmitted X-ray

intensity through the sample under investigation is recorded at

each pixel of a two-dimensional detector forming a transmis-

sion image. In the following, we assume a simplified geometry

with incoming parallel beam, although the condenser optics of

the soft X-ray microscope focuses the beam onto the sample,

and the objective Fresnel zone plate lens (FZP) collects the

transmitted beam producing a magnified image (�1500) at the

charged-coupled detector (CCD) (Pereiro et al., 2009). The

FZP has a limited depth of field that will affect the projections

while rotating, if the sample size exceeds it. This has to be

taken into account for samples with relatively large lateral

dimensions. By exploiting the broad photon energy spectrum

emitted by synchrotron light-sources, it is possible to tune the

X-ray wavelength in order to match atom-specific absorption

edges leading also to resonant atom-specific images (Pereiro et

al., 2009; Olivares-Marı́n et al., 2015). Moreover, if the polar-

ization of the incident beam is circular (right- or left-handed),

atom-specific magnetic images can be recorded by taking

advantage of magnetic dichroism effect (Olivares-Marı́n et al.,

2015; Sorrentino et al., 2015). In this framework, the X-ray

intensity after passing through the sample can be described as

follows,

I ¼ I0 exp
R

L�1 1þ � k �mð Þ½ � dt
� �

: ð1Þ

In equation (1), I and I0 are the transmitted and incident

intensities of the X-ray beam, respectively. L�1 is the inverse

of the attenuation length for the X-rays, and it depends on the

photon energy and on the electron density of the sample

which will be variable in heterogeneous systems. � is the

dichroic coefficient for the magnetic material under analysis; it

is the scale factor of the magnetic sensitivity and depends on

the electronic levels of the absorbing atoms. k �m is the dot

product of the X-ray wavevector and magnetization; it

provides the sensitivity of the dichroism at different relative

orientations of the sample and the photon beam. m is

the reduced magnetization vector (m = M/MS, with M the

magnetization vector and MS the saturation magnetization).

dt is the elementary path along the X-ray linear trajectory

spanned by the line integral. The latter runs along the entire

beam path, from its source to the detector, passing through the

sample space. Thus, it is clear that L�1 and m are explicit

functions of t as they are sampled by the X-ray beam. The

transmittance (T = I/I0) is separated into two terms,

T ¼ exp
R

LðtÞ�1 dt þ
R

LðtÞ�1�ðtÞ k �mðtÞ½ � dt
� �

: ð2Þ

The first integral does not depend on the magnetism but only

on the charge distribution in the sample whereas the second

one includes the magnetic contributions. For practical conve-

nience and to separate the magnetic and nonmagnetic parts

we take the logarithms of the transmittance for right-handed

[+�, equation 3(a)] and left-handed [��, equation (3b)]

polarizations,

log Tþ�
� �

¼
R

LðtÞ�1 dt þ
R

LðtÞ�1�ðtÞ k �mðtÞ½ � dt; ð3aÞ

log T��
� �

¼
R

LðtÞ
�1 dt �

R
LðtÞ

�1�ðtÞ k �mðtÞ½ � dt: ð3bÞ

Hence, by simply adding and subtracting equations (3a) and

(3b), separate expressions for the non-magnetic [equation

(4a)] and magnetic [equation (4b)] contributions are obtained,
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log Tþ�
� �

þ log T��
� �

¼ 2
R

LðtÞ
�1 dt; ð4aÞ

log Tþ�
� �

� log T��
� �

¼ 2
R

LðtÞ�1�ðtÞ k �mðtÞ½ � dt: ð4bÞ

Equation (4a) will be used to obtain the values of the

attenuation length (L), which is a scalar field, while equation

(4b) will allow the magnetization configuration (m) of the

system to be extracted.

3. Scalar and vector field tomographic reconstruction

In a general tomography problem, a certain property of an

unknown sample is volume reconstructed by the analysis of its

different projections (Kak & Slaney, 1988). These are acquired

by taking images of the sample at different rotation angles

around a certain axis or axes.

Fig. 1(a) shows an image of the general problem for trans-

mitted X-rays (red arrows) and two orthogonal rotation axes.

We indicate as Xtilt and Ytilt the projection series acquired by

rotating the system around the X and Y axes, respectively. The

sample is located between the X-ray source and the detector.

Both rotation axes pass through the centre of the sample

taken as the origin of the reference frame. In the sample space,

a volume model formed by voxels is created (grey cube around

the sample in Fig. 1a) with its centre located at the origin.

Let us call x the property that we want to reconstruct, thus

each voxel of the model will contain a value for this parameter.

In order to find the x field by using the volume model, the

images recorded with the detector at different projection

angles (measured data) are compared with the mathematic

projection of the model at the same tilt angles. In this way, the

problem of reconstructing the x field can be written as a

system of linear equations in the following form,

y� � A�x ¼ 0; ð5Þ

where

y� ¼

y�1;1

..

.

y�n;m

..

.

y�N;M

2
6666664

3
7777775
; x ¼

x1;1;1

..

.

xi;j;k

..

.

xI;J;K

2
6666664

3
7777775
;

A�
¼

l �;1;11;1;1 � � � l �;1;1i;j;k � � � l �;1;1I;J;K

..

. . .
. ..

.

l
�;n;m
1;1;1 l

�;n;m
i;j;k l

�;n;m
I;J;K

..

. . .
. ..

.

l �;N;M1;1;1 � � � l �;N;Mi;j;k � � � l �;N;MI;J;K

2
66666664

3
77777775
:

The column vector y� represents the transmittance at each

pixel of the detector arranged in raster order (concatenated

stacking of all the rows of the detector) for a certain projection

�. The detector has N � M pixels. The column vector x is

composed of the values for the x field stored in the volume

model arranged also in raster order [concatenated stacking of

volume model data ordered by running the rows (j index), the

columns (i index) and finally the layers (k index)]. The general

volume model has I � J � K voxels, indicating the number of

rows, columns and layers, respectively. The matrix A� is the

projection matrix which allows the values of each detector

pixel y� to be obtained as a function of the model parameters x

for a certain projection angle �. This matrix has size NM� IJK

and is sparse. Its elements (l �;n;mi;j;k ) are indexed indicating to

which detector pixel (n,m) and at which tilt angle (�) the

volume is being projected, and also which cell of the model

(i, j,k) is involved. The main point here is that, for different

projections, different linear combinations of the voxels

contribute to the integrated intensity in the same detector

pixel. Thus, the value of each element of A� is calculated as the

length of a specific ray through each voxel at a projection

angle �. These lengths are the ‘weights’ of the physical prop-

erty enclosed in the voxels (x) to form the linear combination

determined by the beam. It is important to mention here that

an efficient implementation of the calculation of these

elements is crucial for the performance of the final recon-

struction algorithm (Siddon, 1985; Jacobs et al., 1998).

To further clarify this point, we analyse a simple example

of two different projections in the Ytilt configuration at 0�
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Figure 1
(a) Scheme of the tomography problem showing the X-ray beam, the
sample, the rotation axes, the detector and a volume model for the
reconstruction. Two projections at 0� (b) and 60� (c) rotated around the Y
axis (plane XZ) on a one-dimensional detector are also presented.



(Fig. 1b) and 60� (Fig. 1c). The presented situation is reduced

to a single row (one-dimensional) of the detector with three

pixels (y1, y2, y3) and a two-dimensional slice (x1,1, . . . , xi, j , . . . ,

x3,3) in the XZ plane (Ytilt) of the volume model. The length

of the X-ray beam inside each cell (l �;ni; j ) is indexed using the

previous convention. Thus, for instance the linear combination

resulting in the signal integrated by pixel 2 for 0� and 60�

projections can be written as

y0
2 ¼ l 0;2

1;2 x1;2 þ l 0;2
2;2 x2;2 þ l 0;2

3;2 x3;2

and

y60
2 ¼ l 60;2

1;3 x1;3 þ l 60;2
2;3 x2;3 þ l 60;2

2;2 x2;2 þ l 60;2
2;1 x2;1 þ l 60;2

3;1 x3;1:

It is clear now that the line integral appearing in equation (4a)

is numerically reproduced by this linear combination along

the X-ray path. The L�1 values are considered homogeneous

inside each voxel and the infinitesimal line integral element

(dt) is substituted by the length of the ray through the involved

model cell. The resulting equations system has as many

equations as the number of detector pixels times the number

of different projection angles. For instance, a 256 � 256 pixel

detector and 100 projections leads to a system with more than

6.5 million equations. To solve this problem we use the alge-

braic reconstruction technique (ART) (Kak & Slaney, 1988).

First, an initial value (it can be 0) is assigned to the parameters

contained in the model voxels. After this, the volume model is

projected into the detector space by using A� for the initial tilt

angle of the tomogram. By calculating the difference between

the experimental data (y�) and the numerically projected one,

an error vector (e�) is obtained as depicted in equation (6),

e� ¼ y� � A�x: ð6Þ

The model parameters are updated as indicated in equation

(7). Vectors xnew and xold represent the model parameters after

and before the update, respectively. C� and R� are diagonal

matrices where each of their elements is calculated as the

inverse of the sum of all column and row elements in matrix

A�, respectively. For their calculation, indices ‘c’ and ‘r’ indi-

cate the column and row index of the projection matrix A�,

respectively, thus they run from 1 to IJK for index c and from

1 to NM for index r. These matrices are included in order to

compensate for the number of beams interacting with the

same voxel, and for the number of pixels which are hit by the

same ray, thus they prevent overweighting. Finally, [A�]T

represents the transposed A� matrix,

xnew
¼ xold

þ C � A�
� �T

R�
h i

e�; ð7Þ

where

C �
¼

c
�
1;1 0 � � � 0

0 . .
.

..

.
c�c;c

..

.

. .
.

0

0 � � � 0 c�IJK;IJK

2
66666664

3
77777775
; c�c;c ¼

1P
r

l �r;c
;

R�
¼

r�1;1 0 � � � 0

0 . .
.

..

.
r�r;r

..

.

. .
.

0

0 � � � 0 r�NM;NM

2
66666664

3
77777775
; r�r;r ¼

1P
c

l �r;c
:

Note here that an iteration is completed when all the recorded

projections are taken into account to update the model; thus

to complete an iteration by using the scheme shown in equa-

tion (7) we apply the following protocol: (1) calculate the A�

matrix for the first projection angle and calculate the error

vector e� for that angle, (2) update the model using equation

(7). After this, go back to step (1) but using the second

projection angle instead of the first one and calculate the error

using the previously updated model, update the model again

with the new error and continue repeating the protocol until

the last projection is taken into account. By performing

several iterations the solution for the reconstructed field

converges, which is common to ART. We have chosen ART

for the iterative reconstruction due to the fast convergence

(8–10 iterations usually lead to convergence) and because the

method does not assume any a priori information related to

the noise or object model.

This method can be directly applied in order to reconstruct

scalar fields for the situation shown in equation (4a) to

reconstruct the attenuation length in 3D. In order to apply the

protocol to reconstruct the vector field as in the case of

equation (4b), it is only necessary to calculate a different

projection matrix which takes into account the signal recorded

with magnetic contrast due to the dot product. To do this we

express the X-ray wavevector in spherical coordinates (kx =

sin�cos’, ky = sin� sin’, kz = cos�) and perform the dot

product [equation (8)],

log Tþ�
� �

� log T��
� �

¼ 2
R

LðtÞ�1�ðtÞ
h

sin � cos ’mxðtÞ

þ sin � sin ’myðtÞ þ cos �mzðtÞ
�

dt: ð8Þ

Note here that the previously used projection angle defined as

� is the same as � in spherical coordinates. In the reference

frame as sketched in Fig. 1, the Ytilt series implies a rotation of

an angle � with a fixed angle ’ = 0� (defining the XZ plane). In

the case of the Xtilt series, the fixed ’ angle is 90� and the

rotation angle is equal to � (defining the YZ plane). This

means that with only one tilt series it is not possible to

reconstruct all the components of the magnetization vector;

thus to obtain the necessary information we acquire two

tomogram series: one around the Y axis (Ytilt) and the other

around the X axis (Xtilt). The first one will give information

about the mx and mz components [equation (9a)], while the

second one contains information from my and mz [equation

(9b)],

research papers

J. Synchrotron Rad. (2018). 25, 1144–1152 Aurelio Hierro-Rodriguez et al. � Dichroic soft X-ray transmission tomography 1147



Ytilt �! log Tþ�
� �

� log T��
� �

¼ ð9aÞ

2
R

LðtÞ�1�ðtÞ
h

sin �mxðtÞ þ cos �mzðtÞ
i

dt;

Xtilt �! log Tþ�
� �

� log T��
� �

¼ ð9bÞ

2
R

LðtÞ�1�ðtÞ
h

sin �myðtÞ þ cos �mzðtÞ
i

dt:

The vector field reconstruction projection matrix will need to

take into account now not only the length of the ray through

each voxel but also the projection angle sine and cosine due

to the magnetic contrast. As we are working now with two

different tilt series, for the same projection angle � we have

two different images acquired (one from Ytilt and the other

from Xtilt). We can arrange the data in the form of a column

vector as in the scalar case, but now concatenating the Xtilt

data after the Ytilt data. Also, it is necessary to create a

volume model where now each voxel contains three para-

meters which are the three magnetization vector components.

In this way, the linear equations system for the vector field

case can be written as follows,

y’;� � A’;�x ¼ 0; ð10Þ

where

y’;� ¼

y0;�
1;1

..

.

y0;�
n;m

..

.

y0;�
N;M

y90;�
1;1

..

.

y90;�
n;m

..

.

y90;�
N;M

2
66666666666666666664

3
77777777777777777775

; x ¼

xX
1;1;1

..

.

xX
i;j;k

..

.

xX
I;J;K

xY
1;1;1

..

.

xY
i;j;k

..

.

xY
I;J;K

xZ
1;1;1

..

.

xZ
i;j;k

..

.

xZ
I;J;K

2
66666666666666666666666666666664

3
77777777777777777777777777777775

;

A’;�
¼

sin �B0;� 0 cos �B0;�

0 sin �B90;� cos �B90;�

� 	
;

B0;�
¼

l 0;�;1;1
1;1;1 � � � l 0;�;1;1

i;j;k � � � l 0;�;1;1
I;J;K

..

. ..
. ..

.

l 0;�;n;m
1;1;1 � � � l 0;�;n;m

i;j;k � � � l 0;�;n;m
I;J;K

..

. ..
. ..

.

l 0;�;N;M
1;1;1 � � � l 0;�;N;M

i;j;k � � � l 0;�;N;M
I;J;K

2
66666664

3
77777775
;

B90;�
¼

l 90;�;1;1
1;1;1 � � � l 90;�;1;1

i;j;k � � � l 90;�;1;1
I;J;K

..

. ..
. ..

.

l 90;�;n;m
1;1;1 � � � l 90;�;n;m

i;j;k � � � l 90;�;n;m
I;J;K

..

. ..
. ..

.

l 90;�;N;M
1;1;1 � � � l 90;�;N;M

i;j;k � � � l 90;�;N;M
I;J;K

2
66666664

3
77777775
:

The elements of the y’,� column vector are indexed as y’;�n;m

where ’ and � indicate whether the data are related to the Ytilt

(’ = 0) or Xtilt (’ = 90) series, and the value of the projection

angle, respectively. The sub-indices n and m specify the pixel

in the detector as in the scalar case. Now, this column vector

has 2(N � M) elements. The column vector containing the

volume model parameters has 3(I � J � K) elements and is

arranged by concatenating the X, Y and Z components of the

vector property to be reconstructed. Their elements are

labelled indicating the voxel index (i, j,k) and the vector

component (X, Y or Z). Due to these new sizes for detector

and volume model vectors the projection matrix A’,� has

2(NM) � 3(IJK) elements, and due to the selected arrange-

ment of y’,� and x vectors its arrangement is different from the

scalar case. The matrix can be separated into six different

blocks arranged in two rows and three columns. Each block is

a sub-matrix of size NM� IJK and allows for the projection of

a different vector component in the Ytilt or Xtilt situation. The

first row is referred to the Ytilt projection and the second one

to the Xtilt. The three columns are related by X, Y and Z

vector field components, respectively. Thus, by using equations

(9a) and (9b), the first row supports the reconstruction of X

and Z components of the vector field, while the second one

deals with Y and Z. This means that first-row second-column

and second-row first-column blocks are zeros. First-row first-

column and second-row second-column blocks are multiplied

by sin � to project mx and my, respectively, and both row

block-elements of the third-column project mz and are

multiplied by cos�. The base sub-matrices are indicated as B0,�

and B90,�. They are calculated as the projection matrix in the

scalar case and contain the lengths of the analysed ray passing

through the model voxels in the Ytilt and Xtilt configurations,

respectively. The elements of matrices B0,� and B90,� are

labelled as l 0;�;n;m
i;j;k and l 90;�;n;m

i;j;k indicating the Ytilt (’ = 0) or

Xtilt (’ = 90) configuration, the detector pixel (n,m) and the

voxel index in the volume model (i, j,k).

ART can be directly applied to the equation system

described in equation (10) as it was applied for the recon-

struction of a scalar field; the only difference is that matrices C

and R must be calculated with A’,� without multiplying its sub-

matrix elements (B0,� and B90,�) by sin� and cos�. This is

because the C and R matrices only compensate for the number

of beams interacting with the same voxel and for the number

of pixels which are hit by the same ray. Finally, it is important

to note that we are not directly reconstructing the reduced

magnetization vector; we are reconstructing 2L(t)�1�(t) m(t)

[equation (4b)]. The contribution of the attenuation length

can be easily accounted for by using the scalar field recon-

struction using equation (4a), and then using those values in
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the model to isolate �(t) m(t). The latter

is proportional to the magnetization

configuration.

4. Reconstruction of magnetic micro/
nanoparticles

Two different magnetic particles have

been simulated in order to test the

capabilities of the aforementioned

reconstruction approach: a Permalloy

(Ni80Fe20; Py) nano-disc and a Py/Al/Py

micro-square heterostructructure (Fig. 2).

The micromagnetic simulations have

been performed by using the Mumax3

code (Vansteenkiste et al., 2014). The

systems have been simulated using 5 nm

� 5 nm � 5 nm cells with MS of Py =

810 � 103A m�1, exchange stiffness Aexch

= 1.3 � 10�11 J m�1 and an out-of-plane

uniaxial anisotropy energy density KU =

6 � 104 J m�3. The latter is usually present in Py structures

and supports the formation of stripe domains in thicker

samples (Voltan et al., 2016), but it is not generally considered

in thin film simulations due to its negligible contribution in

comparison with the Py thin film shape anisotropy term (which

is two orders of magnitude larger). In our case, as we are going

to simulate a rather thick magnetic heterostructure, it needs to

be taken into account. The Py disc was 290 nm in diameter

with a thickness of 40 nm. It presents a clear vortex config-

uration at remanence as represented from the central slice of

the simulation (Fig. 2c). The colour scale for the magnetization

orientation is represented by small vortices with opposite

polarities (black! mz negative; white! mz positive).

The micro-particle consists of a 1 mm-side square with

100 nm/40 nm/40 nm thickness structure of Py/Al/Py.

Different slices of the simulation showing the magnetization

configurations at remanence are presented for the thick Py

layer (I–III, Fig. 2d) and for the thin one (IV, Fig. 2d). The

system supports stripe domains in the thick Py layer and

mainly in-plane magnetization is present in the thin one. This

decoupling is mediated by the non-magnetic Al spacer. The

output of the micromagnetic simulation encloses the reduced

magnetization vector at each simulation cell. This is combined

with a model containing the attenuation length of each

material for the Fe L3 energy edge (Py ! L�1 = 5.13 �

106 m�1, Al! L�1 = 8.24 � 105 m�1), and a dichroic factor of

0.22 only where the Py is present. By projecting these models

using equation (4b), we simulate the X-ray transmission

tomography data which will be used to test the reconstruction

algorithm.

In order to completely validate the reconstruction method,

we investigate tomograms with data from the full projection

(FP) range (�90 to 90�, 1� step), and tilt series with a limited

number of projections (missing wedge, MW). We have chosen

for the latter a range from �60 to 60� with 1� step. This

limitation is typical of X-ray transmission tomography setups

(Pereiro et al., 2009; Olivares-Marı́n et al., 2015). The nano-

disc and micro-square particles have been reconstructed

taking 64 and 46 Z layers in the volume model, respectively.

Fig. 3 presents a comparison between ground truth and the

reconstructed data for the nano-disc particle in the 32nd Z

layer of the volume. Components X, Y and Z of the recon-

structed vector field are shown for the FP and MW situations.

Moreover, in order to quantify the quality of the reconstruc-

tions, the normalized root mean square error (NRMSE) of the

reconstruction compared with the ground truth is presented.

This parameter is calculated as follows,

NRMSE ¼
1

Xmax � Xmin

1

N

PN
i¼ 1

XGT � X
� �2

� 	1=2

: ð11Þ

X represents the data contained in the reconstructed model

slice to be analysed; XGT is the ground truth data; Xmin and

Xmax are the minimum and maximum values of the pixels in

the analysed slice, respectively; and N is the total number of

pixels involved. The high quality of the reconstructions is

directly observed for the MW and FP situations. However, the

latter presents an excellent agreement with the ground truth

data, while the value of all vector components in the MW case

is smaller than the original one (5–20%).

We have analysed also the NRMSE for all the Z slices of

the reconstruction volume to observe the MW effects along

the thickness in the reconstructed solution (Fig. 4). Vertical

dashed lines have been superimposed in the graphs where the

edges of the disc are present. The results for the estimated

error of X (Fig. 4a) and Y (Fig. 4b) components are almost

equal, while that for Z (Fig. 4a) presents a different behaviour.

This occurs because the information for the reconstruction of

the Z component is present in the Xtilt and Ytilt series, while

the other components are reconstructed from the information

of individual series. The evolution of the NRMSE calculated

for the whole reconstructed volume model instead of by the
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Figure 2
Schematics of the magnetic nano-disc (a) and micro-square (b) systems simulated to test the
vector reconstruction algorithm. The relaxed magnetic configuration of both structures is
presented showing simulation volume slices in the disc (c) and square (d) cases.



Z layer is presented for the FP (Fig. 3d) and MW (Fig. 3e)

situations. The MW case presents in general a larger error than

the full projection one. The reconstruction of the nano-disc

top and bottom surfaces is also affected by the MW config-

uration leading to an ambiguity at the borders. It is important

to mention here that the increased error associated with the

MW series is mainly associated with the X and Y components.

The out-of-plane component presents almost the same error in

the FP (NRMSE = 0.02) and MW (NRMSE = 0.03) situations;

the only difference here is a small oscillation in the NRMSE

versus iterations. In any case, both reconstructions clearly

allow the disc structure at the centre of the model volume and

its magnetic configuration to be identified.

In the case of the magnetic micro-square heterostructure, a

direct comparison between ground truth and reconstructions

is presented in Figs. 5 and 6. The first one shows the 16th

Z slice (thick Py region) while the second represents the 38th

Z slice (thin Py region).

Again, the FP and MW situations are studied. The latter

presents a smaller intensity in all the reconstructed compo-

nents and the agreement of the FP range reconstruction is

much better than the MW one. It is important to mention here

that the NRMSE for the Z component of the vector presents

almost the same value for the MW and FP reconstructions in

the out-of-plane dominated area of the magnetic structure.

The aforementioned effect in the error is clearly observed in

the NRMSE representation as a function of the Z slice of the

volume model for all the vector components (Fig. 7). The Z

component presents a maximum in the error for the region

where the out-of-plane magnetization dominates (thick Py

region), and in the range dominated by mx and my the

NRMSE decreases. This implies that it is more difficult to

reconstruct the Z component despite the redundancy in the

tomographic data (Z component reconstructed from both tilt

series). This can also be observed in the convergence plots

showing the NRMSE calculated for the whole reconstructed

model as a function of the iteration number (Figs. 7d and 7e).

Again, the main difference between MW and FP is an

important increase in the error associated with the in-plane

components while the value for the Z component is almost the

same. It is also observed that the MW induces artifacts at the

interfaces inside the object between different layers of the

heterostructure. These artifacts are due to the missing data

and conventional tomography also experiences such artefacts,

especially for in situ imaging studies where the sample is in a

chamber or cell and not all views are accessible with X-rays.

However, the trend of the reconstructed vector field is quali-

tatively and in some cases quantitatively in agreement with

the original magnetization configuration, indicating that the

algorithm is capable of successfully reconstructing the 3D

magnetization from magnetic soft X-ray transmission tomo-

grams.
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Figure 4
Normalized root mean square error from the reconstructed mx (a), my (b)
and mz (c) of the nano-disc as a function of the Z layer. Full projection
(FP, black squares) and missing wedge (MW, red dots) situations are
analysed. Dashed vertical lines indicate where the disc is located.
NRMSE for the whole volume model as a function of iterations in the FP
(d) and MW (e) situations. Components mx (black squares) and my (red
dots) present almost the same behaviour and appear superimposed.

Figure 3
Ground truth [mx (a), my (b), mz (c)], full projection [mx (d), my (e), mz

( f )] and missing wedge [mx (g), my (h), mz (i)] reconstructions of the disc
particle. Images correspond to Z layer 32 of the volume model. The
normalized root mean square error is indicated for the specific images.



5. Conclusions

A new method to reconstruct the magnetization vector field

of arbitrary magnetic systems using soft X-ray transmission

tomography has been described. The method takes advantage

of the natural high dichroic contrast of magnetic materials at

soft X-ray energies which leads in practice to acquisition times

of only a few hours to achieve expected resolutions of around

40 nm or better. The technique is useful to characterize

magnetic samples with thicknesses up to �300 nm and up to

several micrometres of lateral dimensions. Both scalar and

vector reconstruction problems have been analysed in detail

and solved by using ART. The vector case requires two

differently oriented tilt series to obtain the three components

of the magnetization. To test the method, two different

magnetic particles have been simulated, and their respective

tomograms calculated. We have studied both full projections

and also incomplete series due to missing wedges to mimic

actual experimental limitations. The results for the full

projections are always better than those for the missing wedge

as expected; however, both approaches provide qualitative

and even quantitative descriptions of the magnetic structures.

The method is well suited for providing detailed information

of the magnetization of buried magnetic structures or inter-
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Figure 6
Ground truth [mx (a), my (b), mz (c)], full projection [mx (d), my (e), mz

( f )] and missing wedge [mx (g), my (h), mz (i)] reconstructions of the
square particle. Images correspond to Z layer 38 of the volume model.
NRMSE is indicated for the specific images.

Figure 5
Ground truth [mx (a), my (b), mz (c)], full projection [mx (d), my (e), mz

( f )] and missing wedge [mx (g), my (h), mz (i)] reconstructions of the
square particle. Images correspond to Z layer 16 of the volume model.
NRMSE is indicated for the specific images.

Figure 7
Normalized root mean square error from the reconstructed mx (a), my (b)
and mz (c) of the micro-square as a function of the Z layer. Full projection
(FP, black squares) and missing wedge (MW, red dots) situations are
analysed. Dashed vertical lines indicate where different materials are
located. NRMSE for the whole volume model as a function of iterations
in the FP (d) and MW (e) situations. Components mx (black squares) and
my (red dots) present almost the same behaviour and appear super-
imposed.



faces, and consequently appears to be a valid characterization

technique of 3D magnetism in spintronic devices.
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Álvarez-Prado, L. M., Martı́n, J. I., Alameda, J. M., Pereiro, E.,
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